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Abstract

In 2014, an extensive review discussing the major steps of cardiac development

focusing on growth, formation of primary and chamber myocardium and the develop-

ment of the cardiac electrical system, was published. Molecular genetic lineage ana-

lyses have since furthered our insight in the developmental origin of the various

component parts of the heart, which currently can be unambiguously identified by

their unique molecular phenotype. Moreover, genetic, molecular and cell biological

analyses have driven insights into the mechanisms underlying the development of

the different cardiac components. Here, we build on our previous review and provide

an insight into the molecular mechanistic revelations that have forwarded the field of

cardiac development. Despite the enormous advances in our knowledge over the last

decade, the development of congenital cardiac malformations remains poorly under-

stood. The challenge for the next decade will be to evaluate the different develop-

mental processes using newly developed molecular genetic techniques to further

unveil the gene regulatory networks operational during normal and abnormal cardiac

development.

K E YWORD S

cardiac development, valve development, septation, epicardial development, cardiac growth

1 | INTRODUCTION

In 2014, Sylva, van den Hoff, & Moorman, 2014 published an exten-

sive review discussing the major steps of cardiac development focus-

ing on growth, formation of primary and chamber myocardium and

the development of the cardiac electrical system. Here, we will build

on our previous review and on the latest molecular and cell biological

studies that have channeled our insights. In addition, we will address

post-natal cardiogenesis, since it has become evident that cardiac

development is not complete at birth and that, contrary to traditional

views, the adult heart can no longer be considered a post-mitotic

organ.

In the healthy normal post-natal heart, oxygen-rich blood enters

the left atrium, is propagated to the left ventricle and then pumped

via the aorta into the systemic circulation. The oxygen-deprived

blood, returning from the body, enters the right atrium and is pro-

pelled by the right ventricle via the pulmonary trunk toward the

lungs. The cardiac conduction system orchestrates the efficient

contraction-relaxation cycle of the atria and ventricles. The electrical

impulse resulting in cardiac contraction is triggered in the sinus node,

which is located at the entrance of the superior caval vein into the

right atrium. The electrical impulse spreads through both atria, but

cannot directly activate the ventricles due to the electrical isolation

of the atria from the ventricles by the annulus fibrosus (also called

insulating plane or fibrous continuity). The electrical impulse is del-

ayed in the atrioventricular (AV) node, and then quickly propagated

through the His-bundle (AV-bundle), which penetrates the insulating

annulus fibrosis plane, via the bundle branches and the peripheral

conduction system (the Purkinje fibers) to the cardiomyocytes. The

coordinated propagation of the electrical impulse ensures the
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synchronous contraction of the ventricles from the apex toward the

aorta and pulmonary trunk.

2 | FORMATION AND GROWTH OF THE
LINEAR HEART TUBE

2.1 | Formation of the linear heart tube

Cardiac development is initiated at gastrulation at the end of the second

week of human development (Carnegie Stage [CS] 7) (Figure 1). During

gastrulation the two-layered embryo-blast becomes three-layered, com-

prising the ectoderm, mesoderm and endoderm. The heart begins devel-

opment from the first mesodermal cells which migrate from the site of

gastrulation toward the anteriolateral border of the trilaminar embryonic

disc. While migrating, these mesodermal cells will be rendered compe-

tent for differentiation toward the cardiac lineage. At the site of gastrula-

tion, Wnt growth factors block differentiation of the mesodermal cells.

While migrating anteriorly, the mesodermal cells leave the Wnt expres-

sion domain and enter a domain of active Wnt inhibition. The mesoder-

mal cells now possess the capacity of entering the cardiac lineage. These

precardiac mesodermal cells differentiate into cardiomyocytes, coordi-

nated by Bone morphogenetic protein (BMP) growth factors are

secreted by the endodermal and ectodermal cells located at the lateral

border of the flat embryo at the beginning of the third week of develop-

ment (CS 8). Among the first cardiac-specific genes expressed are the

transcription factors Islet1 and Nkx2.5. The area expressing these tran-

scription factors is referred to as the heart-forming region (also cardiac

crescent) and has a horseshoe-like shape. BMP inhibitors secreted by

the neural tube regulate the medial expansion and FGF growth factors

expressed by the endoderm, determine the posterior border of the of

the heart forming region (Harvey, 2002; Moorman, Christoffels,

Anderson, & van den Hoff, 2007; Sizarov et al., 2011; van den Hoff,

Kruithof, & Moorman, 2004). At this stage differentiation proceeds

quickly and the primitive cardiomyocytes start to spontaneously contract

as a result of expression of (a) sarcomeric genes forming sarcomers, and

(b) ion pumps and channels within the cell membrane allowing spontane-

ous depolarization. The contraction becomes polarized due to the elec-

trical coupling of neighboring cells via gap junctions (Moorman et al.,

2000; Moorman & Christoffels, 2003b; Tyser et al., 2016).

While the precardiac mesodermal cells are formed and migrate, a

subset of cells undergoes epithelial to mesenchymal transition forming

endocardial cells in between the precardiac mesoderm and the endo-

derm (Figure 2). The endocardial cells form a network of small chan-

nels which coalesce into larger ones with ongoing development

(Harris & Black, 2010). Although the myocardial and endocardial pro-

genitors develop concomitantly, it has been demonstrated that indi-

vidual cells differentiate either into endocardial cells or

cardiomyocytes (Cohen-Gould & Mikawa, 1996). Despite the fact that

endocardial and endothelial cells seem to be very similar at first

glance, their transcriptomes differ (Harris & Black, 2010) and mouse

and zebrafish mutants exist that can form endothelial cells but no

endocardial cells (Lee, Stainier, Weinstein, & Fishman, 1994).

With ongoing development, the flat embryo acquires it three-

dimensional (3D)-shape as a consequence of folding, due to the fast

growth of neural tissue at the end of the third week (CS9).

Misregulation of this process can result in ectopia cordis (For review

see [Gabriel et al., 2014]). During folding, the heart acquires the shape

of an inverted Y with two caudolateral inlets (also venous pole) and one

craniomedial outlet (also arterial pole or outflow tract). The heart tube

is organized in an outer layer of two to three layers of cardiomyocytes

and an inner layer of endocardial cells. The myocardial and endocardial

layers are separated by an extracellular matrix (cardiac jelly). At the dor-

sal side the heart tube is attached to the body wall via the dorsal
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(c) F IGURE 1 From heart forming
region to primary heart tube. Panels
(a)–(c) provide a schematic
representation of the formation of the
linear heart tube from the heart
forming region (HFR), as seen from
the ventral side. Within the HFR the
first heart field is indicated in light
gray, the second heart field in dark
gray, and the third heart field in black.
AP refers to the arterial pole and VP
to the venous pole of the primary
heart tube
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mesocardium. At this stage the heart tube starts to show slow

peristaltic-like contractions that are initiated at the venous pole.

