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ABSTRACT Genomic selection has been successfully implemented in plant and animal breeding. The
transition of parental selection based on phenotypic characteristics to genomic selection (GS) has reduced
breeding time and cost while accelerating the rate of genetic progression. Although breeding methods have
been adapted to include genomic selection, parental selection often involves truncation selection, selecting
the individuals with the highest genomic estimated breeding values (GEBVs) in the hope that favorable
properties will be passed to their offspring. This ensures genetic progression and delivers offspring with high
genetic values. However, several favorable quantitative trait loci (QTL) alleles risk being eliminated from the
breeding population during breeding. We show that this could reduce the mean genetic value that the
breeding population could reach in the long term with up to 40%. In this paper, by means of a simulation
study, we propose a new method for parental mating that is able to preserve the genetic variation in the
breeding population, preventing premature convergence of the genetic values to a local optimum, thus
maximizing the genetic values in the long term. We do not only prevent the fixation of several unfavorable
QTL alleles, but also demonstrate that the genetic values can be increased by up to 15 percentage points
compared with truncation selection.
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In times of climate change and rapid population growth, new
methods need to be developed to further improve different crop
properties like yield and resistance to pathogens and drought (Tester
and Landridge 2010). These properties are controlled by different
chromosomal regions or quantitative trait loci (QTL), making it
difficult to improve crop properties by only using phenotypic char-
acteristics (Dekkers and Hospital 2002). Initially, pedigree informa-
tion was used to guide the selection of parental lines in animal and
plant breeding. Nowadays, molecular markers like single nucleotide
polymorphisms (SNPs) serve as proxies for QTL, assuming that

markers are in strong linkage disequilibrium with one or more
QTL (de Roos et al. 2008). The linear relationship between the
genetic markers (genotype) and the phenotype can then be estimated
using a mixed effects model. This concept was first introduced in
marker-assisted selection (MAS), but only minor improvements in
yield were reported (Goddard and Hayes 2002). Genomic selection
was introduced as an alternative for MAS (Meuwissen et al. 2001). By
using markers that cover the complete genome, the fraction of the
genetic variance that can be explained by the molecular markers was
better captured, leading to an improved estimation of large and small
QTL effects (Heffner et al. 2009, 2010; Beyene et al. 2015). Genomic
selection improved yield in animal and plant breeding and reduced
the time in between breeding cycles (Hayes et al. 2009). For example,
crops like oil palm (Elaeis guineensis Jacq.) reach sexual maturity after
three years but require 13 to 15 years before phenotypic character-
istics can be obtained. The transition of phenotypic selection to
genomic selection reduced the time of one breeding cycle from
15 to three years (Cros et al. 2018). In time, genomic selection has
further evolved and has become a powerful tool in animal and plant
breeding (Meuwissen et al. 2001; Bernardo and Yu 2007; Crossa et al.
2010). Over the last years, several advancements were achieved
ranging from yield maximization to the development of new
drought/heat-resistant plants (Wang et al. 2019; Sun et al. 2019;
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Suontama et al. 2019). Nevertheless, the implementation of genomic
selection in certain breeding populations with complex traits and
environmental interactions is still challenging (Juliana et al. 2018;
Voss-Fels et al. 2018).

Several simulation studies on genomic selection have resulted in
high prediction accuracies and genetic values in the short term
(VanRaden et al. 2009; Hayes et al. 2009). These studies often rely
on truncation selection of the parents, leading to a high genetic gain in
the short term but the loss of favorable QTL alleles, genetic variation
and prediction accuracy over time (Jannink 2010). Truncation se-
lection selects the top fraction of the individuals based on their
genomic estimated breeding values (GEBVs), which serve as estima-
tors for the true breeding values. Because the GEBVs are calculated as
the sum of the estimated additive marker effects, the contribution of
favorable small-effect QTL can be concealed leading to their loss in
the breeding population, thus reducing long-term genetic gain. The
loss of those favorable QTL alleles could be reduced by weighting
the marker effects of favorable low-frequency alleles more heavily,
thereby safeguarding long-term gain (Jannink 2010; Liu et al. 2015).
In recent years, different parental methods have been developed that
aim to reduce the loss in genetic variation. This helps to increase the
prediction accuracy and the genetic gain in the long term. To preserve
genetic variation, the selection of closely related individuals should be
avoided (Lindgren and Mullin 1997) or the inbreeding coefficient
should be minimized (Brisbane and Gibson 1995). Although genomic
selection uses GEBVs for parental selection, alternative score func-
tions to guide the parental selection have been proposed. The criterion
of usefulness, which takes into account the selection intensity, mean
genetic value and genetic variance of the breeding population using
Markov chain Monto Carlo simulations, has improved long-term
genetic gain (Lehermeier et al. 2017). An alternative parental selection
scheme was proposed based on the genomic optimal haploid value,
selecting parents that optimize the genetic values of their offspring
(Daetwyler et al. 2015). This method was further improved by
simulating the meiosis between parental haploids, yielding an im-
proved prediction of offspring. This, in turn, leads to a more accurate
evaluation of the double haploids, thereby guiding the parental selec-
tion to further increase long-term genetic gain (Müller et al. 2018).

