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Randomized controlled trials (RCTs) have become the gold standard of clinical
evidence and the staple of guided clinical practice. RCTs are based on a complex set
ofprinciplesandproceduresheavily strungbystatistical analysis, primarilydesigned
to answer a specific question in a clinical experiment. Readers of clinical trials need
to apply critical appraisal skills before blindly accepting the results and conclusions
of trials, lest they misinterpret and misapply the findings. We introduce the
fundamentals of an RCT and discuss the relationship between relative risk (RR) and
absolute risk (AR) in termsof thedifferent informationeach conveys. The top results
of some recent cardiovascular outcome trials using sodium–glucose cotransporter
2 inhibitors and glucagon-like peptide 1 receptor agonists in patients with type 2
diabetes are used to exemplify themerit of assessing both RR and AR changes for a
balanced translation of findings into shrewd clinical judgment. We also suggest
practical points to assist with a clinically useful interpretation of both within-trial
and across-trial reports. Finally, we mention an alternative approach, namely, the
restrictedmean survival time, to obtaining unbiased estimates of themean time of
missed events in the treatment versus placebo arm for the duration of the trial.

Evolving treatment recommendations in type 2 diabetes are being driven by ran-
domized controlled trials (RCTs), which have become the gold standard of clinical
evidence and the staple of guided clinical practice. Reports of RCTs now crowd the
pages of both general medicine and specialist journals, with a focus on cardiovas-
cular outcome trials (CVOTs). Cardiologists have dominated the field of CVOTs, and
endocrinologists/diabetologists have come relatively late into the game, when a
decade ago the U.S. Food and Drug Administration mandated that all new diabetes
agentsdemonstrate cardiovascular (CV) safety inproperlypoweredCVOTsenriched in
populationsathighCVrisk. Since2015, ahighnumberofCVOTs in type2diabeteshave
been published, and more are due to report in the next 2–4 years.
The concept of anRCT is based ona rather complex set of principles andprocedures

heavily strung by statistical analysis, primarily designed to answer a specific question
in a clinical experiment. Over the years, it has come to have rigid rules and formalism
and grown its own jargon (1). An emergent “trialist community” (1) now includes
clinical investigators, regulators, developers, and payers. An industry of expensive
contract research organizations for datamonitoring and collection has sprung up and
rapidly expanded, including large academic consortia for developing, adjudicating,
conducting, and reporting CVOT results. At large, an RCT mindset has permeated the
entire process of clinical investigation (project proposals, funding requests, ethics
permission, adjudication committees, peer review processes, and even journal
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instructions for authors). Yet, interpret-
ing and translating an RCT into clinical
practice are less easy than it would
appear. Readers of clinical trials need
to apply critical appraisal skills before
blindly accepting the results and conclu-
sions of trials, lest they misinterpret and
misapply the findings. We hereby share
what we have learned from having been
involved in designing, conducting or in-
terpreting, and reporting some of the
CVOTs.

Relative Versus Absolute Risk
Top-line resultsof anRCT typically consist
of Kaplan-Meier curves, i.e., estimated
instantaneous incidence (hazard) event
rates [IR] in the trial arms (say, placebo
[IRPlb] and treatment [IRTx]), thereby
visually illustrating the difference of an
explicitly predefined event (e.g., cardio-
vascular disease [CVD] death). The ratio
of IRTx to IRPlb cumulated over time is the
relative risk (RR). The analysis (Cox pro-
portional hazards regression) is expressed
as a hazard ratio (HR) (assumed to be
proportional between the two arms), its
95%CI, andP value: HR is the ratio of IRTx to
IRPlb at any time during follow-up. If HR
is ,1 and the CI does not include 1, then
the treatment can be interpreted to have
allowed a longer event-free survival com-
pared with placebo (Fig. 1 in ref. 2 for CVD
death). If HR exceeds 1 and the CI does not
include 1, the treatment is deemed to have
been harmful compared with placebo. Es-
peciallywhenexpressed in termsofpercent
RR reduction, such a way of reporting may
appear impressiveor,even,“paradigmshift-
ing” (e.g., reference 2). Other end points,
whether primary, prespecified, or adjudi-
cated events or secondary observations
from the trial, are formally treated in the
sameway in hierarchical order. Canonically,
if the primary end point does not reach
statistical significance (the ubiquitous P ,
0.05), the hierarchical analyses are aborted
and further probability assessment (i.e.,
“nominal” P values) is qualified as “ex-
ploratory” and given less credit. Alterna-
tively, one can prespecify a coprimary
outcome (thereby “splitting the a,” i.e.,
raising the statistical significance threshold)
or secondary outcomes acrossmultiple end
points. Such downstream analyses can be
used to at least glimpse some “hypothesis-
generating” findings to earmark for direct
testing in subsequentadhocstudiesor real-
world data analyses. In theory, this statis-
tical architecture should make it possible for

the clinician to assign different clinical rel-
evance to thedifferent outcomesof a study.
In many cases, we submit that it falls short
of providing a realistic clinical perspective.

