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Factors Involved in Drought
Resistance
Chirag Gupta†, Venkategowda Ramegowda†‡, Supratim Basu‡ and Andy Pereira*

Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States

Gene regulatory networks underpin stress response pathways in plants. However,
parsing these networks to prioritize key genes underlying a particular trait is challenging.
Here, we have built the Gene Regulation and Association Network (GRAiN) of rice
(Oryza sativa). GRAiN is an interactive query-based web-platform that allows users to
study functional relationships between transcription factors (TFs) and genetic modules
underlying abiotic-stress responses. We built GRAiN by applying a combination of
different network inference algorithms to publicly available gene expression data.
We propose a supervised machine learning framework that complements GRAiN in
prioritizing genes that regulate stress signal transduction and modulate gene expression
under drought conditions. Our framework converts intricate network connectivity
patterns of 2160 TFs into a single drought score. We observed that TFs with the
highest drought scores define the functional, structural, and evolutionary characteristics
of drought resistance in rice. Our approach accurately predicted the function of
OsbHLH148 TF, which we validated using in vitro protein-DNA binding assays and
mRNA sequencing loss-of-function mutants grown under control and drought stress
conditions. Our network and the complementary machine learning strategy lends itself
to predicting key regulatory genes underlying other agricultural traits and will assist in
the genetic engineering of desirable rice varieties.

Keywords: rice, oryza, drought, transcription factor, gene regulatory network, machine learning, abiotic stress,
R shiny

INTRODUCTION

The occurrence of environmental stressors, such as extreme drought, heat, cold, and salinity,
negatively regulates the growth and development of crop plants, causing a substantial loss in yield
and quality (Boyer, 1982; Bray, 1997; Yamaguchi-Shinozaki and Shinozaki, 2006; Palanog et al.,
2014). Plants and specific genotypes within a plant species that can withstand sub-optimal growth
conditions would be identified as ‘stress-tolerant’ and offer examples to study the mechanisms
involved in their survival and productivity in terms of yield. While conventional breeding has been
the preferred method of improving stress tolerance in rice and other crops, modern genomics,
and genetic engineering strategies have become an integral part of trait enhancement programs
(Umezawa et al., 2006; Ashraf, 2010; Gaj et al., 2013). However, a prerequisite for the effective
use of genetic engineering tools in trait improvement is the prior knowledge about candidate
genes that are likely to produce a desirable phenotype when genetically intervened. Although
transcriptome analysis of rice under water-limited conditions, for example, has identified thousands
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of differentially expressed genes, it is difficult to narrow down
the selection of candidate genes for testing function and genetic
modification of drought resistance (DR). This lack of candidate
genes will be a significant bottleneck in the future, as it impedes
our ability to upscale targeted genetic screens in order to select
leads for further crop improvement (Gutterson and Zhang, 2004;
Century et al., 2008; Jansing et al., 2019; Baxter, 2020). Therefore,
new data-driven approaches capable of discovering critical genes
regulating complex traits like DR are needed.

Gene regulatory networks (GRN) play a central role in
mediating plant responses to environmental changes (Chen and
Zhu, 2004; Clauw et al., 2016; Lovell et al., 2018). Transcription
Factors (TFs) are vital nodes (genes) in these networks as
they regulate the expression of several downstream genes
involved in many stress-responsive pathways and biological
processes. TFs act as ‘switches’ in genetic networks and can
be exploited to engineer stress-resistant crop varieties (Tran
et al., 2010; Rabara et al., 2014; Krannich et al., 2015;
Wang et al., 2016; Hoang et al., 2017). Such gene activity
can be monitored dynamically under varying experimental
conditions using genome-scale technologies such as microarrays
and RNA-sequencing. Integration of such transcriptome-level
datasets for inference of GRNs remains a feasible approach
(Razaghi-Moghadam and Nikoloski, 2020). Transcriptome-
based network inference techniques have also shown great
promise in accelerating in silico gene discovery for in planta gene
validation in plants (Li et al., 2015; Gupta and Pereira, 2019;
Haque et al., 2019).

There are several caveats to GRN inference using expression
data, which mainly stem from co-expression used as a proxy
for co-regulation. A physical interaction (e.g., TF-promoter
and TF-TF protein complex) cannot be guaranteed with an
observed TF-gene pair that co-express. Incorporating TF-DNA
binding data (e.g., ChIP-seq datasets, predictably conserved TF-
DNA binding motif relationships) into the network inference
workflow can overcome some of these limitations. However,
careful methodological considerations can also circumvent some
of these limitations. An increasing corpus of network inference
algorithms aims to eliminate likely indirect interactions between
TFs and other genes, i.e., correlations arising from transcriptional
regulation cascades. These algorithms provide an advantage of
inferring GRNs using expression data to cover those TFs for
which DNA-binding sites have not been found or confirmed
as yet, which remains the case for rice (Wilkins et al., 2016),
and mostly all crops. We believe that removing TFs with no
DNA-binding data from network inference essentially leads to
the loss of regulatory signals that can be measured by analyzing
expression patterns.

The outcomes of network inference considerably differ
between different algorithms because they adopt different
statistical assumptions and filtering schemes to detect regulatory
interactions in expression patterns. Therefore, different network
inference strategies have their strengths and weaknesses, making
it difficult to narrow down on a single best approach (Stolovitzky
et al., 2009; Marbach et al., 2010). Previously, large-scale
evaluations showed that the advantages of combining predictions
from different algorithms complement each other, and their

limitations tend to cancel out (Michoel et al., 2009; De Smet and
Marchal, 2010; Marbach et al., 2012; Hase et al., 2013). Rather
than relying on only one approach, an ensemble-centric approach
of combining predictions from multiple algorithms appears to be
an excellent strategy to infer GRNs even in plants (Vermeirssen
et al., 2014; Taylor-Teeples et al., 2015; Redekar et al., 2017; Foo
et al., 2018).