3 | THE GROWTH AND LOOPING OF THE
HEART TUBE

At the beginning of the fourth week of development (CS10) the

straight heart tube undergoes looping. Looping is an elusive process

during which the dorsal mesocardium ruptures along its midline and

the heart tube bends to the right, acquiring a C shape. With ongoing

development, the bending of the heart tube becomes more complex,

acquiring an S-shape (Bayraktar & Manner, 2014; Manner, 2009).

While looping, the heart tube increases five-fold in length due to

the continuous addition of newly differentiated cardiomyocytes,

rather than by proliferation of the cardiomyocytes of the heart tube

(de Boer, van den Berg, de Boer, Moorman, & Ruijter, 2012a; Soufan

et al., 2006). The newly differentiated cardiomyocytes are derived
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from a rapidly proliferating pool of mesodermal cells upstream of the

venous pole of the heart. The high proliferation rate of these progeni-

tor cells is mediated through canonical Wnt/β-catenin signaling

(Norden & Kispert, 2012; Ruiz-Villalba, Hoppler, & van den Hoff,

2016). Fluorescent labeling of these cells in chicken demonstrated

their migration into the heart tube at both the venous and arterial

poles (van den Berg et al., 2009). Mouse and human cardiac develop-

ment display a similar course (de Boer et al., 2012b; Sizarov et al.,

2011). These cardiac progenitor cells are often referred to as second

heart field cells, as opposed to first heart field cells, from which the

initial heart tube is formed (Buckingham, Meilhac, & Zaffran, 2005).

The distinction between these different populations is contentious,

because different markers point to different borders (Moorman et al.,

2007). These second heart field progenitors express the transcription

factor Islet1, while being added to the heart tube. Upon differentia-

tion into cardiomyocytes, the cells cease proliferation, coinciding with

the down-regulation of Islet1 and up-regulation of Nkx2.5

(Buckingham et al., 2005; Cai et al., 2003). The transcription factor

Tbx1 was found to be a regulator of the segregation of the second

heart field cells to the inflow and outflow pole of the heart (De Bono

et al., 2018; Rana et al., 2014).

4 | FROM LINEAR TO FOUR CHAMBERED
HEART

Upon rightwards looping, ventricular formation becomes evident at

the outer curvature of the heart tube. At this location the cardiac jelly

between the endocardial and myocardial layers disappears and myo-

cardial protrusions, referred to as trabeculations, become evident at

the luminal (endocardial) side. The cardiomyocytes of the forming

ventricle start to express genes like atrial natriuretic factor (Anf/Nppa)

and the gap-junction protein Connexin 40 (Gja5) (Houweling, Somi,

van den Hoff, Moorman, & Christoffels, 2002). The T-box transcrip-

tion factors Tbx5 and Tbx20 are important activators of the gene

expression program in ventricular cardiomyocytes, whereas Tbx2 and

Tbx3 are important repressors of the ventricular myocardium gene

program in the developing atrioventricular region (Greulich, Rudat, &

Kispert, 2011; Habets et al., 2002).

Prior to the appearance of the first trabeculations, mitotic spin-

dles become oriented. Cardiomyocytes in which the spindles are par-

allel with the lumen of the heart tube contribute to the lengthening of

the heart tube, while cardiomyocytes with mitotic spindles in the

direction of the lumen will contribute to the trabeculation (Le Garrec

et al., 2013; Meilhac, Esner, Kerszberg, Moss, & Buckingham, 2004).

When mitotic spindle orientation is disrupted, as is observed upon

deletion of atypical protein kinase C (Prkc1), trabeculation formation

is affected (Passer, van de Vrugt, Atmanli, & Domian, 2016). The lay-

out of the initial trabeculations is defined by the concerted action of

endocardially expressed Notch1 and Neuregulin 1. The endocardium

becomes sculptured and forms domes filled with cardiac jelly. At the

side where the endocardium contacts the myocardium, Nrg1

expressed by endocardial cells can interact with ErbB2/ErbB4

expressed by the cardiomyocytes (Del Monte-Nieto et al., 2018).

Notch1 regulates the proliferation of the cardiomyocytes that are

added to the base of the forming trabeculations in the domes (Del

Monte-Nieto et al., 2018; Grego-Bessa and others, 2007). Bmp10

expression in the trabecular cardiomyocytes is an important regulator

of trabecular growth, shown by the facts that (a) deletion of Bmp10

results in hypotrabeculation (Chen et al., 2004) and (b) overexpression

of Bmp10 in hypertrabeculation (Pashmforoush et al., 2004). The

expression of the cell cycle inhibitor (Cdkn1c) in the cardiomyocytes

F IGURE 2 Schematic representation of the formation of the adult heart. With the onset of embryonic folding the left and right heart forming
region (HFR). The yellow structures represent the endocardial cells (endo) that form the inner lining of the heart and in gray the formed primary
myocardium. VP refers to the venous pole were the blood will enter the heart and AP to the arterial pole where the blood will leave the heart. For
easy comparison of panels (a) through (d), a red line indicates the lateral border of the HFR and a blue line the medial border. With ongoing
folding the HFR becomes positioned ventrally of the foregut (see also Figure 1). At the position where the lateral borders of the HFR meet, the
linear heart tube is connected to the body wall via the dorsal mesocardium (dm) (panel d). The DM breaks due to which the heart is only attached
to the body wall at the AP and VP (panel h–k). Whereas panels (a)–(d) show a dorsal view of the forming heart, panels (e)–(h) show a ventral view,
illustrating the transition of linear heart tube to four-chambered heart. Only at the ventral site of the linear heart tube the differentiation of the
embryonic ventricle (V) is locally initiated. The forming working myocardium of the chambers is indicated in blue (panels f–k). Note in panel
(g) that at the dorsal side of the heart tube, primary myocardium is retained, which is referred to as the inner curvature (IC). Flanking the forming
ventricle, primary myocardium is retained which is referred to as the inflow tract (IFT) and outflow tract (OFT). With ongoing development, the
linear heart tube loops to the right and chamber formation becomes evident (panel h). At this stage the right ventricle (RV) starts to form when
primary myocardium of the OFT differentiates into chamber myocardium. Moreover, upstream of the left ventricle (LV), the primary myocardium
of the IFT locally differentiates into the left atrium (LA) and right atrium (RA). In the meantime, newly differentiated cardiomyocytes are added to
the lengthening heart forming the sinus venous (SV) myocardium. The heart is connected to the blood circulation at the VP via the left and right
cardinal vein (cv) and at the AP via the pharyngeal arch arteries (paa). Panel (j) shows a representation of the 5 week old human heart showing the