Over the last years, new mating designs have been proposed to
further improve the parental selection and maximize the genetic gain
in the short or long term. In a new mating design, the genetic
variation is preserved by penalizing crosses between two parents
with high coancestry (Cervantes et al. 2016). Moreover, long-term
gain was further improved by also minimizing the rate of inbreeding
and controlling the allele heterozygosity and allele diversity (Akdemir
and Sánchez 2016). The introduction of an optimal mating design
using a two-part plant breeding selection with rapid recurrent
genomic selection reduced the drop in genetic diversity, thus max-
imizing the conversion of genetic variance into genetic gain (Gorjanc
et al. 2018).

Although parental selection methods play a major role in the
realization of long-term genetic gain, as long as those methods are
based on GEBVs, the results will be influenced by the choice of the
prediction model and the training panel design. Several training panel
designs have been proposed although no significant difference was
observed in the long term, as long as the training panel was
systematically updated over time (Akdemir et al. 2015; Rincent
et al. 2012; Neyhart et al. 2017).

In this paper, the scoping method is presented as a new parental
mating scheme to reduce the loss of favorable QTL alleles by pre-
serving the genetic variation and thus maximizing the genetic value in

the long term. The scoping method combines genetic progression
(truncation selection) and the preservation of the genetic variation of
each marker in the breeding population. Based on the observation
that two closely related individuals might contain a different rare
marker allele, both individuals should be selected to preserve the
genetic variation of both markers in the breeding population. There-
fore, in contrast to other methods, the genetic relationship or in-
breeding coefficient is not taken into account, but individuals are
selected based on their genotype, ensuring the maximal selection of
the different marker alleles and thus maximizing the genetic variance
of their offspring. By doing so, we reduce the risk of premature
convergence of the genetic values to a local optimum. Combined with
truncation selection, the genetic progression is ensured in the short
as well as in the long term. We benchmark our proposed scop-
ing method against two existing selection strategies: the population
merit method (Lindgren and Mullin 1997) and the maximum var-
iance total method (Cervantes et al. 2016). Both methods try to
maximize long-term genetic gain by preserving the genetic variation
of the breeding population, whereas the scoping method preserves the
genetic variation by maximizing the variation of each marker, the
populationmerit method preserves the genetic variation byminimizing
the average genetic relationship of the parental population. Both the
scoping method and the maximum variance total method aim to
maximize the genetic variation of the parental population, and thus are
good candidates against which our proposed scoping method can be
benchmarked.

MATERIALS AND METHODS
We adopt the base population and breeding scheme of Neyhart et al.
(2017), making it possible to compare our results with truncation
selection as reported by Neyhart et al. (2017). The base population
consists of two datasets of North American barley (Hordeum vulgare)
from the University of Minnesota (UMN) and the University of
North Dakota (NDSU) counting respectively 384 and 380 six-row
spring inbred lines with 1590 biallelic SNP loci. Recurrent selection is
applied to the base population to simulate the later breeding cycles
(see Breeding scheme).