Post the inference of a GRN, mining relevant signals that may
lead to actionable hypotheses is not straightforward. For example,
a typical network analysis workflow aims to find modules
(communities of densely connected genes) in the network and
assign a biological meaning to these modules using statistical
enrichment of gene ontologies and pathway annotations.
Biological interpretation using enrichment analysis typically
require modules with a considerable number of genes for
reliable overlap statistics with the already sparse and incomplete
functional annotations. Therefore, modules containing many
genes are readily interpreted in functional contexts, while smaller
modules typically remain less interpretable.

Large modules of densely connected genes can be un-inviting
for experimental biologists who wish to apply network models
in the wet-lab. Biologists should have a protocol that converts
complex ‘hairballs’ of connected genes into a single score for each
gene, allowing non-subjective candidate prioritization before
validation. Gene prioritization before experimental testing is vital
for reducing associated costs, especially when one intends to work
on more than one node in a sub-network (or module) of interest.
The popular concept of ‘hub’ genes (genes with a relatively large
number of connections in the network) is contextual (Langfelder
et al., 2013; Walley et al., 2016; Vandereyken et al., 2018), as
hubs in a protein coexpression network can be very different
from hubs in a protein coexpression network (Walley et al.,
2016). In terms of regulatory networks, studies in yeast have
shown that hierarchy, rather than connectivity, better reflects
regulators’ importance (Bhardwaj et al., 2010). Therefore, new
computational approaches beyond the estimation of ‘hubbiness’
or other network parameters for gene prioritization are required.

Gene prioritization is an essential technique for selecting lead
candidates before experimental testing. One might assume that
a simple test of differential expression can be used for gene
prioritization based on the magnitude of fold change under
certain experimental conditions. However, we argue that this
method is not the most logical approach for gene prioritization,
especially for TFs. Given their regulatory nature, subtle changes
in the expression of TFs could have profound effects on the
expression of downstream genes. Therefore, technically speaking,
such TFs might not naturally qualify to find a position toward the
top of the sorted list of genes based on fold changes.

Recently, supervised machine learning has been useful in
generating predictive models for various research aspects in plant
and crop biology (Ma et al., 2014; Sperschneider, 2019, 2020).
Supervised machine learning algorithms leverage experimentally
validated gold-standard example genes from the literature
to make new predictions on genes with similar attributes.
For example, thousands of genomic and evolutionary features
that characterize known essential genes were used to train
models predictive of other untested lethal-phenotype genes
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(Lloyd et al., 2015). Similarly, several distinguishing features of
genes currently annotated in secondary or primary metabolism
pathways were used to train models capable of predicting new
specialized metabolism genes (Moore et al., 2019). Putative cis-
regulatory elements (CREs) involved in general abiotic and biotic
stress responses (Zou et al., 2011), and CREs involved in the
regulation of root cell type responses to high salinity stress
(Uygun et al., 2019) have also been identified by the application
of supervised machine learning models.

We are particularly interested in studies that used a genome-
scale network, instead of heterogeneous genomic features, as
input to the learning algorithm. Such frameworks aim to
capture the network connectivity patterns that characterize
a set of gold standard (or marker) genes. Network-based
machine learning has been used to make reliable predictions
on disease-gene associations in humans (Guan et al., 2010,
2012; Krishnan et al., 2016; Liu et al., 2019). Such predictive
systems have immense potential in the development of decision
systems in clinical diagnostics. However, whether this network-
based supervised machine learning approach can be applied to
predicting regulatory genes associated with specific agricultural
biology traits remains to be tested.

In this study, we developed the Gene Regulation and
Association Network (GRAiN) of rice. We built GRAiN using
a collection of publicly available gene expression datasets and
an ensemble of five different network prediction algorithms
(Figure 1A). GRAiN links 2160 rice TFs to 740 modules of co-
regulated genes that manifest under abiotic-stress conditions. We
utilized GRAiN to develop a model predictive of TFs involved
in the regulation of DR. We used a training set of TFs that
are already known regulators of DR as input to a learning
algorithm (support vector machine). The learning algorithm
used this training data to learn general network patterns that
characterize DR. We then used the trained model to identify
other TFs that resemble TFs in the training set. Our strategy
scored 2160 rice TFs according to their potential association
with DR (Figure 1B). Leveraging these scores, we described the
functional, evolutionary, and structural characteristics of drought
regulation (Figure 1C). We also developed a web application to
browse GRAiN1 easily. Furthermore, we experimentally validated
GRAiN’s predictions on the OsbHLH148 TF using in vitro
protein-DNA binding assays and mRNA sequencing loss-of-
function mutants grown under control and drought stress
conditions. Our study will provide a valuable resource for
generating new testable hypotheses on the genetic basis of stress
tolerance in rice.

RESULTS AND DISCUSSION

We obtained 35 independently published publicly available
gene expression datasets. These datasets comprise samples
from 50 different genotypes and cultivars, three developmental
stages of rice growth, five different tissues, and nine different
environmental stress conditions. We normalized and integrated

1http://rrn.uark.edu/shiny/apps/GRAiN/

the datasets to create a single gene expression matrix representing
35,151 rice genes’ intrinsic expression in 265 individual samples.
Our objective was to utilize the correlated and mutually
informative expression patterns in this matrix to predict potential
regulatory interactions between TFs and target genes.

The Outcome of Network Inference
Varies Between Different Algorithms
Rather than using a single algorithm for the inference of the
rice GRN, we created an ensemble of five diverse methods that
use different edge-scoring and filtering strategies. We included
Context Likelihood of Relatedness (CLR) and Algorithm for
Reconstruction of Accurate Cellular Networks (ARACNe) in the
first category of algorithms that use mutual information (MI) to
estimate similarity in expression patterns. We included Pearson’s
Correlation Coefficient (PCC) and Spearman’s Correlation
Coefficient (SCC) as the second category’s two correlation-based
methods. In the third category, we used GEne Network Inference
by an Ensemble of trees (GENIE3) algorithm as the regression-
based method that infers edges with directionality. We then
supplied each of these five algorithms with the gene expression
matrix to predict regulatory interactions (edges) between TFs and
target genes (see section “Materials and Methods”).