expanding (ballooning) atria and ventricles, as well as the remnants of the primary myocardium of the IFT, AVC (atrioventricular canal), IC and
OFT. The forming primary atrial septum (pAS) and ventricular septum (VS) are identified. Within the LA the attachment to the body wall is
identified as the mediastinal mesenchyme (mm) through which the cardinal vein (cv) and the future pulmonary vein (pv) drain into the heart. In the
formed heart (panel k) the primary myocardium of the IFT and AVC has differentiated into the central conduction system, comprising the
sinoatrial node (sn), the atrioventricular node (avn), the His bundle (His) and the bundle branches (bb). Within the right atrium the superior and
inferior caval veins (scv and icv) drain in the RA and the pulmonary veins (pv) in the LA. Flanking the chambers, valves are formed of which only
the mitral valve (mv) and the tricuspid valve (tv) are shown. The semilunar valves cannot be shown in this representation
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of the trabeculations suggests active inhibition of proliferation of

these cells (Kochilas, Li, Jin, Buck, & Epstein, 1999). Within the next

six days of mouse development the ventricle increases 100-fold in

volume, due to active cardiomyocyte division of the ventricular wall,

resulting in outer ventricular wall thickening and increase in trabecular

length. The lengthening of the trabeculations is the result of addition

of cardiomyocytes to their base, rather than proliferation at their tips

(de Boer, van den Berg, de Boer, et al., 2012a).

Although the initially formed trabeculations are long and slender

compared to the compact outer myocardial layer, they become rela-

tively short and thick with ongoing development. It should be noted

that the absolute length of these adult thick trabeculations is much

longer than the embryonic trabeculations. This change in appearance

of the trabeculations is referred to as compaction. This process is

complete by embryonic day (E)14.5 in mice and at about eight weeks

of development (CS22) in human (Sedmera, Pexieder, Vuillemin,

Thompson, & Anderson, 2000). How these local differences in prolif-

eration are molecularly regulated is largely unknown. A number of cell

cycle regulators were shown to result in hypoplastic ventricle upon

functional impairment in mice (Berthet et al., 2006; Koera et al., 1997;

Kozar et al., 2004; Moens, Stanton, Parada, & Rossant, 1993). Inter-

estingly, in mice in which N-myc is deleted, the compact layer remains

thin (Charron et al., 1992; Moens et al., 1993). In human, mutations in

these genes might underlie nonventricular compaction.

During ventriclular development and heart tube lengthening, the

atria begin to differentiate at the inflow region (Yutzey, Rhee, &

Bader, 1994). The atria are formed symmetrically, but have a left–right

identity from the outset. The left-sided identity is imposed by the

transcription factor Pitx2c. As a consequence, the absence of Pitx2c

expression results solely in right atrial identity and thus two morpho-

logically identical atria, also referred to as right atrial isomerism. Vice

versa, ectopic expression of Pitx2c at the right side, results in two

morphologically left atria, that is, left atrial isomerism (Mommersteeg

and others, 2007b). Like the forming ventricular myocardium the

developing atrial myocardium is also marked by ANF and Cx40

expression. The initially formed atria are retained in the heart as the

trabeculated, atrial appendages (Christoffels et al., 2000).

The smooth-walled myocardium found in the atria is added later

during development. The confluence of the bilaterally developing

superior and inferior cardinal veins drain into the respective left and

right common cardinal veins which in turn drain into the early heart.

These regions are referred to as the left and right sinus horns. Both

common cardinal veins are accreted from the flanking body wall adja-

cent to the venous pole. While the pericardial cavity expands the

common cardinal veins are absorbed into the pericardial cavity, their

walls become muscularized. This myocardial part upstream of the atria

is referred to as the sinus venosus. The myocardial progenitor cells

forming the sinus venosus are different from the first and second

heart field cells and often referred to as the third heart field. These

progenitors are Tbx18-positive, Nkx2.5 and Wt1 negative, and their

proliferation is regulated by canonical Wnt signaling (Norden et al.,

2010; Norden, Grieskamp, Christoffels, Moorman, & Kispert, 2012).

This newly formed myocardium along the right common cardinal vein

will become the dorsal aspect of the right atrium, in between the

entrance of the superior and inferior caval vein, and is referred to as

the sinus venarum in the adult heart. The left common cardinal vein

becomes the coronary sinus, via which the coronary venous circula-

tion drains into the right atrium. The connection to the left superior

and inferior cardinal veins regresses and becomes the Ligament of

Marshall. The left superior cardinal vein, contributing in the adult to

the left internal jugular vein, drains via the brachiocephalic vein into

the superior caval vein, which originates from the right superior cardi-

nal vein. The orifices of the veins in the right artrium are guarded by

valves; the valve that flanks the orifice of the superior caval vein is

the venous valve, the inferior caval vein the Eustachian valve and the

coronary sinus the Thebesian valve. How the formation and remo-

deling of these structures is molecularly regulated is largely unknown

(Norden & Kispert, 2012; van den Hoff et al., 2004).

In the dorsal wall of the adult left atrium a large portion of

smooth-walled myocardium can be found, referred to as pulmonary

myocardium. This myocardium is derived from second heart field cells

located in the dorsal mesocardium at the venous pole of the heart.

Within this mesenchyme and the mesenchyme, which surrounds the

embryonic foregut contiguous with the dorsal mesocardium, a vascu-

lar plexus is formed which contributes to the lung vasculature. At

about five weeks of development (CS13), a single vessel forms

through the dorsal mesocardium which connects this vascular plexus

around the foregut with the atrium. Semaphorin 3d (Sema3d) is

expressed in the mesothelial cells covering the dorsal mesocardium

and as such flanking the tissue through which the pulmonary vessels

are formed. Sema3d is thought to act as a repulsive guidance molecule

to constrain and direct the developing pulmonary venous endothelial

cells toward the atrium. Sema3d-mediated endothelial repulsion is

most probably mediated through Neuropilin 1 (Nrp1) expressed on

the endothelial cells. In Sema3d-null mice the pulmonary venous

endothelial cells display abnormal invasion of the dorsal mesocardium

resulting in an abnormality referred to as abnormal pulmonary venous

connection or return (APVC) (Aghajanian et al., 2014; Degenhardt

et al., 2013]. APVC refers to a spectrum of abnormalities in which the

pulmonary vein is not connected to the left atrium, but to the right

atrium directly, or indirectly through the coronary sinus or the supe-

rior or inferior caval veins. This was underscored in sequencing

SEMA3D in patients with APVC, identifying a mutation in SEMA3D

that affects the function of SEMA3D (Degenhardt et al., 2013). Fur-

thermore, a Scottish family with APVC was identified with a genomic

alteration located in 4p12 (Bleyl et al., 2006), pointing perhaps to reg-

ulation of this developmental process by other genes. Although

guided growth of the pulmonary vein toward the atrium seems to play

an important role, it should be noted that, anatomically, the initial pul-

monary venous return is a midline structure. Since the primary atrial

septum develops at the right side of the pulmonary orifice, the pulmo-

nary vein becomes incorporated into the left atrium.