Many RCTs also report estimates of
the absolute risk (AR) or risk difference
(IRTx2 IRPlb), in units of cumulative event
rates (i.e., percentage of individuals in
each arm at study end) or annualized
rates (per 1,000 person-years [py]) (e.g.,
Table 1 in reference 2). How are RR and
AR related to one another, and what
differential information do they carry?

Figure 1 plots the relationship be-
tween RR and AR over a range of RRsd
from favoring treatment to favoring
placebodfor different base incident
event rates. Note that because of ran-
domization, IRPlb can be safely taken to
be the base incidence rate of the whole
cohort. It can be seen that at any given
base rate the relationship between RR
and AR is a straight line hinged on the
fulcrum (where RR is 1 and AR difference
is 0). The slope of this relationship be-
comes steeper as the base risk rate
decreases. For example (green dotted
lines in Fig. 1), an RR of 0.4 (5 60% RR
reduction by treatment vs. placebo)
translates into a negative AR (5 AR
reduction) of 60/1,000 py (or 6% per

year) at a base rate of 100/1,000 py (5
10%per year) but only to anAR reduction
of12/1,000py (51.2%per year) at abase
rateof20/1,000py (52%per year). Thus,
AR is strongly dependent on the base risk
rate. The classical case in point is pro-
vided by the statin trials, where similar
RR reductions in major vascular events
(HR ;0.8 per each mmol/L of LDL cho-
lesterol lowering) have been observed
across a $10-fold range of base risk
rates, thereby yielding large differences
in AR reduction among trials (3). The
reciprocal of a negative AR (5 AR re-
duction) is the number needed to treat
(NNT), which estimates the number of
subjects to be treated to “save” (prevent
or delay) one event over the duration of
the trial. In the example above, in the
high-risk population (base rate 5 100/
1,000 py) the NNT is 17 subjects, which
escalates to 83 subjects in the low-risk
population (base rate 5 20/1,000 py).
Conversely, the same AR is associated
with decreasing HRs as the base risk rate
increases.

Note that on the right side of the
nomogram in Fig. 1, a positive AR (5 AR
increase) tells the number needed to
harm (NNH). For example (red dotted
lines in Fig. 1), an AR increase of 30/1,000

Figure 1—Relationship between RR and AR difference over a range of base risk rates. See text for
further explanation.
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py corresponds toanHRof1.75 for abase
rateof40/1,000pyandanHRof1.30 for a
base rate of 100/1,000 py. Therefore, in
trial reports both RR and AR should be
highlighted and brought to the reader’s
attention for full understanding of the
quantitative aspects of the trial and to
allowcomparisonwithexistent literature
(i.e., other treatments, different patient
populations, etc.).

Incidentally, thebalancebetweenNNT
and NNH could be used to assess the
benefit-to-risk ratio. For instance, with
reference to Fig. 1, suppose that in an
intervention trial carriedout inahigh-risk
population (base rate 5 10% per year)
the AR reduction of CV death with treat-
ment is 6% per year, but a fatal, non-CV
adverse event clearly related to the
treatment is recorded in 3% per year of

the exposed group. Thus, NNT is 17 for
1 year and the NNH is 8 for 1 year.
Therefore, for every 100 people treated
with the theoretical intervention, 17peo-
ple who would have otherwise had a CV
death will be alive, whereas 8 people
who would otherwise have been alive
would have died. Therefore, for the out-
come of total mortality, for every 100
people, 9 people who would have oth-
erwise died would have been alive at
the end of a year. That suggests overall
net benefit. The point is that one must
scrutinize overall benefits and harms
of an intervention and not just focus
on CV benefits while ignoring non-CV
harms.