We retained only the top 500,000 high confidence edges from
each algorithm’s outcome to reduce the computational burden
in the network analysis workflow (Supplementary Data 1).
These 500,000 edges represented less than 1% of all theoretically
possible edges between TFs and their target genes in the input
gene expression matrix (see section “Materials and Methods”).
We asked if these high confidence edges predicted by the five
algorithms are similar. We observed a minimal overlap (less
than 1%) between all five algorithms’ outcomes (Figure 2).
The most considerable fraction of unique edges came from the
CLR algorithm, followed by GENIE3 and PCC. We observed
a relatively more extensive overlap between the algorithms in
different categories than algorithms in the same category. For
example, the overlap between SCC and ARACNe eclipses the
overlap between SCC and PCC. This is probably because SCC
and ARACNe, unlike PCC, are not constrained to detecting only
linear correlations between TF and target genes. Similarly, we
observed a relatively more generous overlap between GENIE3
and CLR than between CLR and ARACNe. This could be because,
for filtering edges, both CLR and GENIE3 account for each gene’s
local distribution of background values separately. On the other
hand, ARACNe examines triplets of connected genes and relies
on a global threshold to eliminate the edge with the lowest score
in each triplet as an indirect relationship.

Overall, our analysis suggests that the outputs of different
network inference algorithms vary greatly and depend mainly on
the filtering schemes used to eliminate low confidence edges.

The Performance of Network Inference
Can Be Improved by Combining
Networks Inferred by Multiple Algorithms
To test the performance of each algorithm in predicting
known targets of TFs, we obtained experimentally identified
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FIGURE 1 | Workflow of the network-based machine learning framework developed in this study. (A) A gene regulatory network (GRN) depicting regulatory
relationships between transcription factors (TFs) and potential target genes was inferred from large-scale expression data (microarrays) of rice. An ensemble of
network prediction algorithms was applied to the data and the networks inferred by different algorithms were statistically combined using the average rank
aggregation method, resulting in a single consensus gene regulatory network. This network then was clustered using a network clustering algorithm to identify
modules of coregulated, and, therefore, functionally associated genes. This modular core of the network was then reconciled with the GRN core, resulting in
weighted assignments of TFs as the potential regulators of the modules. The network was named Gene Regulation and Association Network (GRAiN). mcl, Markov
clustering algorithm. (B) Several rice knowledgebases and the literature were mined to obtain a list of TFs that are experimentally validated and reported as
regulators of drought response phenotypes in rice. We found 165 such TFs reported to date. We regarded these TFs as the ‘gold standard’ examples of drought
resistance (DR). All DR TFs were labeled as the ‘drought positive’ class. The group of TFs that did not differentially express in our reanalysis of several published
drought experiments were labeled as the drought negative class. These benchmark drought TFs (positive and negative class), along with their network connectivity
patterns in GRAiN, were used as input to train a binary classification algorithm, the support vector machine (SVM). The SVM learnt unique network patterns that can
discriminate between the two classes of benchmark TFs. These patterns were fivefold cross-validated and subsequently used to predict the class label (positive or
negative) of the remaining unlabeled TFs (ones that are neither in the positive nor the negative class). The final model’s output was used to represent each TF in
GRAiN (2160 total) along a continuous spectrum (called drought scores), representing its potential association with drought resistance. (C) The functional,
evolutionary, and genomic features unique to most TFs at the top end of the drought score spectrum were identified and described. GRAiN and predictions on
regulators of DR can be freely accessed online at http://rrn.uark.edu/shiny/apps/GRAiN/.

targets of 9 TFs in published ChIP-seq experiments (Lu
et al., 2013; Tsuda et al., 2014; Zong et al., 2016; Chung
et al., 2018; Li et al., 2019). Using these 9 TFs as the
benchmark, we asked what fraction of their ChIP targets
each algorithm could correctly predict. We observed that
GENIE3 recovered ChIP targets of 8 out of the 9 TFs in the
benchmark, CLR recovered targets of 6 TFs, while ARACNe,
PCC, and SCC recovered targets of only 1 TF each (Figure 3A
and Supplementary Table 1). To quantify each algorithm’s
overall performance as a single measure, we calculated the
F1 score as the harmonic mean of precision (the fraction
of predicted targets that are also ChIP targets) and recall

(the fraction of ChIP targets amongst all predicted targets).
We observed that the CLR algorithm consistently achieved the
highest F1 score in more cases than the next best performer,
GENIE3 (Figure 3A).

Note that the TFs used in the ChIP-seq benchmark represents
only a fraction (less than 1%) of all TFs for which targets
were predicted. Therefore, we could not regard the ChIP-seq
dataset as a comprehensive benchmark for evaluating different
network inference methods we used in our study. We built
additional ad hoc ‘reference networks’ to gauge the algorithms’
performance. We sought to create reference networks that reflect
putative targets of TFs that can be predicted independently of
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FIGURE 2 | Low overlaps between edges inferred by different network
prediction algorithms. An Upset plot showing overlaps between the two
mutual-information based algorithms (ARACNe and CLR), two
correlation-based algorithms (PCC and SCC), and one decision-tree based
algorithm (GENIE3) used for prediction the rice gene regulatory network.
ARACNe, Algorithm for Reconstruction of Accurate Cellular Networks; CLR,
Context Likelihood of Relatedness; PCC, Pearson’s Correlation Coefficient;
SCC, Spearman’s Correlation Coefficient; and GENIE3, Gene Network
Inference by an Ensemble of trees. The filled dots in the canter matrix indicate
association between the respective sets and the bars on the top show size of
the intersection. Green, orange, black, and blue bars indicate intersection size
between five, four, three, and two algorithms. Red bars indicate unique edges
identified by the corresponding algorithm.

their expression profiles, since we built the network using only
expression data.

For the first reference network, we obtained experimentally
verified protein interaction partners from the protein interaction
network of rice (PRIN) database (Gu et al., 2011). For the second
reference network, we used promoters of genes with known
DNA-binding sites of TFs by analyzing the CIS-BP database
(Weirauch et al., 2014). We created the third reference network
by linking TFs and non-TFs if they are co-annotated in carefully
selected, non-redundant Gene Ontology (GO) Biological Process
(BP) terms. For the GO BP reference network, we assumed the
TF and non-TF genes co-annotated to the same BP terms are
more likely to have a biological relationship, relative to genes
annotated to distant or unrelated GO BP categories. Although
the second and the third reference networks do not guarantee
real biological relationships between TFs and target genes, they
provided us with a valuable resource to include more TFs in the
evaluation and gauge the agreement between different data types
in predicting targets of TFs.