Subsequent to the connection of the pulmonary vein to the

atrium, a myocardial mantle forms around the pulmonary vein and its

bifurcations. Mesenchymal cells flanking the pulmonary venous endo-

thelium in the dorsal mesocardium differentiate into cardiomyocytes.

BUIJTENDIJK ET AL. 11



The population is, in contrast to the myocardium formed around the

caval veins, derived from a Tbx18-negative, and Nkx2.5- and

Isl1-positive progenitor population. These newly formed

cardiomyocytes initiate rapid proliferation and migrate along the pul-

monary veins forming a myocardial sleeve. Interestingly, in the

absence of functional Pitx2c results in under population of the walls

of the pulmonary veins (Mommersteeg et al., 2007a). In mice, the

myocardial sleeve is found to extend deep into the lungs, up to

the fifth bifurcation. In human, however, this sleeve only develops to

the extent of the second bifurcation, and while this sleeve is being

formed, it is also being taken up into the dorsal wall of the left atrium.

As a consequence, four pulmonary orifices are found in the left atrium

and an extensive amount of smooth-walled myocardium in between

these orifices.

5 | DEVELOPMENT OF THE CONDUCTION
SYSTEM

The timing and coordination of muscular contraction in the adult heart

is coordinated by the sinus node, AV node, AV bundle, bundle bra-

nches and the peripheral conduction system (Purkinje fibers). The car-

diac conduction system develops hand in hand with the forming

cardiac chambers.

At the end of the second week of development the mesodermal

cells differentiating into cardiomyocytes cells begin to become electri-

cally competent and begin to twitch. In the beginning of the third

week of development (CS9-10), when the linear heart tube has just

formed, peristaltic contraction waves travel from inflow to outflow

regions. An ECG can already be recorded at this stage and has a sinu-

soidal morphology (Christoffels, Smits, Kispert, & Moorman, 2010;

Hoff, Kramer, DuBois, & Patten, 1939). It should be noted that at this

stage of development, there is no morphologically distinguishable car-

diac conduction system. The slow and long lasting contraction is the

result of poorly electrically coupled cardiomyocytes, and at the same

time the sarcomers and sarcoplasmic reticulum have yet to fully

develop. The polarity of this contraction wave is due to the expression

of the hyperpolarization activated pacemaker channel Hcn4 in the

cardiomyocytes located at the inflow region of the heart tube

(Mommersteeg and others, 2007b). Hcn4 is responsible for the spon-

taneous depolarizing “funny” current, a major component of pace-

maker activity. Since pacemaker activity is always found at the most

distal myocardial border of the inflow, the newly differentiated

cardiomyocytes at the distal border of the inflow possess dominant

pacemaker activity, determining the contraction rate of the heart

(Moorman, Christoffels, & Bakker, 2011).

When chamber formation starts around three weeks of human

development (CS10), the myocardium of the forming atrial and ven-

tricular chambers conducts the depolarizing wave faster than the rem-

nants of primary myocardium (F. and others, 1992), which flank the

chambers; the venous pole, atrioventricular canal and outflow tract.

Besides the relative fast-conduction in these atrial and ventricular

cardiomyocytes, their differentiating sarcomeres and

sarcoendoplasmatic reticulum allow faster and more efficient contrac-

tions. The difference in contraction characteristic of the chamber and

primary cardiomyocytes prevents backflow of blood and enabling the

propulsion of blood without valves. Cardiomyocytes of the sinus

venosus have the highest frequency of automaticity, have poorly

developed sarcomeres and are poorly electrically coupled to one

another and to the flanking atrial cells. These characteristics allow

them to build up an electrical charge and drive the depolarization of

the cardiomyocytes in the downstream compartments (Moorman &

Christoffels, 2003a). At this developmental stage an ECG can be regis-

tered that resembles the ECG of the adult (Hoff et al., 1939). Despite

the absence of a central conduction system, this adult-like ECG can

be recorded due to the alternating arrangement of cardiac compart-

ments with different intrinsic properties.

6 | THE SINUS NODE

An excellent in-depth review discussing the transcriptional networks

underlying the development of the cardiac conduction system has

recently been published (van Eif, Devalla, Boink, & Christoffels, 2018).

The sinus node develops within the myocardium added to the venous

pole and is characterized by the expression of Tbx18 and the absence

of Nkx2.5 expression (Mommersteeg et al., 2010; Wiese et al., 2009).

The remainder of the sinus venous myocardium differentiates into

atrial myocardium and starts to express Nkx2.5 and the chamber myo-

cardial markers, like Cx43 (Gja1) and ANF (Nppa) (Mommersteeg and

others, 2007b). The expression of Nkx2.5 is under the control of the

transcription factor Shox2 (Blaschke et al., 2007; Espinoza-Lewis

et al., 2009). Tbx3 is expressed in the developing sinus node, which

suppresses the chamber-specific gene expression program. Tbx3

retains its expression in the adult sinus node and when ectopically

overexpressed in atrial working myocardium, Hcn4 expression is acti-

vated and ectopic pacemaker function can be observed (Hoogaars

et al., 2007). The formation of the sinus node at the right side is regu-

lated by the transcription factor Pitx2. Pitx2 is only expressed in the

left sinus horn myocardium, in which it suppresses right-sided sinus

node differentiation (Mommersteeg et al., 2010; Wiese et al., 2009).

7 | ATRIOVENTRICULAR NODE AND
BUNDLE BRANCHES

The AV node and bundle branches develop within the myocardium of

the AVC, the cardiac compartment in between the forming atria and

ventricles. The atrioventricular canal (AVC) myocardium expresses

Bone Morphogenetic Protein 2 (Bmp2) which is key in maintenance

of the expression of Tbx2 and Tbx3 in the AVC myocardium. These

two transcription factors actively repress the chamber specific gene

expression program in the AVC myocardium (Aanhaanen et al., 2011;

Christoffels et al., 2010; Singh et al., 2012; Stefanovic et al., 2014).

The importance of Bmp-signaling is crucial in this process as AVC-

specific deletion of the Bone morphogenetic protein receptor 1A
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(Bmpr1a) leads to impaired atrioventricular node and annulus fibrosis

development (Gaussin et al., 2005; Stroud et al., 2007). AVC develop-

ment is further confined by Notch-signaling (Rentschler et al., 2011)

and transcriptional regulation through Tbx20 (Singh et al., 2009).