In a simulation study, the scoping method, in which a parental
selection method is combined with a new mating design, is proposed
and compared with truncation selection with random mating. The
scoping method tries to maximize the genetic values in the long term,
while preserving the genetic variation of the breeding population. It
aims to avoid the loss of positive-effect QTL alleles, preventing the
convergence of the genetic values to a local optimum. Because this
method might select extreme GEBVs, the Pearson correlation cannot
be used to evaluate the selection method due to its sensitivity to
outliers. Instead, the mean genetic value of the breeding population,
calculated on the basis of the true breeding values, is used to measure
and evaluate the genetic gain for each method. The mean genetic
value of the top-10 individuals is also reported. Our method aims to
maximize the genetic gain of the top-10 individuals, while the
remaining individuals of the breeding population serve to preserve
important genetic marker alleles in the breeding population.

Breeding scheme
The recurrent selection scheme is illustrated in Figure 1. Starting with
100 individuals, a crossing block is constructed, coupling up the
selected individuals. Each couple produces 20 offspring resulting in a
total of 1000 F1 hybrids. After two generations of single-seed descent,
1000 F3 individuals are obtained. These individuals form the new
breeding population from which again 100 parents are selected to
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start a new breeding cycle. This selection occurs either according to
the baseline, population merit, population selection criterion, max-
imum variance total or scoping methods. The first breeding block (in
breeding cycle zero) couples up 50 individuals of the NDSU dataset
with 50 individuals of the UMN dataset with the highest phenotypic
value, regardless of the parental selection method. This design choice
ensures that each parental selection method has the same number of
individuals in the breeding population over each breeding cycle. The
subsequent parental selections are fully based on GEBVs, reducing
the financial cost of phenotyping. A linear mixed effects model is used
to obtain GEBVs from molecular marker scores (see Training panel).
Each simulation consists of 50 breeding cycles and all results are
averaged over 250 simulation runs.

The baseline method
The baseline method selects 100 parents with the highest GEBVs
(truncation selection) and couples them randomly. The idea is that
favorable properties will be passed on to the next offspring, leading
to high short-term gain and rapid fixation of favorable QTL alleles.
However, several favorable QTL alleles will be eliminated from
the breeding population during breeding, reducing long-term
gain and causing the convergence of the genetic values to a local
optimum.

The scoping method
The scoping method continuously preserves genetic variation, avoid-
ing premature convergence to a local optimum while ensuring a
gradual increase of genetic values over breeding cycles. The parental
selection is split into two parts: the pre-selection and the selection.
First, a fraction of the breeding population with the highest GEBVs is
pre-selected using truncation selection. This fraction, referred to as
the scoping rate (SR), can take a value between 0.1 and 1. An SR of 0.1
pre-selects 100 individuals (10%) of the breeding population, whereas
an SR of 1 will pre-select the entire breeding population (100%).
During the selection, 100 different parents are chosen from the pre-
selected population. In contrast to the baseline method, parents are
not coupled randomly. From the pre-selected individuals, the one
with the highest GEBV is chosen as the first parent. The second
parent is chosen from the pre-selected individuals in such a way that
the genetic variation of selected parents is maximized over each
marker. Mathematically, the following score function is maximized:

Fscore ¼
Xk

j¼1

var
�
Zj;selection

�
pj (1)

with k the total number of molecular markers, Zj;selection the incidence
matrix of the selected parental genotypes (coded as -1, 0 and 1) at the
j-th marker and pj a Boolean value. Initially, pj has a value of 1 for
every marker position. When both alleles of a marker j are present in
the selected population, the value pj is set to 0 before selecting the next
couple of parents. Thereby, the score function will maximize the
variance of the genotype over each marker for which both alleles are
not yet present in the selected population, thus avoiding the loss of
low-frequency marker alleles. If pj is 0 for all markers, the value of
each pj is changed back to 1, again maximizing the variance over all
the markers. At this moment, all the available marker alleles of the
current breeding population are present in the selected parental
population.

The scoping method combines truncation selection with a new
mating design, coupling individuals with high GEBVs with individ-
uals that maximize the genetic variation of their offspring. The pre-
selection process avoids that individuals with lower GEBVs, which
might maximize the genetic variation of certain parents, are not
available for selection and thus avoids the loss of genetic gain in the
short term. We expect that the mating design will reduce the loss of
marker alleles while the pre-selection will eliminate unfavorable QTL
alleles over time. This should lead to a slower but more accurate
fixation of the favorable QTL alleles.