Of course, this is an extreme hypo-
thetical scenario, but it introducesapoint
of current special interest to the clinician,
as it pertains to trials of sodium–glucose
cotransporter 2 inhibitors (SGLT2i) in
patients with diabetes. Use of this class
of drugs has been reported to increase
the incidence of so-called euglycemic
diabetic ketoacidosis (DKA) in a few
patients with type 2 diabetes (4) and,
mainly, in a small proportion of patients
with type 1 diabetes (5). DKA is rarely
fatal but is a serious adverse event of
major clinical impact (6). In relatively
small trials of short duration, however,
it is difficult to capture the real incidence
of DKA precisely because it is rare. In a
recent 52-week trial of sotagliflozin (a
dual SGLT2/1 inhibitor) in adults with
type 1 diabetes (7), the 400mg/day dose
was associated with a DKA incidence
(IRTx) of 4.2% vs. the 0.4% incidence
(IRPlb) detected in the placebo arm, cor-
responding to an RR (IRTx/IRPlb) of 10.5.
In a recent update of the T1D Exchange
clinic registry (8), the frequency (IRPlb)
of at least one DKA event in the 3months
prior to date of censoring in 1,525 pa-
tients (.18 years old with a complete
electronic questionnaire)was2.6%. If the
RR from the placebo-controlled trial of
sotagliflozin (i.e., 10.5) were to be ex-
trapolated to the registry data above,
onewouldpredict a2.6%310.5527.3%
incidence of DKA with use of the drug in
the “real world” of the T1D Exchange
registry patients, an obviously unaccept-
able risk. Instead, if theAR increase in the
trial (4.220.453.8%)wereaddedto the
base rate of 2.6%of the registry, then the
expected DKA rate in the registry pop-
ulation would be 6.4% and the corre-
sponding RR would be 2.5 and not 10.5.

Figure2—A: RelationshipbetweenARdifference (DIR in Table1) andbase risk rate (5 IRPlb in Table
1) for several clinically relevantoutcomes infive recentCVOTs (listed inTable1).Thedarker-shaded
area includes the 95% CI of the fit and the lighter-shaded area the 95% CI of individual points. The
arrows connect data from the same trial in which the analysis of major adverse CV events (MACE)
was reported separately for patientswith established atherosclerotic CVD (higher risk) ormultiple
CV risk factors (lower risk).B: Relationship betweenRRdifference (HR in Table 1) and base risk rate
(5 IRPlb in Table 1) for several clinically relevant outcomes in five recent CVOTs (listed in Table 1).
HHF, hospitalization for heart failure; DIR, change in absolute incident event rate.
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This automatic transfer of RR across dif-
ferent base incidence rates should there-
fore be avoided.

Within-Trial and Between-Trial
Comparison
It is important to consider that RCTs should
not be compared even when treatment
consists of agents of the same class (e.g.,
statins, SGLT2i, glucagon-like peptide 1 re-
ceptor agonists) because of differences in

population characteristics and study size
andduration aswell as unknownconfound-
ing. Indeed, readingthemethodssectionsof
published RCTs and, especially, the infor-
mation detailed in online supplements, one
finds a labyrinthian list of criteria for par-
ticipant inclusion/exclusion; event adjudica-
tion; definition of primary, nonprimary, and
composite end points; and adverse events.
Parenthetically, a criterion implies a thresh-
old (e.g., doubling of serum creatinine as a

renal endpoint, QTc prolongation.450ms
on the electrocardiogram as an exclusion/
inclusion criterion, etc.). Shifting any one of
these thresholds predictably reclassifies pa-
tients as well as outcomes and may impact
the results of a trial (and the statistics
thereof). By and large, clinical medicine is
about imposing thresholds onto continuous
biological processes, and one has to accept
that a trialdany trialdcarries a load of
more or less explicit assumptions, under
whichitsoutcomeapplies.Nevertheless, it is
usually very tempting to venture into trial
comparisons, in particular in trying to argue
a class effect. Moreover, RCTs are large,
standardized, and costly studies, which
produce a huge amount of carefully col-
lecteddata; inpublications, the correspond-
ing information is collapsed into just a few
statistical indicators (usually, the HR of
prespecified outcomes). Extracting as
much information of potential clinical
relevance as possible therefore is a
thrifty, almost necessary, endeavor.

Commonly, summary results (less fre-
quently, individual data) of different
trials are pooled and analyzed together
(by event category) to estimate 1) con-
sistency, 2) average effect size, and 3)
true incidence of adverse events. Such
meta-analyses have become very popu-
lar, virtually a subspecialty of sorts in all
fields of medicine (.50,000matches in a
PubMed search of “meta-analysis and
trial”). When all HR point estimates fall
on the same side of the unity line (and
heterogeneitydthe I2 valuedis low), a
meta-analysis yields an average effect

Table 1—Incidence rates (per 1,000 py) in the placebo arm (IRPlb), rate difference (DIR or change in AR in percent), and HR for
major clinical outcomes in five CVOTs