We asked what fraction of edges present in the three
independent reference networks could be predicted by each
algorithm in our ensemble. We observed that the CLR algorithm

consistently attained the best recall rate in all three reference
networks and outperformed other methods in reconstructing the
CIS-BP and GO BP reference networks in terms of the F1 score
(Supplementary Table 1). The ARACNe algorithm performed
with the best precision in the CIS-BP reference network and
outperformed others in reconstructing the protein interaction
network in terms of the F1 score. SCC’s precision in predicting
CIS-BP edges was lower than that of ARACNe but better than the
other three methods. We observed that PCC outperformed SCC
in CIS-BP and GO BP reference networks (Figure 3B).

Based on these evaluations, we could not establish any
single algorithm as the best performer in reconstructing the
three reference networks or correctly predicting ChIP targets.
Therefore, we asked whether combining the networks inferred by
different algorithms into a single network improves the overall
performance. Rather than taking a union or an intersection,
we chose the ‘average rank aggregation’ approach to combine
different networks (Marbach et al., 2012). The underlying
idea behind the average rank aggregation approach is that a
biologically meaningful edge tends to occur consistently at high
ranks (or confidence scores) across different networks predicted
using different approaches. Hence, averaging the ranks of
individual edges essentially reinforces likely real edges in the final
aggregate network. This approach has been previously shown to
efficiently integrate different edge-weighted GRNs into a single
consensus network, even in plants (Vermeirssen et al., 2014).

Following the average rank aggregation method, we combined
the networks inferred by all five algorithms in our ensemble
into a single GRN (see section “Materials and Methods”). Then,
we asked whether this aggregation improved the accuracy by
re-evaluating the ChIP-seq benchmark and the three reference
networks described above. We observed that the aggregate
network could not outperform CLR and GENIE3 in most cases
in the Chip-seq set but consistently outperformed ARACNe,
SCC, and PCC (Figure 3A). Interestingly, removing the two
correlation-based methods from the aggregate almost always
improved the performance, compared to the aggregate that
included the correlation-based methods (Figures 3A,B). The
aggregate-sans-correlation network achieved, on average, 49
and 20% increase in F1 score when tested on the ChIP-
seq benchmark and the three reference networks, respectively,
relative to the aggregate that included PCC and SCC. Therefore,
the aggregate of CLR, ARACNe, and GENIE3 was chosen as the
final ‘consensus’ GRN of rice and used in further analysis.

Clustering the GRN Identifies Modules of
Functionally Related and Co-regulated
Genes
Our next objective was to find clusters of co-regulated genes, i.e.,
groups of genes regulated by the same set of TFs. Assuming a
guilt-by-association, we expected network clustering to identify
modules of co-regulated, and therefore functionally related
genes. Such modules thereby provide pointers on pathways and
biological processes that could be under the regulatory control
of specific TFs (Hartwell et al., 1999; Segal et al., 2003; Ma et al.,
2004; Joshi et al., 2009). To achieve such a network clustering,
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FIGURE 3 | Evaluation of the five network prediction algorithms and their aggregate. (A) A ChIP-seq benchmark for 9 TFs was created from publicly available
datasets. For each of these 9 TFs, we checked the overlap between experimentally validated targets (ChIP-bound genes) and network-predicted targets (genes
predicted by each of the five algorithms in our ensemble). This evaluation was also made for the consensus network obtained by statistically aggregating the
predictions from the five algorithms. Each bar plot shows F1 scores (y axis; a measure of performance, the higher the better) of each algorithm (x axis) in correctly
predicting ChIP-targets of TFs. (B) Due to the unavailability of experimentally validated targets of a large number of TFs in our network, we created additional
‘reference networks’ to gauge the quality of the inferred networks. PPI, reference network derived from the predicted protein–protein interaction network of rice
(PRIN database); GO BP, reference network derived from co-annotations in select gene ontology biological process terms; and CIS BP, reference network obtained
by utilizing the available putative DNA-binding sites of TFs in the CIS BP database (see “Materials and Methods” for details). The bar plots of F1 scores shows the
performance of each algorithm in reconstructing the reference networks.
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we first linked target genes that had high overlaps between their
predicted regulators in the consensus GRN, as done previously
with the Arabidopsis stress GRN (Vermeirssen et al., 2014).
We then applied the Markov clustering algorithm to this co-
regulated gene network (van Dongen and Abreu-Goodger, 2012).
We identified a total of 740 modules, with an average of 45 genes
each (Supplementary Data 2).

To confirm the regulatory association of genes within
each module, we analyzed their 1000 bp upstream promoter
regions to check whether putative DNA-binding sites were
over-represented. We employed the FIRE (finding informative
regulatory elements) algorithm (Elemento et al., 2007). FIRE
uses a de novo approach to find short stretches of DNA-
sequence motifs that explain promoters’ module-membership
(Elemento et al., 2007). Application of the FIRE algorithm
on our network data detected 84 DNA-binding motifs within
the co-regulated modules. We observed that more than 50%
of all coregulated modules harbor between five and ten
motifs each (Supplementary Figure 1A), indicating a high
level of coordination between TFs. We observed that eighty-
one of the FIRE-detected motifs are identical to known
plant CREs listed in multiple plant databases and other
sources, whereas three are novel DNA motifs (Supplementary
Figure 1B and Supplementary Data 3). Network analysis of
the genes with the three novel motifs suggests that two distinct
groups of TF families target them (Supplementary Figure 2).
Overall, the over-representation of common plant CREs in
the promoters of module genes testified that the observed
modules are non-random gene groupings and represent sets of
co-regulated genes.