The population merit method
The population merit method was introduced by Lindgren and
Mullin (1997) and aims to preserve the genetic variation of the
breeding population by taking into account the average coances-
try of the parental population. Normally, the average coancestry
is calculated based on pedigree information. Unfortunately, this
information is not available for both datasets. Therefore, the
average genetic relationship will be used instead. The genetic
relationship matrix G is calculated according to VanRaden
(2008):

G ¼ MM9

2
Pk

i¼1
Pið12 PiÞ

(2)

withM a matrix with k columns of which each column is calculated as
Zi 2 1n½2ðPi 2 0:5Þ�, Zi the genotype of n individuals at the i-th
marker, 1n a vector of size n containing ones, k the number of
markers, n the number of individuals in the breeding population and
Pi the frequency of the second allele at the i-th marker. The
population merit Bv is calculated as:

Figure 1 Overview of the recurrent selection scheme.
First, 50 couples of parents (P1, P2) each produce 20 off-
spring yielding a total of 1000 F1 hybrids. Then, after
two generations of single-seed descent, 1000 F3 indi-
viduals are obtained. From those F3 individuals, new
parental lines are selected. Two different parental se-
lection methods are considered: i) the baseline method
selects 100 parents with the highest GEBVs (truncation
selection); ii) the scoping method combines the selec-
tion of 50 parents (P1) with the highest GEBVs and
50 parents (P2) that maximize the genetic variation
(see Equation (1)). After the parental selection, the TP
is updated according to the tails method.
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Bv ¼ ĝm2 cfv (3)

with ĝm the mean genetic value of the parental population, c a penalty
weight and fv the average genetic relationship of the parental
population. At each breeding cycle the population merit is maxi-
mized. First, 100 individuals are selected using truncation selection.
Second, the mean genetic value of the parental population and the
average genetic relationship are calculated. Third, the population merit
is maximized iteratively by replacing each parent with another indi-
vidual of the breeding population that increases the populationmerit. To
do so, the mean genetic value of the parental population and the average
genetic relationship have to be recalculated each time. The population
merit is maximized when the parental population remains unchanged.

The maximum variance total method
The maximum variance total (MVT) method aims to maximize the
genetic variance of the breeding population (Cervantes et al. 2016).
The method was developed by Bennewitz and Meuwissen (2005) and
further modified by Cervantes and Meuwissen (2011). The genetic
variance criterion varðuwÞ is calculated as:

varðuwÞ ¼ 1
n

Xn

i¼1

�ð1þ FiÞ2 2�Gp
�

(4)

with n the number of selected parents, Fi the inbreeding coefficient of
parent i and �Gp the average genetic relationship of the parents.
Originally, the genetic variance criterion is calculated using the average
coancestry, but due to the lack of pedigree information, the average
coancestry was replaced with the average genetic relationship. Similar to
the population merit method, the genetic variance is maximized iter-
atively. However, the MVT method does not take into account the
genetic value. Therefore, it can only be used in a pre-selected population
to guide the final parental selection. The MVT method will be used to
select the P2 parents from a pre-selected population similar to the
scoping method. First, 300 individuals are pre-selected using truncation
selection. Second, from the pre-selected individuals, 100 parents are
selected using truncation selection. Finally, the P2 parents are iteratively
replaced such that the genetic variance criterion of the parental pop-
ulation is maximized by only using the pre-selected individuals. We
expect a higher long-term gain compared with the baseline method, but
a lower genetic gain compared with the scoping method.

Training panel
The parental selection schemes are based on GEBVs that are obtained
by fitting a linear mixed effects model:

y ¼ 1nbþ ZTPuþ e (5)

with y a vector with phenotypic values, 1n a vector of size n containing
ones, n the number of individuals in the training panel, b the fixed
effect (phenotypic mean), ZTP the incidence matrix of the training
panel with marker information, u the marker effects following a
normal distribution Nð0;GÞ with G ¼ s2

uIk (with Ik the identity
matrix of dimension k) and e the residual effects following a normal
distribution Nð0;RÞ with R ¼ s2

e In. Both variance components s2
u

and s2
e are estimated by means of Restricted Maximum Likelihood

(REML). The GEBVs of the individuals are calculated as:

ĝ ¼ Zbcû (6)

with ĝ the GEBVs, Zbc the marker information and û the predicted
marker effects. Assuming that the phenotypic data of the entire base

population are available, it can be used to construct the initial TP with
a total size of 764 individuals. During subsequent breeding cycles, the
TP is updated with 150 new individuals selected from the breeding
population, limiting the required phenotyping effort per cycle to only
150 individuals. The 150 oldest individuals of the TP are eliminated
keeping the size of the TP constant. The removal of old lines in the TP
does not affect the prediction accuracy significantly, but reduces the
required computation time. Before training the model, markers with
a minor allele frequency smaller than 0.03 are removed leading to a
more accurate prediction of the GEBVs (Chang et al. 2018). The
selection of 150 new individuals during the TP update is done using
the tails method (Neyhart et al. 2017), selecting an equal number of
individuals from both tails of the distribution of the GEBVs. This
method delivers the highest genetic values according to Neyhart et al.
(2017).

Simulation of the population
The simulator was built upon the work of Neyhart et al. (2017), using
the packages GSSimTPUpdate and hypred in R (version 3.5.2). First,
the genome of barley is constructed based on marker position, allele
and chromosomal information. One hundred QTL (L ¼ 100) are
selected randomly from the available 1590 biallelic SNP loci. The
remaining 1490 biallelic SNP loci are available as markers for pre-
diction and selection purposes. The QTL effects are calculated accord-
ing to a geometric series. At the k-th QTL, the favorable homozygote
will have a value ak, the heterozygote a value zero and the unfavorable
homozygote a value 2ak with a ¼ ðL2 1Þ=ðLþ 1Þ. Dominance and
epistasis effects were assumed to be absent. The genetic value of an
individual is calculated as the sum of all present QTL alleles. Different
variables are calculated to track the fixation of QTL alleles. The
maximum genetic value is the sum of the favorable QTL effects.
The fixed genetic value is the sum of the QTL effects that are fixed.
The maximum reachable genetic value is the sum of the QTL effects
that are fixed (both favorable and unfavorable) and the sum of the
favorable QTL effects that are not yet fixed. It represents the maximum
genetic value that could still be reached, taking into account the fixation
of unfavorable QTL alleles. All these variables are converted into a
percentage, where the maximum genetic value of 1 can only be
achieved if all favorable QTL alleles are present. The phenotypic values
are calculated as follows:

yij ¼ gi þ ej þ eij (7)

with yij the phenotypic value of the i-th individual in the j-th
environment, gi the genetic value of the i-th individual, ej the j-th
environmental effect and eij the residual effect of the i-th individual
and the j-th environment. Three different environmental effects are
drawn from a normal distribution with mean 0 and a variance
component s2

E which is defined as eight times the genetic variance
(Bernardo 2014). The residual effect is drawn from a normal distri-
bution with mean 0 and a variance component s2

R, with s2
R scaled to

simulate a population with a heritability ðh2Þ of 0.5. The phenotypic
value of each individual is the average value over the different
environments.

Data availability
The scripts, figures, datasets of the base population and supplemen-
tary data are available from the github repository https://github.com/
biointec/scoping. The dataset and the simulation of the recurrent
breeding cycle have been reported and published by Neyhart et al.
(2017) (https://doi:10.1534/g3.117.040550).
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RESULTS

The baseline method
The baseline method combines truncation selection with random
mating. Our results are similar to those reported by Neyhart et al.
(2017). During the first 10 to 20 breeding cycles, we observe a steep
increase in genetic value and rapid fixation of QTL alleles (see Figure
2). The maximum reachable genetic value is reduced by more than
40%, due to the loss of favorable QTL alleles in the breeding
population. It is interesting to also consider the mean genetic value
of the 10 individuals with the highest genetic values. Those individ-
uals are of particular interest to breeders for commercialization
purposes. Therefore, their genetic value is more important than
the mean genetic value of the breeding population. In the baseline
method, the top-10 individuals have a higher genetic value over the
first breeding cycles, but due to strong fixation, the genetic variation is
reduced and the difference between the top individuals and the
breeding population average becomes smaller.

