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Abstract
Purpose Obstructive sleep apnea (OSA) is a common sleep disorder that is influenced by various environmental and genetic 
factors. The potential associations of leptin and leptin receptor (LEPR) polymorphisms with OSA have been studied in dif-
ferent populations; however, the results remain inconclusive. The aim of this study was to examine the association between 
LEPR gene polymorphisms and OSA risk.
Methods A total of 322 samples were used, including 226 OSA subjects and 96 controls. Targeted sequencing of the entire 
LEPR gene was performed in all subjects. Polysomnography was used to diagnose obstructive sleep apnea. The associations 
between variants and OSA were determined by multivariate regression analyses.
Results Four single-nucleotide polymorphisms of LEPR were identified in all subjects. The genotype frequency of locus 
rs3790435 was significantly different between the OSA and control groups. Specifically, the variant genotype rs3790435 
CC in LEPR was associated with a lower risk of OSA (OR 0.462, 95% CI 0.250–0.854, p = 0.014) in a recessive model after 
controlling for potential confounders. After BMI stratification, obese patients with this variant genotype were found to have 
a lower risk of developing OSA. Moreover, subjects with the rs3790435 CC genotype were found to have a statistically 
lower apnea–hypopnea index (AHI) and higher nadir oxygen saturation than the TT/CC genotypes without differences in 
plasma leptin levels.
Conclusions Our study identified a novel variant of LEPR in patients with OSA, and specifically found an association between 
rs3790435 polymorphisms and OSA risk in Chinese Han subjects.

Keywords Obstructive sleep apnea · Leptin receptor · Single-nucleotide polymorphisms · Targeted sequencing

Electronic supplementary material The online version of this 
article (https ://doi.org/10.1007/s0040 8-019-00254 -z) contains 
supplementary material, which is available to authorized users.

 * Yanwen Qin 
 qinyanwen@vip.126.com; qinyanwen@ccmu.edu.cn

 * Yongxiang Wei 
 weiyongxiang@vip.sina.com

1 Key Laboratory of Upper Airway Dysfunction-Related 
Cardiovascular Diseases, Beijing An Zhen Hospital, Capital 
Medical University, Beijing Institute of Heart, Lung, 
and Blood Vessel Diseases, No. 2 Anzhen Road, Chaoyang 
District, Beijing 100029, China

2 Key Laboratory of Remodeling-Related Cardiovascular 
Diseases, Institute of Heart, Lung and Blood Vessel Diseases, 

Beijing An Zhen Hospital, Capital Medical University, 
Beijing 100029, China

3 Otolaryngological Department of Beijing An Zhen Hospital, 
Capital Medical University, Beijing 100029, China

4 Department of Cardiology, Beijing An Zhen Hospital, 
Capital Medical University, Beijing 100029, China

http://orcid.org/0000-0002-5185-9726
http://crossmark.crossref.org/dialog/?doi=10.1007/s00408-019-00254-z&domain=pdf
https://doi.org/10.1007/s00408-019-00254-z


578 Lung (2019) 197:577–584

1 3

Introduction

Obstructive sleep apnea (OSA) is a sleep disorder char-
acterized by recurrent upper airway obstructions leading 
to sleep fragmentation, daytime sleepiness, fluctuations 
in blood oxygen levels, and repeated episodes of chronic 
intermittent hypoxia [1]. OSA affects up to 34% of men and 
17% of women, increasing in prevalence with age [2]. The 
pathogenesis of OSA is thought to involve alterations in the 
normal neuromuscular activity [3, 4], leading to impaired 
upper airway patency during sleep. Obesity is a risk factor 
for OSA, and approximately two thirds of OSA patients are 
obese [5]; a body mass index (BMI) > 29 kg/m2 confers a 
tenfold increased risk [6]. The development of OSA is com-
plex, and both genetic and environmental factors have been 
linked to the development of OSA [7]. Genes are thought to 
play a role via four primary intermediate pathogenic path-
ways that affect OSA susceptibility: obesity, craniofacial and 
upper airway morphology, control of ventilation, and control 
of sleep and circadian rhythm [8].