A cluster of cells on top of the forming ventricular septum will

not follow the chamber myocardial gene expression program, but

retain their primary myocardial phenotype. This group of cells will dif-

ferentiate into the atrioventricular (His) bundle. Although this was

already concluded by Keith and Flack in 1906 (Keith, Aberb, Eng,

Flack, & Oxon, 1906), it took till the end of the century to visualize

and follow these cells immunohistochemically using the GlN2 anti-

body (Lamers et al., 1992; Wessels et al., 1992) and later by expres-

sion studies of Tbx3 (Bakker et al., 2008; Hoogaars et al., 2004). The

cardiomyocytes of the atrioventricular bundle and bundle branches

express Connexin 40 (Gja5) in contrast to the cardiomyocytes of the

atrioventricular node. Expression of Gja5 warrants the fast conduction

of the electrical impulse through the bundles (Davis, Rodefeld, Green,

Beyer, & Saffitz, 1995). Their development is regulated through a

molecular network including Nkx2.5, Tbx5 and Id2. Interestingly, het-

erozygous deletion of Nkx2.5 results in mice in an underdeveloped

atrioventricular bundle and atrioventricular block (Moskowitz et al.,

2004; Moskowitz et al., 2007).

8 | PERIPHERAL VENTRICULAR
CONDUCTION SYSTEM

The electrical impulse traveling through the bundle branches is propa-

gated to the individual cardiomyocytes via the Purkinje fibers. The

ventricular conduction system is fast-conducting by virtue of the gap

junctions Gja1 and Gja5. Permanent genetic labeling of Gja5-positive

cells during heart development has shown that before E14.5 in mouse

all ventricular cardiomyocytes are positive and become subsequently

restricted to the cardiomyocytes located subendocardially in the tips

of the ventricular trabecules, forming the peripheral ventricular con-

duction system (Miquerol et al., 2010). The electrical impulse is propa-

gated from the endocardially located cardiomyocytes to the

epicardially located cardiomyocytes via their intercellular connections.

Although differential growth of the compact and trabecular layer is

suggested to underlie the confinement of the peripheral ventricular

conduction system (de Boer, van den Berg, Soufan, et al., 2012b), the

molecular regulation of this process has yet to be established.

9 | SEPTATION

Septation of the heart is a complex process during which the initial

single bloodstream is physically separated into a systemic and pulmo-

nary stream (Figure 3). Half of the cardiac congenital abnormalities are

accounted for by septational abnormalities, which range from non-

pathological to embryonic, fetal or neonatally lethal.

Septation starts with the expansion of the extracellular matrix

between the endocardial and myocardial cell layers in the

atrioventricular canal and the outflow tract. This extracellular matrix,

secreted majorly by surrounding cardiomyocytes, is also referred to as

cardiac jelly. The extracellular matrix deposits become molded into

four major cushions; the posterior and anterior atrioventricular cush-

ions in the AVC and the parietal and septal outflow cushions, often

referred to as ridges, of the outflow tract (OFT). The cushions initially

become populated by endocardium-derived mesenchymal cells

(de Lange et al., 2004; Markwald, Fitzharris, & Manasek, 1977). The

endocardial-to-mesenchymal transition of the endocardium overlaying

the cushions is regulated by Notch, Bmp and Tgfb-signaling (For

review see [Garside, Chang, Karsan, & Hoodless, 2013; MacGrogan,

Luna-Zurita, & de la Pompa, 2011; Mercado-Pimentel & Runyan,

2007; van Wijk, Moorman, & van den Hoff, 2007]). The OFT cushions,

in addition to the endocardially derived cells, also become populated

by neural crest derived cells (de Lange et al., 2004; Lincoln, Alfieri, &

Yutzey, 2006). The cushions expand into the lumen, meet and fuse,

separating the left and right bloodstreams. It should be noted that the

cushions also contribute to the valves in the atrioventricular canal and

the outflow tract, which will be described below.

10 | ATRIAL SEPTATION

Atrial septation starts with the formation of the primary atrial sep-

tum during the fourth week of developmental (CS12). The primary

atrial septum forms as a result of proliferation of atrial cells. The

growing atrial septum has the shape of a crescent and its leading

edge is covered with a mesenchymal cap. Anteriorly this cap is con-

tiguous with the anterior atrioventricular cushion and at the poste-

rior site with the dorsal mesocardial protrusion (DMP) and the

posterior atrioventricular cushion. In humans the DMP is anatomi-

cally more pronounced than in mice (Snarr, Kern, & Wessels, 2008;

Snarr, Wirrig, Phelps, Trusk, & Wessels, 2007b; Wessels et al., 2000).

Genetic lineage tracing has shown that the mesenchymal cells found

in the DMP are derived from the second heart field (Goddeeris et al.,

2008; Snarr et al., 2007a). The formation of the DMP is molecularly

regulated by Sonic Hedgehog (Shh), Wnt and Bmp (Briggs et al.,

2013; Briggs et al., 2016; Goddeeris et al., 2008). The mesenchymal

complex comprised of the two major atrioventricular cushions, the

mesenchymal cap of the primary atrial septum and the DMP, encir-

cles the primary atrial foramen. During the sixth week of develop-

ment (CS16) this primary atrial foramen closes by the fusion of the

mesenchymal components of this complex. If this complex does not

fuse completely or partly, a range of defects is observed from an

atrial septal defect type one (ASD-I) to a partial or complete atrio-

ventricular septal defect (AVSD). Interestingly, in mouse models for

Down syndrome the DMP is absent and in 30–50% of children with

Down syndrome are diagnosed with an AVSD (Blom, Ottenkamp,

Wenink, & Gittenberger-de Groot, 2003; Briggs, Kakarla, & Wessels,

2012; Webb, Anderson, Lamers, & Brown, 1999).

During development the pulmonary circulation needs to be

largely by-passed during intra-uterine development. To this end, a

new foramen, the secondary atrial foramen, is formed in the primary
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atrial septum prior to the closure of the primary atrial foramen. From

the end of the sixth week of development (CS17) onwards, the mus-

cular wall of the right atrium folds down into the lumen of the right

atrium to form the secondary atrial septum. The secondary atrial sep-

tum folds deep into the atrium and covers the entire secondary fora-

men. At birth when the lungs become functional and the ductus

arteriosus closes, the blood pressure in the right atrium lowers,

whereas the pressure at the left side hardly changes. Due to this

difference in blood pressure between the right and left atrium, the pri-

mary atrial septum is pushed against the secondary atrial septum,

preventing blood flow from the right to the left side. In two thirds of

the human population the two septa subsequently fuse, whereas in

the other one third the communication remains a situation referred to

as a patent foramen ovale. When the secondary atrial septum does

not form or is hypoplastic, the result is a secondary atrial septum

defect or atrial septal defect type two (ASD-II).
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2
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F IGURE 3 Schematic representation of septation. Panel (a) shows the same schematic drawing of the four chamber-forming heart as Figure 2
(j), in which now the major cushions have been added within the atrioventricular canal (AVC) and outflow tract (OFT) and the left and right
bloodstreams through the heart is indicated. The ventricular foramen is located between the distal edge of the ventricular septum (VS) and the