The scoping method
The scoping method introduces the scoping rate (SR) as a new
parameter. With the SR, the breeder can control what fraction of
the upper tail of the GEBV distribution will be considered for parental
selection. Using a small SR, only individuals with high GEBVs will be
considered, leading to truncation selection. When a higher SR is used
instead, individuals with lower GEBVs will also be considered as
candidates, making it possible to preserve the genetic variation of the
breeding population. The SR provides the breeder with the option to
choose between the maximization of the rate of genetic progression in
the short term on the one hand or the maximization of the genetic
variation in the long term on the other hand. As expected, the scoping
method yields somewhat lower mean genetic values over the first ten
breeding cycles (see Figure 3). However, the mean genetic value of the
top-10 individuals is only slightly lower compared with the baseline
method. Certainly, for small SR values (0.1 to 0.3) the difference in
genetic value is negligible.

After the tenth breeding cycle, the loss of several favorable QTL
alleles causes the baseline method to reach a local optimum, ren-
dering it less efficient than the scoping method. In contrast, by
preserving the genetic variation within the breeding population,
the scoping method strongly reduces the loss of favorable QTL alleles,
thus preserving the potential to reach high genetic values. A higher SR
will better prevent the loss of favorable QTL alleles, however, due to a
slower increase in genetic value, a high SR will require a longer time
before outperforming the baseline method. Therefore, the use of a
smaller SR is preferred. It delivers high genetic values in both the
short and the long term.

The SR of 0.1 is a special case as it results in the same parental
selection as the baseline method, but it uses an alternative mating
design to maximize the genetic variation of the offspring. After
50 breeding cycles, this leads to a 4 percentage points higher mean
genetic value of the top-10 individuals in favor of the scoping method.
This demonstrates that maximizing the genetic variation increases
the genetic value in the long term. The SR of 0.3 yields high genetic
values in both the short and the long term. Only eight breeding cycles
are needed before the top-10 individuals outperform the baseline
method. Over those eight breeding cycles, the difference in genetic
value between the baseline method and the scoping method are
negligible. After 12 breeding cycles, the mean genetic value of the
population surpasses that of the baseline method. Ultimately, after
50 breeding cycles, the scoping method with an SR of 0.3 yields a

mean genetic value of 0.71 over the top-10 individuals, a 15 percentage
points increase compared with the baseline method.

The population merit method
The population merit method preserves the genetic variance by
reducing the average genetic relationship of the parental population,
leading to a higher genetic gain in the long term compared with the
baseline method (see Figure 4). Despite the fact that a higher long-
term gain is observed, the population merit method only retains a
fraction of the genetic variation, still causing the fixation of several
unfavorable QTL alleles and a premature convergence of the genetic
value to a local optimum. Compared to the scoping method, the same
genetic value is observed over the first eight breeding cycles. However,
the population merit method causes a strong reduction in the
maximum reachable genetic value rendering this method less efficient
in the long term than the scoping method. Several values for the
penalty weight c were tested and the best results for c ¼ 20 are
reported. At breeding cycle 50, only an 8 percentage points increase in
the genetic value was observed for the population merit method
compared with the baseline method, while a 15 percentage points
increase in genetic value was observed for the scoping method.

The maximum variance total method
The MVT method combines the average genetic relationship and the
average inbreeding coefficient to maximize the genetic variation of
the breeding population. This method was used to compare the
mating design of the scoping method with the MVT method by
using the same pre-selected population to select the P2 parents. Only a
small increase of the genetic gain was observed for the MVT method
compared with the baseline method (see Figure 4). Using a pre-
selected population combined with a truncation selection of the P1
parents, the MVT method only preserved a small part of the genetic
variation compared with the scoping method, causing the loss of

Figure 2 Simulation results using the baseline method over 50 breed-
ing cycles. The mean genetic value of the breeding population in-
creases rapidly over the first breeding cycles. The truncation selection,
however, causes the loss of several favorable QTL alleles, reducing the
maximum reachable genetic value and causing a premature conver-
gence of the genetic value to a local optimum. The top-10 individuals of
the population have a higher mean genetic value than the breeding
population, but after several breeding cycles, the genetic variation is
reduced, closing the gap between the top-10 individuals and the rest of
the breeding population.
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several favorable QTL alleles and thus reducing the maximum reach-
able genetic value. At breeding cycle 50, only a 2 percentage points
higher genetic value was observed compared with the baseline
method, rendering this method less efficient than the scoping
method.