Leptin is a peptide hormone produced mainly in adipose 
tissue that regulates energy balance, body weight, metabo-
lism, and endocrine function [9]. Leptin concentrations in 
blood correlate with body weight and BMI [10]. Studies 
using animal models have shown that decreased leptin lev-
els or defects in leptin receptors, which prevent leptin from 
acting on target cells, affect regulation of sleep architecture 
[11–13], upper airway patency [14, 15], ventilatory func-
tion [15–17], and hypercapnic ventilatory response [18]. 
These findings suggest that leptin may be important to the 
pathogenesis of OSA through regulation of upper airway 
patency and diaphragmatic control [19]. Indeed, circulating 
leptin was significantly increased in OSA patients compared 
with control subjects matched for age and BMI [20]. Stud-
ies like these suggest that leptin might be a biochemical 
link between sleep disorders and impaired physiological 
functions.

Leptin acts through the leptin receptor, a single trans-
membrane domain receptor in the cytokine receptor fam-
ily [21]. Several epidemiological studies have examined 
the association between LEPR gene polymorphisms and 
the risk of OSA [22–24]. A recent systematic review and 
meta-analysis on the role of leptin and LEPR polymorphisms 
in OSA patients found no associations between the risk of 
OSA and leptin and LEPR polymorphisms [25]. However, 
studies of LEPR gene polymorphisms like these are focused 
mainly on specific sites, such as Gln223Arg, Lys109Arg, 
and Lys656Asn. They are therefore unable to exclude other 
single-nucleotide polymorphisms (SNPs) of LEPR that may 
be associated with the risk of OSA. Therefore, the associa-
tion between leptin receptor gene polymorphisms and sus-
ceptibility to OSA remains poorly understood.

Targeted sequencing is a research strategy for enrichment 
sequencing of genomic regions of interest. The main advan-
tage is that specific regions can be sequenced, which effec-
tively reduces the cost of sequencing, increases the depth of 
sequencing, and enables more cost-effective study of genetic 
variation in specific regions. This technology has outstand-
ing advantages in discovering new pathogenic genes or new 
pathogenic sites on known pathogenic genes, and it can also 
be applied to areas such as genetic susceptibility research, 
gene action modification research, and the effects of gene 
mutation on prognosis [26].

To estimate the overall relationship between OSA and 
LEPR gene polymorphisms, we conducted targeted sequenc-
ing of the LEPR gene in unrelated Chinese Han subjects with 
and without OSA to understand the distribution of SNPs and 
identify new genetic variants in OSA. We also measured the 
circulating leptin level in OSA patients to determine whether 
leptin expression in plasma was correlated with variants in 
the LEPR gene.

Materials and Methods

Subjects

We conducted a cross-sectional study. Consecutive patients 
with suspected OSA in the Otolaryngological Department 
at Beijing An Zhen Hospital from June 2017 to November 
2017 were considered potential recruits for this study. All 
participants received overnight polysomnography (PSG), 
and OSA patients and normal controls were confirmed based 
on the American Academy of Sleep Medicine (AASM) 
Guidelines. Subjects with the following characteristics 
were excluded from the study: sleep disorders other than 
OSA (such as upper airway resistance syndrome, restless 
leg syndrome, narcolepsy), congestive heart failure, preg-
nancy, cancer, acute infectious diseases, hepatic dysfunc-
tion, and abnormal renal function. All participants under-
went complete physical examinations, medical interviews, 
and assessments of demographic, biochemical, and basic 
clinical variables. Individuals with incomplete information 
were also excluded. The study flow chart is shown in Sup-
plementary Fig. 1. This study was approved by the Medicine 
Ethics Committee of Beijing An Zhen Hospital (2,017,005) 
and was registered in the Chinese Clinical Trial Register 
(ChiCTR-ROC-17011027). Informed consent was obtained 
from all participants.
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Polysomnography