To further test whether the observed gene modules also
represent a joint biological function, we used function
annotations from the rice GO BP category and pathway-
level annotations from Mapman, KEGG, and CYC databases.
We found statistically significant associations of these functional
annotations in 31% of all observed modules (hypergeometric
test FDR corrected p-values < 0.05). We also found that ∼41%
of all modules we detected in this study were preserved in
an independent coexpression network we built earlier with a
different dataset and the cluster detection algorithm (Krishnan
et al., 2017). Interestingly, 22% of these preserved modules
are the ones that could not be annotated by gleaning function
annotation databases, highlighting significant gaps still exist
in the current state of function annotations of rice genes
(Supplementary Data 4).

We linked TFs to the co-regulated modules, and set the
edge-weight according to the Jaccard’s Index (JI) of overlap
between the predicted targets of TFs in the consensus GRN
and module genes. The JI ranges between 0 and 1, where 0
indicates no regulatory association between the corresponding
TF-module pair and a JI of 1 indicates a certainly likely regulatory
association. Therefore, these operations generated a modular
GRN of rice, where TFs are directly linked to target genes and
indirectly but quantifiably associated with functional processes.
We refer to this network as GRAiN. GRAiN can be searched
through an online portal (demonstrated in the last section of
this manuscript).

Sorting Genes Based on the Magnitude
of Differential Expression Is Not a
Suitable Approach for Gene Prioritization
Past genetic research in rice has revealed several examples of
‘gold-standard’ drought genes identified by reverse-genetics. This
documented knowledge about the genetic basis of drought is
most comprehensive among other abiotic-stresses. It presents us
with a unique opportunity to test whether differential expression
measures can be used as a proxy for gene prioritization.
We scanned the functional rice gene database (Yao et al.,
2018), the rice mutant database (Zhang et al., 2006), and the
Oryzabase (Kurata and Yamazaki, 2006). We found 732 genes
with genetic evidence of association with drought listed in
these knowledgebases. This list of ‘drought associated’ genes
did not represent any particular physiological, morphological,
or biochemical phenotype typically measured in the analysis of
drought response. For the sake of convention, we use ‘DR’ as
a broad term to encapsulate various molecular mechanisms by
which plants adapt, escape, or otherwise tolerate water limiting
conditions (Levitt, 1980; Basu et al., 2016). There are currently
165 DR TFs in this list of known drought genes. We regarded
these 165 TFs as the gold-standard examples of DR, and refer
to them as DR TFs.

Next, we asked how the DR TFs respond to drought in
terms of differential expression. We re-analyzed data from seven
independently published drought experiments performed on
multiple varieties, growth stages, and tissues of rice plants (Wang
et al., 2011; Ding et al., 2013; Pabuayon et al., 2016; Mishra
et al., 2018). We estimated genome-wide fold change values
in each of these datasets, and ranked all TFs based on the
absolute values of these fold changes. We observed that, in
each experiment, the majority of the DR TFs showed minimal
changes (fold change values < 1) regardless of the tissue,
growth stage, or the variety of rice plant (Figures 4A,B).
This suggests that gene prioritization based on differential
expression values is constrained by experimental factors and
will downplay those that show subtle changes in expression
but have relevant biological effects. Therefore, we need a more
sophisticated technique for prioritizing TFs that likely regulate
drought responses in rice.

Network-Based Supervised Machine
Learning Enables Classification and
Scoring of Drought Resistance
Regulators
Our next objective was to develop a network-based gene
prioritization framework that can be objectively tested using
independent data. We utilized the two good pieces of information
at hand; a high-quality modular GRN (GRAiN) and a list
of literature curated gold-standard DR TFs. We posited that
advanced machine learning models could be trained to recognize
network patterns in GRAiN that characterize the gold standard
DR TFs. These patterns could then be matched with the
patterns of other yet untested TFs and estimate whether they
resemble the DR TFs.

Frontiers in Genetics | www.frontiersin.org 7 June 2021 | Volume 12 | Article 652189

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-652189 June 23, 2021 Time: 17:14 # 8

Gupta et al. Gene Regulation and Association Network

FIGURE 4 | Differential expression patterns of gold standard drought regulators. (A) The range of absolute fold-change values (x-axis) of gold standard TFs (y-axis) in
three growth stages of Japonica rice variety exposed to drought (data from GSE81253). (B) The range of absolute fold-change values (x-axis) of gold standard TFs
(y-axis) in multiple tissues of indica rice variety exposed to drought (data from GSE26280).

We chose the support vector machine (SVM), a popular
binary classification algorithm (Cortes and Vapnik, 1995), to
develop the DR classifier. We supplied the SVM with a training
set of TFs and their connectivity patterns in GRAiN, along
with binary labels indicating whether each TF is a DR TF or

not (see section “Materials and Methods”). We evaluated the
SVM’s accuracy using fivefold cross-validation tests and the area
under the precision-recall curve (AUC-PR) statistics. The AUC-
PR ranges between 0 and 1, with values closer to 1 indicating
the model’s superior performance. Our DR classifier achieved
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an average AUC-PR of 0.81 in 10 independent runs of five-
fold cross-validation tests. We asked if this AUC-PR could be
achieved by randomly picking TFs from the rice genome instead
of using the DR TFs for training. We found the DR classifier’s
AUC-PR to be significantly larger than the AUC-PR of the
classifier trained using randomly picked TFs. Because family
membership could play an essential role in TF function, we
also tested the AUC-PR of the classifier trained by randomly
picking TFs while maintaining the family distribution as that
of the DR TFs. We observed that the AUC-PR of this classifier
was not different than the random classifier, indicating that
family memberships of TFs is not indicative of their roles under
drought (Figure 5A).

We applied the cross-validated SVM model to the whole
network of 2160 TFs. We used the model’s output – which
represented the model’s confidence in its classification of a TF as a
DR TF – to rank each TF. We then scaled the ranks within a range
of 0 and 1 to make the ranks more interpretable, and referred to
the resulting scores as drought scores (DS). The TFs with DS close
to 1 have the strongest predicted association with DR, while TFs
with relatively smaller DS values are less likely to be associated
with DR (Supplementary Data 5).