inner curvature (IC). Noteworthy is that the left bloodstream passes the ventricular foramen during systole, while the right bloodstream already
passes through the ventricular foramen during diastole. Panels (b)–(f ) illustrate atrial septation and show the cutting edge (sagittal sections) at the
level of the dashed line in panel (a). For easy comparison the cushions are numbered. The mesenchymal complex formed by the anterior (1) and
posterior (2) atrioventricular cushion, the extension of the anterior cushion over the roof of the atrium (MC), and the extracardiac mesenchyme
that protrudes into atrial lumen (DMP), surround the connection between the left (LA) and right atrium (RA). With expansion of this complex the
primary atrial foramen (pAF) becomes smaller and eventually closes forming the primary atrial septum (pAS). Prior to closure of the pAF, the
secondary atrial foramen (sAS) is formed. Within the RA the secondary atrial septum (sAS) folds down from the atrial wall into the lumen and
covers the pAS partly and the pAF completely. The uncovered part of the pAS is recognized as the oval fossa (OF) (Modified from Sylva
et al., 2014)
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11 | VENTRICULAR SEPTATION

The septum dividing the left and right ventricle in the formed heart is

composed of the myocardial ventricular septum and the membranous

septum.

When the right and left ventricles form the cells in between will

form the myocardial ventricular septum. The ventricular septum

lengthens by a process called apposition, meaning that cells are added

to the septum at its base (Harh & Paul, 1975). In human this process

starts in the fourth week of development (CS12) (Sizarov et al., 2011).

It is thought that when apposition is aberrant that a hole or multiple

holes will be formed in the ventricular septum. These left–right con-

nections are referred to as muscular ventricular septal defects (VSDs).

The lumen in between the top of the interventricular septum and

the inner curvature is referred to as the ventricular foramen. Because

the bloodstream is laminar, particles introduced into the blood follow

a specific path without lateral mixing (Hogers, deRuiter, Baasten,

Gittenberger-de Groot, & Poelmann, 1995). These analyses showed

that the blood flow is already separated into a left- and right-sided cir-

culation prior to septation, and that blood from the right atrium passes

through the ventricular foramen into the right ventricle during diastole

and blood from the left ventricle passes through the ventricular fora-

men into the future aortic stream during systole. From this analysis it

is obvious that the ventricular foramen never closes but becomes

septated (de Jong, Moorman, & Virágh, 1997). The ventricular fora-

men is divided in a left and right component by the two major AV

cushions and the septal OFT ridge, becoming the membranous sep-

tum in the adult human from the second half of the sixth week of

development (CS19) onward. One can now also understand why this

septum has an interventricular and an atrioventricular portion, and

why perimembranous or inlet VSDs are present as a spectrum (Lopez

et al., 2018).

12 | SEPTATION OF THE OUTFLOW
TRACT

The outflow tract is a myocardial tube that runs from the developing

ventricles to the aortic sac, which is embedded in the pharyngeal

arches and is connected to three paired symmetrical pharyngeal arch

arteries. The pharyngeal arch arteries remodel in to the arterial pole of

the heart which already resembles the postnatal configuration at the

end of the eight week of development (CS23) (Rana, Sizarov, Christo-

ffels, & Moorman, 2013).

Initially, the myocardial OFT increases in length by the addition of

newly differentiated cardiomyocytes to its distal border (Rana et al.,

2007; Webb, Qayyum, Anderson, Lamers, & Richardson, 2003). These

cardiomyocytes are derived from the second heart field (Kelly &

Buckingham, 2002; Sizarov et al., 2012). From the fifth week of devel-

opment (CS14) onward the myocardial OFT becomes shorter, due to

the incorporation of the proximal OFT myocardium as part of the right

ventricle. In the adult the distal myocardial border is found halfway at

the level of the semilunar valves and below the coronary orifices. As a

consequence, the OFT has a nonmyocardial portion in between its

distal of myocardial border and the border of the pericardial cavity.

This nonmyocardial portion of the OFT will become the

intrapericardial part of the aorta and pulmonary trunk (Rana et al.,

2007; Sizarov et al., 2012).The cells of the nonmyocardial portion

originate from both the second-heart field and the cardiac neural crest

(Cai et al., 2003; Jiang, Rowitch, Soriano, McMahon, & Sucov, 2000;

Zhou et al., 2017).

Septation of the OFT starts at its distal border in the sixth week

of development (CS16) and proceeds in a proximal direction, to its

completion a week later (CS18) (Sizarov et al., 2012). The OFT cush-

ions lay in a spiraling fashion, reflecting the course of the aortic and

pulmonary streams in the adult (Sizarov et al., 2012; Ya et al., 1998).

At the start of fusion of the OFT cushions, the proximal portion of the

cushions is invaded by endocardial derived cells and by cardiac neural

crest cells at its distal border. The migration of the neural crest cells

into the heart is a complex process that is regulated by Wnt, Bmp,

Fgf, and Semaphorin signaling (For review see [Stoller & Epstein,

2005]. Invasion of neural crest cells becomes evident with the forma-

tion of a protrusion of pharyngeal mesenchyme, termed the

aorticopulmonary septum, that grows into the aortic sac and connects

distally to the fused OFT cushions. The aorticopulmonary septum

ensures that the aortic blood stream is guided into the left fourth pha-

ryngeal arch artery and the pulmonary blood stream into the left and

right sixth pharyngeal arch arteries (Anderson et al., 2009; Anderson

et al., 2012; Rana et al., 2013). In the distal portion of the OFT, the

cardiac neural crest cells form condensed pillars in the cushions and in

the proximal portion of the OFT cushions, where they become dis-

persed (Waldo, Miyagawa-Tomita, Kumiski, & Kirby, 1998). In the dis-

tal portion of the OFT the neural crest cells will predominantly form

the facing part of the walls of the aorta and pulmonary trunk. In the

proximal portion of the OFT the cushions form upon fusion of the

outlet septum, in which a large part of the mesenchyme disappears by

apoptosis and is replaced by cardiomyocytes. A process referred to as

myocardialization (van den Hoff et al., 1999; Ya et al., 1998). The

myocardial outlet septum changes during the commitment of the

aorta to the left ventricle largely into the freestanding subpulmonary

infundibulum. In the adult right ventricle, remnants of the OFT myo-

cardium and myocardial outlet septum are recognized as smooth-

walled myocardium distal of the trabecular component (Anderson

et al., 2009; Anderson et al., 2012). Even in the adult, this smooth-

walled myocardium still has characteristics of the primary myocardium

due to which it can serve as a source for arrhythmias in cardiac dis-

ease (Boukens et al., 2013).