The sleep study was conducted using a level II portable 
diagnostic device (SOMNOscreen; SOMNOmedics GmbH, 
Randersacker, Germany) approved by the US Food and Drug 
Administration, including nasal pressure sensors, thermis-
tors, thoracoabdominal belts, blood oxygen probes, and 
snoring sensors to monitor the breathing. Ventilatory flow 
at the nose and mouth was measured with thermistors. Venti-
latory movements of the chest and abdomen were monitored 
by inductive plethysmography bands. The arterial oxygen 
saturation  (SpO2) was measured transcutaneously with fin-
gertip pulse oximetry. We applied the scoring guidelines and 
sleep apnea definition of the American Academy of Sleep 
Medicine [27]. A respiratory event was scored in adults as 
an apnea if complete cessation of airflow occurred for ≥10 s. 
Hypopnea was defined as reduced respiratory airflow by 
30% with a 4% decrease in oxygen saturation. Apnea events 
were classified as obstructive, mixed, or central, according 
to the presence or absence of breathing efforts with thoraco-
abdominal paradox. The apnea–hypopnea index (AHI) was 
determined by dividing the number of the total apnea/hypo-
pnea events by the estimated hours of sleep [28]. A diagnosis 
of OSA was defined as AHI ≥ 5 events per hour, according 
to the American Academy of Sleep Medicine guidelines [28, 
29]. OSA severity was quantified via the AHI: mild OSA 
(AHI: 5–14.9), moderate OSA (AHI: 15–29.9), or severe 
OSA (AHI ≥ 30) [30]. Subjects with AHI < 5 served as 
controls. Finally, a total of 322 subjects were included in this 
study, including 226 OSA patients and 96 controls.

Data Collection

Subjects were classified as non-smokers if they had never 
smoked or had stopped smoking ≥ 1 year before enrollment 
in the study; all other subjects were classified as smokers. 
Subjects were diagnosed with hypertension if they had a 
systolic blood pressure of > 140 mmHg or diastolic blood 
pressure of > 90  mmHg [11]. Subjects were defined as 
drinkers if daily alcohol intake exceeded ≥ 3 times a week. 
Obesity was defined as BMI ≥ 28 kg/m2, according to the 
recommendations of the Health Promotion Administration 
[31]. High-density lipoprotein cholesterol levels (HDL-C), 
low-density lipoprotein cholesterol levels (LDL-C), total 
cholesterol levels (TC), triglyceride levels (TG), and fast-
ing blood glucose (FBG) levels were measured according to 
standard laboratory methods at Beijing An Zhen Hospital. 
Circulating leptin levels were determined by enzyme-linked 
immunosorbent assay.

DNA Template Preparation 
and Amplification

Venous blood samples were collected after the participants 
had fasted overnight. Blood samples were centrifuged at 
2943×g at 4 °C for 10 min. Serum and whole blood sam-
ples were then stored at – 80 °C prior to analysis. Genomic 
DNA was extracted from 200 μl of blood according to the 
protocol provided in the QIAamp DNA Mini Kit (Qiagen, 
Hilden, Germany). DNA concentration was determined 
using NanoDrop 2000c spectrophotometer (Thermo Fisher 
Scientific Inc, Waltham, MA). A multiplex PCR ampli-
fication strategy was designed online (Ion Ampliseq® 
Designer; https ://www.ampli seq.com) to amplify the 
target region (for primer sequences, see Supplementary 
Table 1), and the detailed design process is presented at 
https ://www.ampli seq.com/help/pipel ineDe tails .actio n. 
Primers were designed to provide maximum coverage, 
and the ordered amplicon covered approximately 100% of 
the target sequence (Supplementary Table 2). Details are 
described in Supplemental Appendix 1.

