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Huntington’s disease skeletal muscle has
altered T-tubules
Muhammad S. Khan1 and Robin M. Shaw1

Transverse tubules (T-tubules) are an important determinant
of a cell function, especially as the main site of excitation–
contraction (EC) coupling. T-tubules ensure spatially and tem-
porally synchronous Ca2+ release throughout the striated muscle
cell (Hong and Shaw, 2017; Hong et al., 2014). In an earlier issue
of the Journal of General Physiology, Romer and colleagues used a
mouse model of Huntington’s disease (HD) to explore a primary
skeletal myocyte origin component of HD. The hypothesis tested
in the study is that T-tubules are altered in HD skeletal muscle,
leading to EC coupling changes and muscle dysfunction (Romer
et al., 2021).

HD is a progressive and invariably fatal neuromuscular de-
generative disorder (McColgan and Tabrizi, 2018). While much
of HD sequelae is associated with neurodegeneration, primary
skeletal myopathy has also been suggested (Zielonka et al.,
2014). Pathological changes in HD skeletal muscle include met-
abolic and mitochondrial defects (Lodi et al., 2000; Turner et al.,
2007), atrophy (Ehrnhoefer et al., 2014; She et al., 2011), im-
paired contraction (Hering et al., 2016), and altered expression
of genes needed for muscle differentiation (Luthi-Carter et al.,
2002). In fact, in an HD human case study, reduced muscle
performance has been reported to occur before the presentation
of neurological symptoms (Kosinski et al., 2007).

In the present study, Romer et al. (2021) used a R6/2 mouse
model of HD to explore primary pathogenesis in skeletal muscle.
They previously reported that R6/2 HD skeletal muscle fibers
have a decrease in specific membrane capacitance (Miranda
et al., 2017). This decrease in capacitance points to a disrup-
tion and membrane loss of the T-tubule system which would
contribute to changes in EC coupling, Ca2+ homeostasis, and
muscle function.

In a surprise finding, the authors of this follow up study
(Romer et al., 2021) did not detect a difference in T-tubule
density, spacing, or regularity between R6/2 and control skele-
tal fibers. However, R6/2 skeletal muscle fibers had smaller
cross-sectional areas and openings (Romer et al., 2021). Thus,
T-tubules are not disrupted as much as they are smaller. A re-
duction in T-tubule size can at least partially account for reduced

total cellular membrane capacitance. Furthermore, R6/2 muscle
fibers had increased spacing between SR terminal cisternae and
T-tubule membranes (Romer et al., 2021), which will contribute
to impaired EC coupling. T-tubule and SR docking may precede
the incorporation of the RYRs into SR membrane, and especially
that of the newly formed T-tubule–SR junctions (Takekura et al.,
2001). Impaired T-tubule–SR spacing will affect organization of
RYRs among other essential calcium handling proteins.

To explore whether the smaller T-tubules could account for
the reduced membrane capacitance in R6/2 fibers, the authors
usedmathematical modeling to quantify theoretical current flow
along T-tubules microdomains. Previous studies of impaired
membrane excitability of R6/2 HD skeletal muscle revealed that
specific membrane capacitance, when normalized to fiber sur-
face area, progressively decreases in parallel with disease
progression (Miranda et al., 2017; Waters et al., 2013). The
mathematical model supports that resistance to current along
the lumen of T-tubules generates a local voltage drop that ef-
fectively lowers specific capacitance. Despite the success of the
model in accurately describing T-tubule voltage changes as
measured by other methods such as optical mapping, the model
only partially explains the reduced capacitance of R6/2 muscle.

After the initial surprise that T-tubules are not disrupted but
narrowed, the rest of the findings remain within current un-
derstanding of T-tubule maintenance and organization of EC-
coupling machinery. Reductions in both T-tubule diameter and
increased spacing between SR terminal cisternae and T-tubule
membranes will negatively affect EC coupling, overall Ca2+ ho-
meostasis, and muscle function. After identifying smaller
T-tubules, the authors explored putative candidates for T-tubule
membrane organization and T-tubule membrane docking with
SR membrane. In particular, the authors took a candidate gene
approach, exploring expression of known proteins Bridging In-
tegrator 1 (Bin1) and the Junctophilins (JPH1 and JPH2). Both
JHP1 and JHP2 are coexpressed in the triads of skeletal muscle,
but only the latter in cardiac muscle.