To evaluate this scoring scheme objectively, we asked if
the occurrence of drought can be inferred by the transcript
abundance of TFs with the largest DS. In other words, we wanted
to check if the intrinsic expression levels of TFs with high DS
can indicate if a plant has sensed drought or not. Operationally,
this technique is similar to the ones used in developing clinical
diagnostic models that seek to classify human patient samples as
disease or healthy based on the expression levels of marker genes.
To perform such an evaluation of our model, we downloaded
and reanalyzed the recently published RNA-seq dataset of 214
seedling samples (71 drought samples and 143 control samples)
from four different rice varieties (Wilkins et al., 2016). Assuming
the first decile TFs in our predictions as ‘drought markers’,
we asked whether the intrinsic expression levels (measured as
transcripts per million units) of these drought markers can
predict a sample in the Wilkins dataset as control or drought.

We observed that RNA-seq sample classification accuracy was
almost perfect when we used the intrinsic expression of top decile
TFs as features. However, this accuracy gradually decreased as we
moved toward lower decile TFs (Figure 5B). We observed that
the expression levels of TFs in the last decile was least accurate
in classifying a sample as drought or control (Figure 5B). This
analysis suggests that the top-scoring TFs are likely responsible
for causing the transcriptional-level changes that occur under
drought, and therefore validates our ranking approach.

Predicted Regulators of Drought
Resistance Are Involved in
Hormone-Mediated Responses
It is important to note that the DS we predicted and the out-
degree of TFs in the network are not correlated (Supplementary
Figure 3), indicating that the predicted DS do not merely
reflect on the ‘hubbiness’ of TFs. We investigated the few
modules (features) that served as the best predictors for the

FIGURE 5 | Cross-validation of the network-based classifier. (A) Boxplots
showing the distribution of the area under the precision-recall curve (AUC-PR;
y-axis) in ten independent runs of fivefold cross-validation tests of the classifier
trained using gold standard drought TFs (shaded gray), the classifier trained
using randomly picked TFs instead of gold standard TFs (shaded white), and
the classifier trained using randomly chosen TFs but from the same families
like that of the gold standard examples (shaded black). The non-overlapping
notches in the boxplots indicate significant differences in the median AUC-PR
for all three classifiers. (B) TFs were sorted according to their decreasing order
of drought scores assigned by the final classifier and grouped into 100
equal-sized bins. Expression levels (transcript per million units) of TFs in each
bin were then used as features to classify a set of labeled RNA-seq samples
as drought or control (data from GSE74793). Each boxplot shows the
distribution of AUC-ROC (x-axis) from threefold cross-validation tests in
groups of ten bins, with lower-numbered bins (y-axis) indicating TFs with
higher drought scores. The black dotted line connects the mean of each
decile’s AUC-ROC scores, indicating decreasing AUC-ROC with lower
drought scores.

classification of DR TFs in our model. We selected top ‘drought
modules’ using the ‘feature importance’ scores from the model
output (Supplementary Data 6). We extracted all TF and
CREs linked with these drought modules and explored the
interconnected network in Cytoscape (Shannon et al., 2003;
Supplementary Figure 4).

Exploring this network, we found that the drought modules
comprise a total of 6968 genes that form core communities
enriched in several stress response pathways and biological
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FIGURE 6 | Functional characterization of predicted drought resistance transcription factors. A subset of modules with the highest feature importance scores from
the drought classifier were extracted and labeled as ‘drought modules.’ The drought modules consist of a total of ∼6000 genes. The network shows the top 5%
edges induced between them. Every circle is a functional gene, and triangles are TFs. Genes within a module are similarly colored, and the GO BP enriched within
each module is labeled with the same color in the text. Modules with no statistically enriched GO BP terms are colored gray.

processes (Figure 6). Interestingly, we found that the drought
module are enriched with genes annotated to secondary
metabolism pathways broadly related to hormonal signal
transduction, such as phenylpropanoid biosynthesis and
jasmonic acid biosynthesis. These are traits specific to land plants
and is believed to have played an essential role in the adaption of
plants to water limiting environments (Kenrick and Crane, 1997;
Emiliani et al., 2009; Wang et al., 2015; Ahammed et al., 2016;
Verma et al., 2016), given its role in lignin biosynthesis (Fraser
and Chapple, 2011). Other relevant GO biological process terms
such as ‘response to water,’ ‘response to abscisic acid stimulus,’
‘cellulose biosynthesis,’ ‘flavonol biosynthesis,’ and ‘trehalose
biosynthesis’ were also recovered within the drought modules.

We found that the most prominent de novo predicted
CREs within the drought modules are related to the abscisic
acid response complex ABRE3HVA22 (Shen et al., 1996)
and the vascular-specific motif ACIIPVPAL2 (Hatton et al.,
1995), along with the light-responsive GT-1 motif (Lam and
Chua, 1990), the anaerobic-responsive motif GCBP2ZMGAPC4
(Geffers et al., 2000) and the dehydration responsive DREB1A
motif (Maruyama et al., 2004; Supplementary Data 3).

Predicted Drought Scores Are
Associated With Evolutionary Features
The enrichment of genes related to the abscisic acid and
salicylic acid pathways, along with jasmonate signaling pathways,
as well as some of the observed CREs (e.g., vascular-specific
ACIIPVPAL2) within the drought modules indicated a drought

response machinery in rice ubiquitous and specific to land
plants (Wang et al., 2015). Therefore, we pursued this lead and
examined if the orthologs of rice TFs with high DS in our study
have conserved responses to drought exposure.

We created three sets of Arabidopsis drought TFs with known
orthologs in rice. The first set was differentially expressed TFs in
response to mild and severe drought stress we reported previously
(Harb et al., 2010). The second set comprised experimentally
verified drought TFs in the Arabidopsis phenotype database
(Lloyd and Meinke, 2012). The third list of TFs was previously
predicted to be involved in mild drought responses (Clauw et al.,
2016). We asked if the rice orthologs of these three sets of
Arabidopsis TFs have higher DS than the background of all
remaining TFs that did not become a part of the three sets
(either due to biological variability or due to lack of ortholog
identity). In all three sets, we observed a significantly larger
mean DS of orthologous TFs compared to the background
(Figure 7A). Similarly, we observed that rice TFs with orthologs
that differentially expressed in response to the application of
drought stress in cobs and leaves of maize (Kakumanu et al.,
2012), leaves of barley (Cantalapiedra et al., 2017), and leaves of
sorghum, have significantly larger mean DS than the mean DS of
the background (Figure 7B).