Targeted Sequencing

LEPR genes were sequenced via Ion Torrent semiconduc-
tor sequencing (Life Technologies, Carlsbad, CA, USA). 
Enriched Ion Sphere Particles carrying numerous copies 
of the same DNA fragments were subjected to sequencing 
on an Ion 318 Chip to sequence pooled libraries with 64 
samples. Sequencing was performed using the sequenc-
ing kit (Ion PGM Sequencing Kit; Life Technologies) in 
accordance with the manufacturer’s instructions with the 
400-bp single end-run configuration. Computational analy-
sis is outlined in Supplemental Appendix 2.

Statistical Analysis

Continuous variables are expressed as a mean ± standard 
deviation or median (interquartile range), and categori-
cal variables are expressed as a numeral (percentage). 
Independent Student’s t tests for normal distribution and 
Kruskal–Wallis H tests were used to compare the differ-
ences between non-normal continuous variables among 
genotypes under three genetic models. Chi-squared tests 
and Fisher’s exact tests were used to analyze categori-
cal variables. Deviations of genotype frequencies from 
the Hardy–Weinberg assumption were assessed using 
chi-squared tests. The associations between OSA and 
variants were determined by logistic regression analyses. 

https://www.ampliseq.com
https://www.ampliseq.com/help/pipelineDetails.action
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Mann–Whitney U test or Kruskal–Wallis H test was used 
to compare the difference between AHI, nadir  SpO2, and 
leptin levels among genotypes under three genetic models. 
The three genotypes of the marker were denoted as aa, Aa, 
and AA, and these were coded as (0, 1, 2) (0, 1, 1) and 
(0, 0, 1) under additive, dominant, and recessive models, 
respectively. A is assumed to be the risk allele. All prob-
ability values were two-sided and a p value < 0.05 was 
considered statistically significant. All analyses were per-
formed with R (https ://www.R-proje ct.org) and Empower-
Stats software (www.empow ersta ts.com, X&Y solutions, 
Inc., Boston, MA).

Results

Baseline Characteristics of Participants

The present study included 226 OSA patients and 96 con-
trols. The clinical characteristics of these individuals are 
presented in Table 1. There were no differences in mean 
age (p = 0.067), systolic blood pressure (p = 0.346), dias-
tolic blood pressure (p = 0.058), HDL-C level (p = 0.053), 

LDL-C level (p = 0.836), TC level (p = 0.725), or FBG 
level (p = 0.133) between the two groups. BMI, TG, and 
polysomnographic parameters in control subjects were 
significantly different from the corresponding parameters 
in patients with OSA; the OSA patients had higher BMI 
(p < 0.001), TG level (p = 0.006), AHI (p < 0.001), and 
the lowest oxygen saturation (p < 0.001) measurements. 
There were more male (p = 0.002) and smoker (p = 0.017) 
patients in the OSA group compared with control subjects. 
The leptin levels were not statistically different between 
OSA and control groups (p = 0.564), Table 1.

Association with OSA

A targeted next-generation sequencing approach was used 
to analyze the LEPR gene in 226 OSA patients and 96 
controls.

The customized targeted sequencing panel was gener-
ated to capture exons, intron/exon boundaries, and flank-
ing untranslated regions (UTRs) of LEPR. A total of 80 
nucleotide variants were found in 316 samples, of which 
54 were synonymous variants, intron variants, and vari-
ants not present in the 1000 Genomes Database, the EXAC 
database, the dbSNP database, or the ESP6500 database. 
After excluding deletion/insertion polymorphisms and 
those variants without rs-number, four SNPs (minimum 
allele frequency ≥ 0.01) remained. The allele frequency 
distribution is shown in Supplementary 3. All SNPs were 
consistent with the Hardy–Weinberg equilibrium.