In the skeletal muscle of the R6/2 mouse model (Romer et al.,
2021), Bin1 was found to be reduced as was JPH2, yet a splice
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variant of BIN1 that includes exon 17 was increased as summa-
rized in Fig. 1 (Romer et al., 2021). JPHs contribute to SR and
T-tubule structural association and reduced expression of these
proteins impacts formation and morphology of SR–T-tubule
junctions in both skeletal and cardiac muscle (Komazaki et al.,
2002). Bin1 has been implicated in skeletal T tubulogenesis (Lee
et al., 2002), and its mutation is causative of a skeletal muscular
dystrophy (Al-Qusairi and Laporte, 2011). The isoforms associ-
ated with skeletal T tubulogenesis include exons 11 and 17, and
the finding of increased exon 17 may explain the different
structure of the T-tubules while overall Bin1 levels are dimin-
ished. In cardiac muscle, loss of Bin1 does not eliminate
T-tubules but results in wider and smoother T-tubules (Hong
et al., 2014). This effect was mapped, in cardiac muscle, to a Bin1
isoform containing exon 13 and 17 (Hong et al., 2014). An in-
crease in skeletal Bin1 which includes exon 17 would therefore
be consistent with smaller T-tubule openings in the setting of an
increase in exon specific skeletal Bin1 isoforms. Our knowledge
of the role of distinct Bin1 isoforms in skeletal T-tubule gener-
ation and maintenance remains in its infancy, and the phe-
nomenon of smaller T-tubules in the setting of overall lower Bin1
yet higher isoforms with exon 17 in R6/2 myocytes is an at-
tractive model to better understand the roles of different Bin1
isoforms in regulating T-tubule membranes.

In general, it should be emphasized, however, that despite
earlier reports of Bin1 in skeletal T tubulogenesis in cell lines and
isolated skeletal muscle cells (Lee et al., 2002), more recent
studies have not been confirmative (Manfra et al., 2017). We are
not aware of an in vivo model, whether a disease or genetic
intervention such as Bin1 knockout, in which an absence of
skeletal T-tubules has been reported. As mentioned above, in
cardiac muscle the question relating Bin1 to cardiac T tubulo-
genesis was directly explored by asking whether Bin1 knockout
would result in a lack of cardiac T-tubule generation, and the

finding was that Bin1 is not responsible for cardiac T tubulo-
genesis (Hong et al., 2014). However, that cardiac isoform of Bin1
(cBIN1, which includes exons 13 and 17) is responsible for gen-
erating folds of T-tubule membrane (Hong et al., 2014; Zhou and
Hong, 2017), which form microdomains that facilitate the traf-
ficking and organization of Cav1.2 (L-type voltage gated chan-
nels; Hong et al., 2012), and other Ca2+ handling proteins (Hong
et al., 2010; Fu et al., 2016; Liu et al., 2020). A loss of cBIN1 re-
sults not in smaller T-tubules, but in larger T-tubules without
the cBIN1 generated microdomains (Liu et al., 2020). It is
therefore surprising that in the current study (Romer et al.,
2021), less skeletal Bin1 results were not found in larger or
disrupted T-tubules, but in narrower T-tubules. The authors
could have performed the high-resolution electron microscopy
to explore the presence or absence of microdomains. A loss of
microdomain membrane could also explain a loss of overall
membrane capacitance. It also is possible, as Romer et al. (2021)
suggest, that cardiac myocytes have microdomains, whereas
skeletal muscle cells do not. In skeletal muscle, a microdomain is
usually a restricted subcellular space between the membranes of
two different systems or of two organelles (i.e., the confined
space in proximity of Ca2+ release sites, or the confined domain
of the mitochondrial and SR membranes). This very small vol-
ume domain may determine, usually in specific and controlled
circumstances, a higher-concentration level of proteins, mole-
cules, or ions, which in turn facilities a preferential functional
pathway such as mitochondrial Ca2+ uptake (Boncompagni et al.,
2009). In cardiac muscle, microdomains are formed by T-tubule
folds alone (Hong et al., 2014).