EMPA-REG OUTCOME CANVAS DECLARE LEADER REWIND

IRPlb DIR HR IRPlb DIR HR IRPlb DIR HR IRPlb DIR HR IRPlb DIR HR

MACECVD 43.9 26.5 0.86 41.3 27.2 0.83 41.0 24.2 0.90 39.0 25.0 0.87 42 25.0 0.87

MACEMRF d d d 15.8 20.3 1.02 13.3 0.1 1.01 d d d 20 23.0 0.87

All-cause death 28.6 29.2 0.68 19.5 22.2 0.87 16.4 21.3 0.92 25.0 24.0 0.84 22.9 22.3 0.90

CV death 20.2 27.8 0.62 12.8 21.2 0.87 7.1 20.1 0.99 16.0 24.0 0.75 13.4 21.2 0.91

HHF 14.5 25.1 0.65 8.7 23.2 0.67 8.5 22.3 0.73 14.0 22.0 0.86 8.9 20.6 0.93

All MI 19.3 22.5 0.87 12.6 21.4 0.89 13.2 20.5 0.96 d d d 9.1 20.4 0.96

Nonfatal MI 18.5 22.5 0.87 11.6 21.9 0.85 13.2 21.5 0.89 18.0 22.0 0.89 8.4 20.4 0.96

All strokes 10.5 1.8 1.18 9.6 21.7 0.87 d d d d d d 8.1 22.0 0.76

Nonfatal stroke 9.1 2.1 1.24 8.4 21.3 0.90 6.8 0.1 1.01 10.0 21.0 0.91 6.9 21.7 0.76

HHF or CV deathCVD 30.1 210.0 0.65 27.4 26.4 0.77 23.9 24.0 0.83 60.0* 27.0 0.88 d d d

HHF or CV deathMRF d d d 9.8 20.9 0.91 8.4 21.4 0.83 d d d d d _

CKD progression 11.5 25.2 0.61 9.0 23.5 0.61 7.0 23.3 0.53 19.0 24.0 0.79 40.7 26.0 0.85

MACE, hospitalized heart failure (HHF), CV death: for each of these outcomes, the subscript CVD is the value in patients with established CVD, whereas
the subscriptMRF is the value in patients withmajor CV risk factors. CKD, chronic kidney disease;DIR, change in absolute incident event rate; LEADER,
Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results; MI, myocardial infarction. *  Expanded MACE.

Figure 3—Graphical representation of the RMST as the area between the placebo and treatment
Kaplan-Meier function. Redrawn from ref. 2.
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size and a more robust estimate of the
incidence of low-frequency adverse events.
With lesser consistency and greater hetero-
geneity of trial results, the evidence derived
fromameta-analysis is lessthancompelling.
However, clinicians pose yet different ques-
tions: they oftenwonderwhether the same
end point differs across trials and, when
treatmentinducesmultipleeffects,whether
their size is comparable within each trial. A
simpleway of providing qualitative answers
to such questions is exemplified in Fig. 2A,
which plots the change in AR against the
base (5 placebo arm) event rate (both in
annualized rate units) for every outcome
reported in the primary publications of
CVOTs of SGLT2idempagliglozin (2),
canagliflozin (9), and dapagliflozin (10)d
and glucagon-like peptide 1 receptor ag-
onists liraglutide (11) and dulaglutide (12)
(the corresponding numbers are in Table
1). As can be seen, across all end points
there is a fairly good reciprocal associa-
tion, such that for any givenendpoint, the
higher the placebo (or base) event rate,
the larger thedrop inAR.Thedata (central
estimates) from all five trials fall along the
fit without too much deviation from its
95% CI (dark-shaded area). One does not
really need P values to infer that AR
reduction is unlikely to be large if the
base risk in the population studied is low.
Actually, in Canagliflozin Cardiovascular
Assessment Study (CANVAS), Dapagli-
flozin Effect on CardiovascuLAR Events
(DECLARE), and Researching Cardiovas-
cular Events With a Weekly INcretin in
Diabetes (REWIND), the analysis ofmajor
adverse CV events was reported sepa-
rately for patients with established ath-
erosclerotic CVD (higher risk) or multiple

CV risk factors (lower risk), as was “CVD
death or hospitalization for heart failure”
in CANVAS and DECLARE (13). As indi-
catedby the connecting arrows in Fig. 2A,
the within-trial results align very well
onto the general regression line, con-
firming the expectation that the higher
the base risk, the greater the AR reduc-
tion in the same trial. In contrast, plotting
the corresponding RRs against the base
risk rates yields a cloud (Fig. 2B), giving no
clue as to what happened within and
across trials in populations with variable
base rates of the same end points. In-
cidentally, in trials in very-low-risk pop-
ulations in which full statistical significance
of the primary outcome is near missed, it
is not unusual to hear that the study was
not large enough: increasing the sample
size in a very-low-risk population is ex-
pected to lead to narrower CIs, but the
point estimate of the risk changemay be
little affected precisely because of the
reciprocal relationship exemplified in
Fig. 2.