We also asked if the predicted DS and evolutionary age of a
TF are related. We first ordered all rice genes in 13 age groups
(phylostrata) starting from the oldest (i.e., genes conserved across
all cellular life) to the youngest (i.e., genes that appeared in
the terminal clade Oryza) (Wang et al., 2018). Plotting the
distribution of DS of TFs within each phylostrata (PS) showed
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FIGURE 7 | Relationships between predicted drought scores and evolutionary
features. (A) Three sets of putative drought regulators in Arabidopsis were
curated from the literature, and their rice orthologs were identified. The three
sets represent rice TFs with orthologs in Arabidopsis genes that were
predicted as drought regulators (Clauw et al., 2016), that differentially
expressed upon different drought treatment regimes (Harb et al., 2010), have
been experimentally characterized as drought regulators (Lloyd and Meinke,
2012). The boxplots show the distribution of the predicted drought scores of
these ortholog sets (gray) along with the drought scores of the background of
remaining TFs (white; rice TFs that did not become part of the three ortholog
sets). In each case, the median predicted drought scores of orthologous rice
TFs was found to be significantly higher than the drought scores of the
background. (B) Similarly, boxplots showing the distribution of drought scores
of rice TFs with orthologs in genes that are differentially expressed in different
crop datasets. (C) Box plot showing the distribution of drought scores in
different age groups (ancient to young) according to NCBI taxonomic
classification. The distribution of drought scores stays relatively flat, except for
two peaks that correspond to the Embryophytes clade (PS5) and the Oryza
clade (PS12).

two prominent peaks. The first peak in PS5, which corresponds
with the Embryophytes (land plants) clade, and the second peak
in PS12, which coincides with the Oryza clade, both mirror
significant events in the evolutionary history of rice (Figure 7C).
We also examined the available pan-genome of rice (Sun et al.,
2017) to investigate the distribution of DS of TFs that arose in the
terminal clade (O. sativa, closely related rice varieties). However,
we did not find any significant differences in DS between core
and distributed TFs, or TFs that are Indica- or Japonica-dominant
(Supplementary Figure 5).

Overall, our analysis suggests that a large fraction of high-
scoring DR TFs possibly played a crucial role in driving critical
adaptations of land plants. A few high-scoring TFs that emerged
specifically in rice might be involved in recent morphological
adaptions that contribute to DR (e.g., panicle architecture,
pollen and seed development). Therefore, it would be interesting
to analyze the drought phenotypes of mutants lacking these
high-scoring TFs specific to rice.

Predicted Drought Scores and Structural
Characteristics Are Related
Recent studies in rice and other organisms suggest that
younger genes have relatively simple exon/intron and protein
structure (Neme and Tautz, 2013; Cui et al., 2015; Wang
et al., 2018). Other studies have shown that simple genes, for
example, those that lack introns, are rapidly regulated (Jeffares
et al., 2008; Speth et al., 2018). Such genes represent an
essential component of the possibly conserved stress response
machinery in land plants (Jeffares et al., 2008; Zhu et al., 2016;
Morozov and Solovyev, 2019).

Following this lead, we next investigated if the predicted DS
of TFs and their structural attributes are related since a large
fraction of high-scoring TFs our analysis also appear to have
first emerged in land plants. We started with examining the
family memberships of TFs. We found a statistically significant
enrichment of WRKY, Tify, NAC, MYB, and AP2/ERF families
among the top 10% TFs with the largest DS (Top decile; FDR
corrected hypergeometric test p values < 0.1) (Figure 8A). These
gene families are well-known to associate with drought stress
in multiple crops (Yu et al., 2012; Gahlaut et al., 2016; Hoang
et al., 2017). In contrast, we found that TFs with the smallest
DS (bottom decile) are enriched in growth and development
associated gene families such as the MADS, FAR1, and TRAF
(Smaczniak et al., 2012; Tedeschi et al., 2017; Ma and Li, 2018).
We observed the top decile TFs (top 10% TFs with highest DS)
have relatively fewer InterPro protein domain annotations than
the background of all TFs in the remaining deciles (remaining
90% TFs with relatively smaller DS) (Figure 8B). We also
observed that the top decile TFs have significantly smaller average
gene length, average CDS length, and average intron length
(Figure 8C) compared to the background of remaining deciles.
This indicates that TFs with high DS are small genes with
simple structures.

Overall, our analysis suggests that TFs that likely regulate
DR in rice have peculiar functional, structural, and evolutionary
characteristics. It is interesting to see such grouping in our data,
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FIGURE 8 | Structural features of transcription factors with the highest drought scores. (A) A heatmap showing the enrichment of gene families in the first and last
decile TFs (top 10% and bottom 10% drought scores). Each grid in the heatmap shows the FDR corrected -log (p-value, Fisher’s exact test) of the gene family on the
x-axis for the decile on the y axis. (B) Boxplots showing that top decile TFs contain a significantly different number of protein domains compared to the background
of TFs in the remaining deciles. (C) Boxplots showing that the top decile TFs have significantly smaller average gene length, coding sequence length (CDS), and
intron length compared with the background of remaining TFs.

given that the underlying network using which we made our
predictions started with unclassified gene expression data.

The GRAiN Web Application Is for
Experimental Rice Biologists; Using
OsbHLH148 as an Example
We used the R Shiny framework to develop a user-friendly
web application that allows users to interact with GRAiN and
predictions on DR TFs. There are currently two main features of
the GRAiN web application active at http://rrn.uark.edu/shiny/
apps/GRAiN/. It allows users to search for a single TF gene of
interest. In this case, the GRAiN algorithm first retrieves all the
genes predicted as targets of the query TF and then uses the
inbuilt enrichment analysis tool to find pathways and biological
processes over-represented in the predicted targets. The second
feature of the GRAiN application allows users to query a set
of genes instead of a single TF. In this case, the enrichment

analysis tool is used to find co-regulated modules (defined in
this study) over-represented in the query genes. Significantly
enriched modules are presented back to the user, along with
functional (GO BP and Mapman annotations) and cis-regulatory
annotations (FIRE-identified CREs and weighted links to TFs).