The mean genetic value of the breeding population, mean genetic
value of the top-10 individuals and the maximum reachable genetic
value of all the proposed methods are reported in Table S1, Table S2
and Table S3, respectively.

DISCUSSION

Risks of truncation selection
Nowadays, the use of truncation selection is still popular among
breeders, despite the fact that fixation of unfavorable QTL alleles
associated with this selection method has been reported (Jannink
2010). By selecting parents based on their GEBVs using truncation
selection, breeders hope tomaximally pass favorable QTL alleles on to
the next generation. However, the GEBV represents only a single
value per individual that integrates the genetic information of more
than 1000 molecular markers (see Equation (6)). In contrast to MAS,
in genomic selection, only a fraction of those molecular markers are
in strong linkage disequilibrium with QTL (Meuwissen et al. 2001).

By summarizing the information of all those marker effects into a
single number, important genetic information is lost, rendering it
difficult to detect the presence or absence of favorable QTL alleles.
This is especially the case when rare marker effects are masked by the
presence of many other marker effects. This was demonstrated in
the baseline method, where several negative QTL alleles were fixed in
the breeding population. Eynard et al. (2017) simplified the selection
of favorable QTL alleles by assigning weights to rare marker alleles.
Nevertheless, it is clear that truncation selection does not guarantee
the presence of all favorable QTL alleles in the parental population
and could hence result in their loss. However, the baseline method has
a positive genetic gain over each breeding cycle, indicating that
the fixation of the favorable QTL alleles has a higher impact on
the genetic value than the fixation of unfavorable QTL alleles. The
reduction of the genetic variation of the breeding population, which is
often associated with truncation selection, causes a reduction in
prediction accuracy (Heffner et al. 2009), which implies poorly
estimated marker effects and substandard parental selections (see
Figure 5). In turn, a poor parental selection in combination with a low
genetic variation will further contribute to the loss of favorable QTL
alleles as observed in the baseline method. Jannink (2010) tackled this
problem by limiting the rate of inbreeding in the TP and thereby
reducing the loss of genetic variation. However, methods based on

Figure 3 Simulation results using the scoping method for an SR of 0.1, 0.3 and 0.6, simulated over 50 breeding cycles. Additionally, the results of
the baseline method are shown for the sake of comparison. In the top figure, the mean genetic value of the top-10 individuals and the maximum
reachable genetic value are shown for different SR values and the baseline method. In the middle figure, the mean genetic value of the breeding
population is shown for different SR values and the baseline method. In the bottom figure, the rate of QTL fixation is shown for different SR values
and the baseline method.
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truncation selection still cause the loss of several favorable QTL
alleles. The scoping method also tackles this problem by preserving
the genetic variation throughout the breeding cycles and increases
long-term gain (see Figure 6).

Preserving genetic variation for long-term benefits
Truncation selection causes the loss of several favorable and un-
favorable QTL alleles, reducing the genetic variation of the breeding
population and causing a premature convergence of the genetic value
to a local optimum. Reintroducing new semi-wild species can tem-
porally increase the genetic variation. However, those semi-wild
species need several cycles of pre-breeding making this approach
less cost and time efficient. The scoping method consistently preserves
the genetic variation in the breeding population for as long as possible
and thus avoids a premature convergence of the genetic value.

The scoping method does not only preserve the genetic variation
in the breeding population but also in the TP, leading to an improved
prediction accuracy (see Figures 6 and 5) (Voss-Fels et al. 2018). In
the case of the scoping method, by preserving both marker alleles at
each marker, both alleles at each QTL were also preserved in the
breeding population. If certain marker effects were masked or poorly
predicted, the alternate allele could still be built into the next
offspring.

The scoping method delivers an important message. Fixation of
favorable QTL alleles is not a prerequisite to obtain high genetic
values. The scoping method was able to outperform the baseline
method with only 40% of the QTL alleles fixed in the breeding
population. Preserving both alleles at each QTL prevents the elim-
ination of poorly predicted QTL alleles.