Further qualitative assessment of the
overall clinical benefit of the trials can be
gained from Fig. 2. For example, for the
three SGLT2i studies the obvious infer-
ence is that one is dealing with a class
effect. In addition, the demanding clini-
cian may set her/his own thresholds of
decision making, for example, by deem-
ing as acceptable an absolute reduction
of at least 2.5/1,000 py for clinical end
points with a baseline incidence of $5/
1,000 py. In the case of SGLT2i, within
such a “clinically acceptable” area one
finds CVDdeath, hospitalization for heart
failure (and their composites), and progres-
sion of nephropathy for all three trials,

confirming the relative homogeneity of
the clinical impact of these three drugs.

Finally, one may misread the Kaplan-
Meier plot of event-free survival, e.g.,
Fig. 1 in the BI 10773 (Empagliflozin)
Cardiovascular Outcome Event Trial in
Type 2 Diabetes Mellitus Patients (EMPA-
REG OUTCOME) (2), by assuming, for
example, that an HR of 0.68 for CVD
death implies that empagliflozin can
“save” 32% of deaths: prospective pa-
tients may exult at such news. What the
result actually means is that treatment
was associated with a 32% lower pop-
ulation chance of observing CVD death
relative to placebo within the trial time
period in a high-risk cohort with a base
event rate of 20/1,000 py. In EMPA-REG
OUTCOME, the absolute CV death risk
reduction was 2.2% and the NNT to
prevent one CV death over a median
of 3 years was 46. A further limitation of
the standard “HR approach” is that HR
may change during the trial because of
the early removal of high-risk patients;
furthermore, the HR is influenced by
treatment discontinuation or dropping
out of participants (14,15). In this case,
the principle of proportionality is vio-
lated and the Cox regression analysis is
inappropriate; a keen reader should look
and see if this condition is explicitly
tested in a trial report.

Other Approaches
A more rigorous way of quantifying
trial outcomesdparticularly when the
Kaplan-Meier functions show irregular time
coursesdis to consider the restricted
mean survival time (RMST), which esti-
mates themean (andCI) timeof “missed”
events in the treatment versus placebo
arm for the duration of the trial (16).
Mathematically, RMST is the area be-
tween the placebo and treatment curve
in a Kaplan-Meier plot (shaded area in
Fig. 3). A formal calculation of this area in
EMPA-REG OUTCOME yields a value of
0.7monthsperperson; i.e., empagliflozin
treatment for 4 years results in the post-
poningof all-causedeathby21days (95%
CI 10–33) on average (17): a less impres-
sive message indeed. The RMST metric,
unlike the HR, is independent of assump-
tions, is more efficient in the analysis of
noninferiority in low-risk populations,
and can help in the benefit/risk assess-
ment (17). A very informative analysis of
RMSTs from the major diabetes CVOTs is
in Table 2 of ref. 17, along with a critical

Table 2—Practical points for a correct and clinically useful interpretation of a
CVOT report
c Trial design (definition of primary and secondary end points, statistical power, duration, placebo
or comparator)

c Base risk rate, incident event rate (in annualized units), and cumulative events of the primary
outcome, drop-out and drop-in rates, rescue treatments

c Intent-to-treat and per-protocol analysis

c RR and AR

c Base rate and incident rate of all nonprimary outcomes, including all systematically collected
clinical observations

c Adverse events, in number and annualized rates

c Kaplan-Meier plot of major or frequent adverse events

c Context (comparisonwithother trialsof thesameordifferentpharmacological agent targeting the
same or similar primary outcome)

c Availability of RMST differences to allow the patient and the clinician to choose a given treatment
in the context of the individual patient’s risk level and preferences
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discussion of the advantages and limi-
tations of this approach.
In conclusion, the RCT is a sophisti-

cated clinical experiment necessary for
proper hypothesis testing, currently in-
forming guidelines, health providers, and
clinical practice. In RCTs, however, there
isboth less andmore thanmeets theeyes
of the busy clinician dealing with lots of
patients and loads of information (14–17).
We suggest that there are tactics of reading
into RCTs (summarized in Table 2) that go
some way toward forming of an accurate,
balanced, and more realistic basis for
shrewd clinical judgement.
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