When the OFT cushions do not fuse over their entire length, an

anomaly known as a persistent truncus arteriosus or common arterial

trunk arises. When the fusion defect is limited to the proximal OFT

cushions, this results in a subarterial or outlet VSD (Anderson et al.,

2012; Okamoto, Akimoto, Hidaka, Shoji, & Sumida, 2010). A transpo-

sition of the great arteries is found when the cushions are laid down

in a parallel fashion rather than in a spiraling course. In a transposition

of the great arteries the aorta and pulmonary trunk are situated next

to each other in a frontal plane and at birth two separate blood
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circulatory systems are formed which is not compatible with life

(Costell et al., 2002; Kirby, 2002). Because cardiac neural crest pro-

vide cells to the OFT and these cells secrete growth factors essential

for normal development of the surrounding tissue, no or a limited

number of cells invade the OFT a spectrum of abnormalities ranging

from a common trunk, to pulmonary atresia and double outlet right

ventricle arises (Hutson & Kirby, 2003; Stoller & Epstein, 2005). More-

over, when fusion of the aorticopulmonary septum and the proximal

OFT cushions is impaired, this is recognized as an aorticopulmonary

window (Anderson et al., 2012; Sizarov et al., 2012; Rana et al., 2013.

13 | THE CARDIAC CONNECTIVE TISSUES

Cardiomyocytes make up 90% of the volume of the adult heart mus-

cle, but only comprise 50% in total cell number (Banerjee, 2007; Pinto

et al., 2016). Of the nonmyocytes, more than half of the cells are

endocardial/endothelial cells, approximately one third are fibroblasts

and less than 10% are hematopoietic-derived cells (Pinto et al., 2016).

Already one month after birth the maximum number of

cardiomyocytes in the human heart has been reached, being approxi-

mately 3.2 × 109 ± 0.75 × 109 cardiomyocytes (Bergmann et al.,

2015). From first month after birth onward, the increase in size of the

heart is almost exclusively due to a volume increase of the

cardiomyocytes (hypertrophy), being almost 10-fold up to an age of

20 years (Bergmann et al., 2015). Moreover, only approximately 50%

of the cardiomyocytes undergo a single round of cell division during

an adult lifespan (Bergmann et al., 2009; Bergmann et al., 2015) and

hardly any cardiomyocytes are supplement from a stem cell popula-

tion (Jesty et al., 2012; van Berlo et al., 2014). A recent review exten-

sively discusses this phase of heart development (Gunthel, Barnett, &

Christoffels, 2018).

Cardiac fibroblasts have long been neglected functionally, but in

the last decades their importance under normal physiological and

pathological condition has started to become evident. Analysis of the

cardiac fibroblast population in the heart also showed that they are

not a single homogeneous group. Since the introduction of genetic lin-

eage marking systems, it has become evident that fibroblasts are not

only derived from the epicardial cells but also from endocardial, circu-

lating and hematopoietic cells. In depth reviews on this topic have

been recently published (Ivey & Tallquist, 2016; Swonger, Liu, Ivey, &

Tallquist, 2016; Tallquist & Molkentin, 2017).

14 | EPICARDIUM AND ITS DERIVATIVES

The epicardium is derived from the proepicardium, a villous structure

found immediately upstream of the heart tube at the beginning of the

fourth developmental week (CS10). Within days (CS11) the villi con-

tact the dorsal outer surface of the AVC and from that point cells

spread and start to cover the entire heart with epicardium, a process

complete at the end of the sixth week of development (CS16)

(Hirakow, 1992). A subset of epicardial cells undergoes epithelial to

mesenchymal transition giving rise to a mesenchymal layer between

the epicardium and myocardium. Although not fully analyzed it is gen-

eral contention that the epithelial to mesenchymal transition observed

in the epicardium is largely comparable to epithelial to mesenchymal

transition in the cushions. This formed sub-epicardial mesenchyme

either remains or contributes to (1) the coronaries, (2) cardiac fibro-

blasts, (3) annulus fibrosus and (4) valve leaflets (Perez-Pomares & de

la Pompa, 2011; Wessels et al., 2012).

Initially, it was thought that the entire coronary vessel tree would

be formed from epicardial-derived cells by vasculogenesis and subse-

quently angiogenesis. However, studies using genetic lineage tracing

experiments revealed that this appeared to be more complex.

Epicardial-derived cells contribute the coronary smooth muscle cells

and adventitial fibroblasts. The coronary endothelium was found to be

formed from endocardial-derived cells, endothelial cells of the sinus

venosus, and a limited contribution of epicardial-derived cells. In-

depth reviews on this topic were recently published (Perez-Pomares &

de la Pompa, 2011; Sharma, Chang, & Red-Horse, 2017). When devel-

opment of the coronary tree reaches completion, the two coronary

arteries form by angiogenesis which tap into the lumen of the aorta

(Bogers, Gittenberger-de Groot, Poelmann, Péault, & Huysmans,

1989). The signals that promote the coronary arteries to grow toward

the aorta and perforate the aortic wall are unknown, as yet. Erroneous

connections are found when development of the outflow tract is

affected (Theveniau-Ruissy et al., 2016). It is, however, not known

whether these primary or secondary defects are due to abnormal OFT

development. Congenital coronary artery anomalies are frequently

observed and of major importance in cardiology and cardiac surgery,

because of their association with myocardial ischemia and sudden

death. An extensive description of these abnormalities has recently

been published (Perez-Pomares et al., 2016).

Another part of the epicardial-derived mesenchyme migrates into

the myocardium forming fibroblasts. Genetic labeling studies in mouse

have shown that the epicardial derived fibroblasts appear and popu-

late the developing compact layer of the ventricular myocardium. It is

only at the end of gestation that the epicardial derived fibroblasts also

populate the trabeculations (Wessels et al., 2012). Fibroblasts regulate

myocardial proliferation through growth factors, cytokines, and extra-

cellular matrix proteins. It has been found that myocardially expressed

beta1-integrin mediates this proliferative affect via Erk1/2 and PI3K/

Akt intracellular signaling pathways (Ieda et al., 2009).

Genetic labeling of the epicardial cells also revealed that the

annulus fibrosis is derived from this cell population and a part of the

cells of the atrioventricular valve leaflets (Aanhaanen et al., 2010;

Wessels et al., 2012; Zhou and others, 2010). Their contribution to

the valves will be discussed below.