It has also been reported that exercise induces a dynamic
assembly of new intracellular junctions called calcium entry
units (CEUs) in skeletal muscle. CEUs involve elongation of
T-tubule and its association with SR stacks. The formation of
these junctions determines enhanced Ca2+ influx via store-
operated Ca2+ entry (SOCE), which improves SR Ca2+ release
for maintaining contractility during fatigue (Boncompagni et al.,
2017; Michelucci et al., 2019). As the assembly of these new
SR–T-tubule junctions (CEUs) is primarily dictated by the re-
modeling of T-tubule (i.e., extension and retraction), it would be
plausible that reduction of muscle performance in R6/2 mouse
model of HD might be the result of a lowering of both T-tubule
plasticity and ability to recover Ca2+ ions for the extracellular
space via SOCE, even if the role of Bin1 (or of JHPs) in CEUs
assembly has been not yet investigated but only speculated
(Protasi et al., 2020).

Because Romer et al. (2021) identified a skeletal Bin1 isoform
which contains exon 17 was increased, not decreased, it is possible
that skeletal Bin1 containing exon 17 increased T-tubule mem-
branes and narrows T-tubule openings. Furthermore, given the
tools to explore the roles of different Bin1 isoforms and T-tubule
morphogenesis, future studies are encouraged to test for the
presence of skeletal T-tubule microdomains directly.

Ultimately, such as is the case with microdomains, a com-
parison is needed between the makeup of cardiac T-tubules and
that of skeletal T-tubules. Classically, cardiac T-tubules exist
with one T-tubule atop each z disc, whereas the makeup of
skeletal T-tubules exist with two T-tubules astride one z disc. It

Figure 1. Schematic representation of T-tubule (TT) before (left) and
after (right) possible changes with HD in skeletal muscle. To explain
smaller T-tubule openings yet decreased membrane capacitance in HD
skeletal muscle, there could be an abundance of proximal T-tubule membrane
yet loss T-tubule folds. Such changes in membrane organization could be a
result of altered regulation of T-tubule–associated proteins BIN1 and
Junctophilin.
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is tempting to hypothesize that different isoforms of Bin1 con-
tribute to this classic differentiation between cardiac and skel-
etal muscle. Data exist that, in cardiac muscle, less cBIN1 causes
widened T-tubules (Liu et al., 2020), not unlike that of failing
heart muscle (Li et al., 2020, whereas in skeletal muscle less
overall Bin1 but more Bin1 exon 17 leads to narrowed T-tubules
(Romer et al., 2021). It would be interesting to explore in detail
skeletal T-tubules in models with less cardiac Bin1, and vice
versa. The therapeutic benefit of exogenous cBIN1 in failing
heart muscle (Li et al., 2020) suggests that skeletal muscle may
potentially benefit from exogenous Bin1 as well (Prokic et al.,
2020).

A limitation of the current study by Romer et al. (2021) is the
lack of rescue experiments to conclude sufficiency and causality
from otherwise associated findings. For instance, does intro-
duction of exogenous Bin1, or inhibition of isoforms that include
exon 17, recover normal diameter T-tubules in R6/2 myocytes?
Similarly, would exogenous JPH recover either T-tubule diam-
eter or spacing between T-tubules and SR (Reynolds et al., 2013;
van Oort et al., 2011)? While the present findings are important
and significant, rescue experiments would help establish cau-
sality. It is quite possible that other candidate proteins, still yet
to be identified, could be active in altered skeletal T-tubules.

The authors are to be congratulated for having identified a
primary ultrastructural myotubular pathology in HD skeletal
muscle which consists of abnormally narrow T-tubules. Such
T-tubule changes can at least partially contribute to the loss of
specific capacitance in HD muscle. Related to altered T-tubules,
the authors also identified a decrease in Bin1 and JPH expression
protein levels and aberrant splicing of Bin1 with an increase of a
Bin1 isoform that contains exon 17. It remains to be established if
the reported changes in Bin1 and JPH expression are causal of
the altered skeletal T-tubules. Given the burgeoning knowledge
of T-tubule organization in both skeletal and cardiac muscle, as
well as the proteins that affect T-tubulemembrane organization,
the study by Romer et al. (2021) contributes to a better under-
standing of HD pathogenesis and presents new tools to under-
stand the developmental mechanisms of T-tubules in both
striated skeletal and cardiac muscle.
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