Of these SNPs, the genotype and allele frequencies at 
rs3790435 differed significantly (p = 0.036 and p = 0.02, 
respectively) between OSA and control groups (Supple-
mentary 4). After adjusting for age, sex, BMI, TG, TC, 
LDL-C, HDL-C, FBG, smoker designation, and drinker 
designation, the variant genotype rs3790435 CC in LEPR 
(OR 0.462, 95% CI 0.250–0.854, p = 0.014) was found to 
be negatively associated with a diagnosis of OSA com-
pared with wild-type carriers, according to the recessive 
model (Table 2). As obesity is common in OSA patients 
and is also a risk factor for OSA, we conducted further 
stratified analysis to explore genotype frequency differ-
ences in OSA patients with and without obesity. As shown 
in Table 3, obese subjects with the rs3790435 CC geno-
type variant had a lower risk of OSA (OR 0.191, 95% CI 
0.041–0.878, p = 0.033). There were no significant find-
ings for the other three SNPs.

We then conducted a genotype–phenotype correlation 
analysis, which showed that subjects with the rs3790435 
CC genotype had a significantly lower AHI (median: 17.75 
vs. 21.25 events/h, p = 0.046) and higher nadir oxygen sat-
uration (median: 87% vs. 86%, p = 0.018) compared with 
subjects with the TT/CC genotype (Table 4). Plasma leptin 

Table 1  Baseline characteristics of participants

Values are expressed as mean ± standard deviation, median ± inter-
quartile range, or n (%). Differences between groups were analyzed 
by independent Student  t test, Fisher’s exact test,  χ2 test, or Wil-
coxon test
# Data were asymmetrically distributed. *p < 0.05, **p 0.001
OSA Obstructive sleep apnea,  BMI body mass index,  SBP systolic 
blood pressure,  DBP diastolic blood pressure,  FPG fasting plasma 
glucose,  TG triglycerides,  TC total cholesterol,  LDL-C low-density 
lipoprotein cholesterol,  HDL-C high-density lipoprotein cholesterol,  
AHI apnea–hypopnea index,  LSaO2 lowest oxygen saturation

Measure OSA Control p

Number of sub-
jects

226 96 -

Age (years) 55.3 ± 10.8 52.7 ± 13.8 0.067
Male (n, %) 194 (85.8%) 69 (71.1%) 0.002*
BMI (kg/m2) 27.3 ± 3.6 23.9 ± 3.6  < 0.001**
SBP (mmHg) 125.7 ± 18.9 123.5 ± 18.0 0.346
DBP (mmHg) 77.4 ± 13.1 74.5 ± 11.7 0.058
TC (mmol/L) 4.4 ± 1.1 4.4 ± 1.1 0.725
TG (mmol/L) 1.5 ± 1.1# 1.4 ± 0.6# 0.006*
HDL-C (mmol/L) 1.1 ± 0.3 1.1 ± 0.3 0.053
LDL-C (mmol/L) 2.6 ± 1.0 2.6 ± 0.8 0.836
FPG (mmol/L) 4.5 ± 2.0 4.8 ± 1.6 0.133
AHI (times/h) 24.9 ± 21.0# 2.7 ± 2.0#  < 0.001**
LSaO2 (%) 85.0 ± 7.0# 89.5 ± 4.0#  < 0.001**
Drinker (n, %) 96 (42.5%) 37 (38.1%) 0.468
Smoker (n, %) 107 (47.3%) 32 (33.0%) 0.017*
Leptin (pg/mL) 6176.2 ± 6878.7# 5978.9 ± 9587.0# 0.564

https://www.R-project.org
http://www.empowerstats.com
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Table 2  Multivariate logistic regression analyses of four SNPs in LEPR gene with the risk of OSA

Model 1: adjusted for age, sex, BMI, Smoker, and Drinker
Model 2: adjusted for Model 1 + TG, TC, LDL-C, HDL-C, and FBG
* p < 0.05