15 | DEVELOPMENT OF THE VALVES

The valves are formed from a part of the four major cushions, as

described in the section on septation (Figure 4). In both the AVC and

OFT minor cushions are formed, the so-called lateral AV cushions and
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F IGURE 4 Formation of the valves.
Panels (a)–(f ) show the formation of the
atrioventricular valves. Genetic lineage
tracing shows the contribution of the
endocardially-derived (panels b, d, and f)
and epicardially-derived (panels a, c, and
e) cells to the cushions and subsequent
valve leaflets. The myocardium of the
heart is shown in green and the
epicardially-derived cells labeled using the
WT1(BAC)-Cre in red and the
endocardially-derived cells using Tie2-Cre
in magenta (Modified from Wessels et al.,
2012). Panel (g) shows a schematic
summary of the origin of the cellular
contributions to the mitral, tricuspid and
semilunar valves. In the pulmonary trunk
The left cusp in both the pulmonary trunk
and aorta is derived from the septal OFT
cushion (blue). The right cusp in both the
pulmonary trunk (PT) and aorta (Ao) is
derived from the parietal OFT cushion
(orange). The anterior cusp in the
pulmonary trunk is derived from the right
intercalated ridge and in the aorta the
posterior cusp is derived from the left
intercalated ridge (gray). The aortic or
anterior leaflet of the mitral valve
(MV) and the septal leaflet of the tricuspid
valve (TV) are derived from the inferior
(blue) and posterior (yellow)
atrioventricular cushions (iAVC and sAVC,

respectively). The posterior leaflet of the
MV is derived from the left lateral
atrioventricular cushion (llAVC, green) and
the septal leaflet of the TV from the right
lateral atrioventricular cushion (rlAVC,
light blue). From the data shown in panels
(a)–(f), one can infer that the posterior
MV leaflet and the parietal leaflet of the
TV comprise predominantly of
epicardially-derived cells and both the
aortic leaflet of the MV and the septal
leaflet of the TV of endocardially-derived
cells. (Modified from Lamers &
Moorman, 2002)
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the intercalated OFT ridges (de Lange et al., 2004; de Vlaming et al.,

2012; Lamers & Moorman, 2002; Snarr et al., 2008; Wessels et al.,

2012). Although still to be experimentally evaluated, the development

of the minor cushions and intercalated ridges is similar to that of the

major cushions. As summarized in Figure 4, genetic marking of the epi-

cardial or endocardial cell contribution to the AV cushions has revealed

that the leaflet of the mitral valve that is attached to the left ventricular

free wall is derived from the left lateral AV cushion; the leaflet that is

attached to the ventricular septum is derived from the major cushions;

the leaflet of the tricuspid valve that is attached to the right ventricular

free wall is derived from the right lateral AV cushion; the leaflet that is

attached to the ventricular septum is derived from the major cushions

(de Lange et al., 2004; Lockhart, Phelps, van den Hoff, & Wessels, 2014;

Wessels et al., 2012). Interestingly, epicardially-derived cells populate

both the left and right lateral AV cushions, displacing the endocardially-

derived cells (Wessels et al., 2012). Although, the semilunar valves in the

aorta and pulmonary trunk are virtually devoid of epicardial-derived cells

(unpublished personal observations), they do receive an extracardiac

contribution from the cardiac neural crest (de Lange et al., 2004; Jiang

et al., 2000). The cardiac neural crest-derived cells are destined to

become the part of the semilunar valve leaflets that is attached to the

aortic or pulmonary trunk wall. The semilunar valve leaflets that are

attached to the facing walls of the aorta and pulmonary trunk are

derived from the major OFT cushions, whereas the semilunar leaflets

that are attached to the nonfacing part of the walls of the aorta and pul-

monary trunk are derived from the left and right intercalated ridges,

respectively. The function of these extracardiac cell populations in the

valve leaflets is, as yet, not known.

To become free hanging valve leaflets the cushions need to be

detached from the underlying supporting tissue. The part of the cush-

ions forming the aortic leaflet of the mitral valve protrudes from its out-

set, into the left ventricular lumen, never have being in contact with

myocardium. This differs to the septal leaflet, the last to form in the

eight week of development (CS23), of the tricuspid valve which has to

detach by apoptosis from the underlying myocardium. The anterior and

posterior leaflets of the tricuspid valve and the parietal leaflet of the

mitral valve do not detach from the underlying myocardium by apopto-

sis, but by excavation or ventricularization; the ventricular lumen

expands behind the cushions creating a space and liberating the valve

leaflets. This process starts in developmental week seven (CS19).

Cardiomyocytes left behind during leaflet formation, are removed by

apoptosis during subsequent development (de Lange et al., 2004).

While the valve leaflets are forming the distal part of the embryonic

valve differentiates into the chordae tendineae that prevent the leaflets

from prolapsing into the atria, during contraction of the ventricles.

16 | REMODELING OF THE EMBRYONIC
VALVES

The last stage of the atrioventricular and outflow tract valve develop-

ment involves their maturation in which the valve leaflets become

slender by the remodeling of the extracellular matrix. The leaflets

become organized in to three layers: (1) The atrialis of the atrioven-

tricular valve leaflets and the ventricularis of the outflow tract valves,

that is, the side of the valve facing the inflow encountering shear

forces. This layer is primarily composed of radially oriented elastic

fibers and provides motility of the leaflets. (2) The fibrosa, which is on

the opposite side of the valve leaflet, is made up of densely organized

collagen fibers and provides stiffness to the leaflets. (3) In between

these two layers is the spongiosa, which is composed of proteogly-

cans and glycosaminoglycans. This layer allows the movement of the

two flanking layers and opposes the compressive forces imposed on

the valve leaflets (Hinton & Yutzey, 2011).

Most cardiac valve diseases are characterized by dysfunctional,

thick and elongated valve leaflets. Histological evaluation of such valve

leaflets shows that their trilaminar organization of the different layers is

disrupted. A large number of extracellular matrix genes such as elastins

and collagens are involved in congenital valve disease. However,

upstream regulators have also been associated with valve malforma-

tion. Mutations in genes encoding extracellular matrix molecules result

in remodeling of the extracellular matrix and as a consequence in dys-

functional valves. Also dysregulation of the connective tissue transcrip-

tion factor Sox9, or disruption of Notch and BMP signaling results in

remodeling of the extracellular matrix. If untreated this remodeling of

the extracellular matrix ensues in calcifications, which will subsequently

hamper valve leaflet motility and function. These features are fre-

quently observed in human valve disease (Hinton & Yutzey, 2011).

17 | FUTURE PERSPECTIVE

Over the last two decades the field of heart development has taken

large, and sometimes bold, new steps in understanding. In spite of this

new knowledge, only in a discouraging low percentage of patients with

cardiac malformations, a genetic or environmental cause can be found.

The hypothesis that several (genetic) events have to take place in one

patient before a cardiac malformation can develop is becoming more

and more likely. Therefore new insights are needed in order to under-

stand how interactions of the now known players bring about correct

cardiac development. Novel techniques identifying regions in the

genome on which transcription factors act, driving their target genes,

have already provided us with new knowledge on how disease could

arise. To further unravel how the interplay of individual factors is

orchestrated to ensure correct development of the rhythmically beat-

ing, full-grown heart will be the aim of many researchers in this field.
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