Comparison of the scoping method With
existing methods
In this paper two existing methods (the population merit method
(Lindgren and Mullin 1997) and the MVT method (Cervantes et al.
2016)) were compared with the scoping method. The population
merit method calculates a score per parental population which is
maximized using an iterative algorithm. By penalizing a high
genetic relationship between parents, the loss in genetic variation

is minimized. The population merit method delivered a significant
improvement compared with the baseline method, but the scoping
method was able to outperform the population merit method within
the first 10 breeding cycles. The genetic relationship matrix alone was
not enough to preserve the genetic variation in the breeding pop-
ulation. Over the first breeding cycles, a strong decrease in the
maximum genetic value was observed, indicating the fixation of
several unfavorable QTL alleles. This was probably caused by the
loss in genetic variation, leading to a lower prediction accuracy and
thus a poor estimation of the additive marker effects (see Figures 6
and 5).

The population merit method reduces the information of the
genetic relationship matrix into a single averaged value. This
certainly helps to preserve the genetic variation but it does not
guarantee that all the marker alleles will be preserved in the breeding
population. A decrease of the maximum reachable genetic value is a

Figure 4 The genetic value of
the different parental selection
methods over 50 breeding cy-
cles. The genetic value in the
long term is the lowest when
using the baseline method, fol-
lowed by the maximum value
total (MVT) method, population
merit method and the scoping
method, which delivers the high-
est genetic values in the long
term.

Figure 5 The genetic accuracy of the different parental selection
methods over 50 breeding cycles. The genetic accuracy drops the
fastest when using the baseline method, followed by the maximum
variance total (MVT) method, population merit method and the scoping
method with an SR of 0.3.
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good indicator to monitor the loss of favorable QTL alleles. A good
parental selection method should be able to keep the maximum
reachable genetic value fixed. It is clear that the population merit
method fails in preventing the loss of those favorable QTL alleles.
The scoping method includes a Boolean vector that ensures the
inclusion of all available marker alleles, reducing the loss of

favorable QTL alleles and thus maximizing the genetic variation
over each breeding cycle.

The MVT method does not take into account the genetic value
of a current parental population. The method should maximize the
genetic variance, but because the genetic value is not included in
the selection criterion, no high genetic gain can be obtained in the
short or long term. Therefore, the MVT method was combined
with a pre-selection and truncation selection of the P1 parents.
Both the scoping and MVT methods used the same pool of pre-
selected individuals to select the parental population. The scoping
method delivered a higher genetic gain compared with the MVT
method. Again, reducing the information of the genetic relation-
ship matrix into a single number reduces the available informa-
tion, causing a lower genetic variation compared with the scoping
method.

It is clear that the scoping method can better preserve the
genetic variation of the breeding population. The use of the in-
breeding coefficient and relationship matrix only prevents the
selection of closely related individuals, but it does not directly
prevent the loss of certain QTL alleles. The scoping method will
always try to reduce the loss of favorable QTL alleles by preserving
both marker alleles in the breeding population. This has proven to
be the most successful method, delivering the highest genetic
values in the long term.

Robustness of the scoping method
The robustness of the scoping method has been tested and com-
pared with the baseline, population merit and MVT methods using
different genome constructions. We have compared the different

Figure 6 The genetic variance of the different parental selection
methods over 50 breeding cycles. The genetic variance drops the
fastest when using the baseline method, followed by the maximum
variance total (MVT) method, population merit method and the scoping
method with an SR of 0.3.

Figure 7 The genetic value of the different parental selection methods for different heritabilities over 50 breeding cycles. The genetic value in the
long term is the lowest when using the baseline method, followed by the maximum value total (MVT) method, population merit method and the
scoping method, which delivers the highest genetic values in the long term.
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methods for a heritability of 0.1, 0.3, 0.7 and 0.9 (see Figure 7). The
genetic value was also studied for 50 (see Figure S1) and 200 QTL
(see Figure S2).

CONCLUSION
In our simulation study, we demonstrated the need for an alter-
native parental selection method to prevent the convergence of the
genetic value of the breeding population to a local optimum caused
by the loss of favorable QTL alleles. Truncation parental selection
leads to a rapid fixation, but also to the loss of several favor-
able QTL alleles, causing the convergence of the genetic values
to a suboptimal value and reducing the possibility to reach the
global optimum in the long term. Consistently preserving the
genetic variation (scoping method) leads to higher genetic values
in the long term and only a slightly lower genetic value in the short
term.
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