SNP Genotypes Unadjusted Model 1 Model 2

OR (95% CI) p Value OR (95% CI) p Value OR (95% CI) p Value

rs3790435
Additive

TT(n  = 20) 1 1 1

TC (n  = 94) 1.316 (0.425–4.075) 0.634 1.068 (0.310–3.677) 0.917 1.434 (0.409–5.020) 0.573
CC (n  = 208) 0.630 (0.220–1.802) 0.389 0.528 (0.168–1.661) 0.275 0.588 (0.186–1.861) 0.366

Dominant TT (n  = 20) 1 1 1
TC + CC( n  = 302) 0.773 (0.273–2.190) 0.628 0.638 (0.205–1.991) 0.439 0.747 (0.239–2.337) 0.616

Recessive TT + TC (n  = 114) 1 1 1
CC (n  = 208) 0.524 (0.311–0.885) 0.016* 0.521 (0.289–0.938) 0.030* 0.462 (0.250–0.854) 0.014*

rs3790431
Additive

AA (n  = 291) 1 1 1

AG (n  = 29) 1.119 (0.477–2.625) 0.795 1.045 (0.391–2.794) 0.931 1.003 (0.370–2.715) 0.996
GG (n  = 2) 0.426 (0.026–6.896) 0.548 0.719 (0.028–18.802) 0.843 0.639 (0.024–16.959) 0.789

Dominant AA (n  = 291) 1 1 1
AG + GG (n  = 31) 1.042 (0.461–2.355) 0.920 1.017 (0.393–2.632) 0.972 0.970 (0.371–2.535) 0.950

Recessive AA + AG (n  = 320) 1 1 1
GG (n  = 2) 0.422 (0.026–6.821) 0.544 0.714 (0.027–18.610) 0.840 0.639 (0.024–16.902) 0.788

rs13306519
Additive

CC (n  = 215) 1 1 1

CG (n  = 96) 1.193 (0.698–2.037) 0.519 1.312 (0.719–2.393) 0.377 1.236 (0.670–2.279) 0.497
GG (n  = 11) 0.775 (0.219–2.739) 0.692 1.661 (0.383–7.211) 0.498 1.641 (0.349–7.718) 0.530

Dominant CC (n  = 215) 1 1 1
CG + GG (n  = 107) 1.137 (0.681–1.897) 0.623 1.346 (0.754–2.402) 0.315 1.272 (0.704–2.298) 0.425

Recessive CC + CG (n  = 311) 1 1 1
GG (n  = 11) 0.735 (0.210–2.572) 0.630 1.522 (0.356–6.497) 0.571 1.531 (0.330–7.099) 0.586

rs3206172
Additive

CC (n  = 264) 1 1 1

CG (n  = 56) 0.962 (0.513–1.803) 0.904 0.967 (0.481–1.945) 0.925 1.038 (0.507–2.124) 0.919
GG (n  = 2) 0.419 (0.026–6.789) 0.541 0.709 (0.027–18.550) 0.836 0.643 (0.024–17.049) 0.792

Dominant CC (v264) 1 1 1
CG + GG (n  = 58) 0.932 (0.503–1.725) 0.822 0.957 (0.481–1.905) 0.900 1.019 (0.504–2.060) 0.958

Recessive CC + CG (n  = 320) 1 1 1
GG (n  = 2) 0.422 (0.026–6.821) 0.544 0.714 (0.027–18.610) 0.840 0.639 (0.024–16.902) 0.788

Table 3  Multivariate 
association analysis of 
rs3790435 in LEPR gene with 
the risk of OSA stratified by 
BMI

* p < 0.05 adjusted for age, sex, TG, TC, LDL-C, HDL-C, FBG, smoker, and drinker

Model Genotypes No Non-obese Obese

OR (95% CI) p No OR (95% CI) p

Additive TT 14 1 6 1
TC 54 1.223 (0.307–4.875) 0.775 40 1.551 (0.069–35.071) 0.783
CC 137 0.691 (0.193–2.476) 0.571 71 0.274 (0.015–5.166) 0.388

Dominant TT 14 1 6 1
TC + CC 191 0.796 (0.224–2.821) 0.723 111 0.542 (0.040–7.413) 0.646

Recessive TT + TC 68 1 46 1
CC 137 0.621 (0.323–1.195) 0.154 71 0.191 (0.041–0.878) 0.033*
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levels were also measured in OSA patients (Table 5), but 
no associations between leptin levels and rs3790435 were 
found in OSA using three genetic models.

Discussion

OSA is heritable, and there is evidence of genetic con-
tributions to OSA susceptibility [32]. Around 40% of the 
variance in AHI is attributable to genetic factors [33]. 
In this study, we detected a novel genetic variant of the 
LEPR gene that is significantly associated with OSA. The 
variant genotype CC in LEPR rs3790435 was associated 
with a lower OSA risk in recessive modeling, especially 
among obese subjects. Carriers with this variant geno-
type had lower AHI and higher nadir oxygen saturation 
measurements.

Leptin is a protein hormone secreted by adipose tissue 
that participates in energy metabolism and food intake. 
In recent years, a growing body of research has suggested 
that leptin may be a biomarker for OSA [34, 35]. The 
relationship between leptin and OSA may be assessed by 
examining pertinent risk factors and pathological pro-
cesses. Leptin is associated with obesity, which is a risk 
factor for OSA. It also acts as a potent respiratory stimu-
lant, binding the leptin receptor in the carotid bodies to 
stimulate breathing and the hypoxic ventilatory response; 
it may therefore protect against sleep-disordered breath-
ing in obesity [36]. Leptin-deficient mice have marked 
decreases in active pharyngeal neuromuscular responses 
and a higher frequency of inspiratory flow limitation than 
wild-type mice, independent of body weight [15, 17]. In 
mouse studies, leptin-deficient or leptin receptor knockout 
mice had significantly disrupted sleep architecture with 
an elevated number of arousals from sleep and increased 
stage shifts compared with wild-type mice [11, 13]. Our 
study found that rs3790435 CC variants were associated 
with a lower risk of OSA in obese subjects, suggesting that 
LEPR might influence the occurrence of OSA with obesity.

Previous genome-wide linkage and association stud-
ies have revealed multiple common genes and loci that 
are linked to OSA, including the leptin receptor. There 
are several common variants of the LEPR genes, and the 
potential associations of these variants with OSA have 
been evaluated in different populations with inconsistent 
results. The polymorphism Gln223Arg in LEPR was found 
to have a significant correlation with OSA. Patients who 
were carriers of the Arg allele were found to develop OSA 
more often than carriers of the Gln allele [22, 37]. The 
LEPR K656N gene polymorphism was found to be asso-
ciated with AHI; subjects with an NN variant genotype 
had lower AHI measurements than wild-type subjects [38]. 
Our study also found significantly lower AHI measure-
ments in individuals with the LEPR rs3790435 CC geno-
type compared with those with a TT/CC genotype.

Table 4  Differences in clinical 
indicators among LEPR SNP 
genotypes in subjects

Data expressed are Median ± IQR. Mann–Whitney U test was used for two groups’ analysis and Kruskal 
Wallis H test was used for three groups
IQR interquartile range, AHI apnea–hypopnea index, LSaO2 lowest oxygen saturation

SNP Model Genotype AHI LSaO2 (%)

Median ± IQR p Median ± IQR p

rs3790435 Additive TT (n  = 20) 17.40 ± 18.0 0.052 87.50 ± 8.0 0.039*
TC (n  = 94) 23.15 ± 30.0 86.00 ± 9.0
CC (n  = 208) 17.75 ± 30.0 87.00 ± 9.0

Dominant TT (n  = 20) 17.40 ± 18.0 0.545 87.50 ± 8.0 0.945
TC + CC (n  = 302) 19.50 ± 31.0 87.00 ± 8.0

Recessive TT + TC (n  = 114) 21.25 ± 28.0 0.046* 86.00 ± 8.0 0.018*
CC (n  = 208) 17.75 ± 30.0 87.00 ± 9.0

Table 5  Association of LEPR gene polymorphism with serum leptin 
level in the OSA patients

Data expressed are Median ± IQR. Mann–Whitney U test was used 
for two groups’ analysis and Kruskal Wallis H test was used for three 
groups
IQR interquartile range

SNP Model Genotype Leptin (pg/mL)

Median ± IQR p

rs3790435 Additive TT (n  = 15) 5393.25 ± 7685.50 0.691
TC (n  = 75) 7148.68 ± 5812.70
CC (n  = 136) 6089.85 ± 7468.40

Dominant TT (n  = 15) 5393.25 ± 7685.50 0.472
TC + CC 

(n  = 211)
6192.32 ± 6890.82

Recessive TT + TC 
(n  = 90)

6551.12 ± 5852.67 0.828

CC (n  = 136) 6089.85 ± 7468.40
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However, there were no associations between three com-
mon SNPs (the Lys109Arg, Gln223Arg, and Lys656Asn 
polymorphisms) and OSA in another study [23]. Consist-
ent with two recent systematic reviews and a meta-analysis 
[25, 39] on leptin and LEPR gene polymorphisms in OSA, 
no polymorphisms (Gln233Arg, Lys656Asn, Lys109Arg, 
19A/G, Pro1019Arg, or 2548G/A) were found to be asso-
ciated with OSA risk. These results should be interpreted 
with caution, however, as the number of studies included 
and sample sizes were relatively small, restricting the 
power of the meta-analysis. Furthermore, these studies 
focused mainly on specific predefined SNPs.

To the best of our knowledge, this is the first report of 
LEPR rs3790435 variants associated with OSA in a Chinese 
Han population. Previous studies have examined associa-
tions between preselected SNPs and OSA risk; in contrast, 
we used targeted sequencing to discover genetic susceptibil-
ity loci without prior knowledge of functionality or posi-
tion within the genome. Care was taken to avoid bias in 
this study. Male sex, age, and obesity are major risk factors 
for OSA [40, 41]. Smoking is also commonly linked with 
OSA [40]. We adjusted for age, sex, BMI, and smoking to 
avoid confounding effects. Leptin acts as an adipokine that 
regulates lipid metabolism. To avoid confounding effects, 
we also adjusted for TG, TC, LDL-C, and HDL-C. Also, 
genomic DNA was extracted and targeted sequencing was 
carried out by a trained experimenter who was unaware of 
the patients’ clinical data. During statistical analysis, adjust-
ments were made for the confounding risk factors for OSA 
and LEPR. Finally, subjects in this study were consecutively 
recruited to reduce the effects of outcome-selection bias.

Some limitations of this study should be considered. First, 
the sample size is relatively small, and therefore, the statis-
tical power may not be high enough to definitively explore 
associations. Second, this was a cross-sectional study with 
limited power; prospective cohort studies are needed to con-
firm the variants in our study. Finally, the role of the LEPR 
polymorphism in OSA pathogenesis remains unclear, and 
requires further functional studies.

In conclusion, we identified a novel variant of LEPR in 
patients with OSA, and predicted that this variant is associ-
ated with OSA risk. In this study, people with the LEPR 
rs3790435 CC genotype have a decreased risk of develop-
ing OSA, a lower AHI, and a higher nadir oxygen saturation 
compared with those with the TT/CC genotype after adjust-
ing for confounding variables. Still, these findings warrant 
further investigation and validation with larger patient popu-
lations, leading to a better, more comprehensive understand-
ing of the association between LEPR polymorphisms and 
OSA risk.
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