We chose the rice transcription factor OsbHLH148
(LOC_Os03g53020) to demonstrate the GRAiN web application
features. OsbHLH148 was initially present in our list of gold
standard drought regulators, as it was earlier reported to be
involved in the regulation of drought response via the jasmonic
acid pathway (Seo et al., 2011). However, instead of using it as
a DR TF in the training set, we kept it a hidden example and
treated it as an unlabeled TF throughout model training and
evaluation. Since OsbHLH148 was already being studied in our
laboratory, our intention behind removing it from the training
data was to repurpose its phenotypic and RNA-seq data for
experimental validations of the GRAiN web application and
the DR classifier.
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Our model strongly predicted the association of OsbHLH148
to DR, assigning it a DS of 0.99 and placing it at rank # 4
among all rice TFs. We asked if the GRAiN web application
can recover the known functional associations of OsbHLH148.
The GRAiN query shows 385 genes predicted as targets of
OsbHLH148 (Supplementary Data 7a). Enrichment results
show that these predicted target genes participate in the
jasmonic acid-mediated signaling pathway and response to salt
and osmotic stresses (Supplementary Data 7b), in agreement
with its previously validated function by Seo et al., 2011.
We observed that OsbHLH148 is potentially involved in the
regulation of ∼54% of genes in the module it is a part of
(M0009; jasmonic-acid biosynthesis genes), indicating it acts
as a hub in the local subnetwork. Additionally, we found 81
TFs among the predicted targets of OsbHLH148 and ∼82%
of these TFs have more than one known bHLH binding
site (5′-CANNTG-3′) within the 1000 bp upstream promoters
(Supplementary Data 7c). This indicated that most predicted
targets of OsbHLH148 are more likely to be downstream targets.
Other TFs with no bHLH DNA-binding sites could be potentially
be components of a larger co-activator complex. Among the
predicted targets, we found three of the five TFs previously
shown to interact with OsbHLH148 using Y2H assays (Seo
et al., 2011). Among other predicted targets, OsRAP2.6 (also
known as ERF101) and DREB1B TFs were most interesting
because both these TFs are well-known to be critical regulators of
stress responses in rice. DREB1B is a well-known TF previously
shown to function in abiotic stress-responsive gene expression
(Dubouzet et al., 2003). The OsRAP2.6 TF has been recently
shown to regulate drought responses during rice’s reproductive
development (Jin et al., 2018).

Therefore, the prediction of OsRAP2.6 within the
OsbHLH148 regulation raised a hypothesis that OsbHLH148
could also act as a regulator of drought responses during
rice’s reproductive development. We acquired the homozygous
loss-of-function knockout mutant line designated as ‘bhlh148’
to pursue this hypothesis. We performed extensive testing
of this mutant’s phenotypes under controlled drought stress
at the vegetative and reproductive stages. Under a well-
watered (WW) condition, we found no significant phenotypic
difference between the mutant and WT plants. However,
under controlled drought stress treatment at 40% field capacity
(FC), the mutant plants showed higher sensitivity with leaves
rolled and collapsed than the WT plants (Figure 9A). Under
drought, the bhlh148 mutant plants showed a significant
reduction in net photosynthetic rate, instantaneous water
use efficiency (WUEi), the efficiency of Photosystem II
measured in light-adapted leaves (Fv’/Fm’), above-ground
biomass, and the relative water content (RWC) compared
to WT (Figures 9B–F).

We applied drought stress to WT plants at the reproductive
(R3) stage and observed a very high induction of OsbHLH148
in the inflorescence (3.1-fold) compared to flag leaf (0.55-fold)
under drought stress relative to WW plants. The yield parameters
for drought stress response, quantified by the number of
spikelets/panicles (Figure 9G), spikelet sterility (Figure 9H),
grain yield (Figure 9I), and the number of panicle/plant

(Figure 9J), testify that OsbHLH148 is involved in grain yield
under drought stress.

Next, we tested whether GRAiN correctly predicted the
interaction of OsbHLH148 with OsRAP2.6 and DREB1B TFs.
An electrophoretic mobility shift assay (EMSA) confirmed
that bHLH148 binds to the promoters of OsRAP2.6
(LOC_Os08g36920) and OsDREB1B (LOC_Os09g35010)
genes. We then used the steroid receptor-based inducible system
to confirm that OsbHLH148 directly activates the expression
of OsRAP2.6, while activation of OsDREB1B by OsbHLH148
requires additional factors (Figures 9K,L).

We also wanted to check if the other remaining genes
predicted by GRAiN as targets of OsbHLH148 are correct.
To confirm this, we performed gene expression profiling of
bhlh148 and WT plants under WW and controlled drought
stress conditions using mRNA sequencing (see Supplementary
Methods). We used leaf tissue from plants maintained at 100
and 40% FC for 10 days as WW and controlled drought
stress samples, respectively. We estimated the differential
expression of genes that (1) responded to the knockout, and
(2) responded specifically to the interaction of mutant with
drought (subtracting the WT effect of drought from the mutant)
(Supplementary Data 8). We found a relatively low overlap
(<2%) between GRAiN predicted targets of OsbHLH148 and
those significantly differentially expressed in the knockout.
However, more than 32% of GRAiN predicted genes differentially
expressed specifically due to bhlh148’s interaction with drought
(Figure 9M). These observations testify that GRAiN naturally
captures regulatory relationships that manifest specifically under
stress rather than normal growth conditions.

Experimental Support of the Predicted
Drought Scores in the Literature
We re-scanned the literature to collect new TFs reported to be
involved in DR phenotypes but published after we concluded
our study. We found three such new DR TFs not included in
our training data; OsHSFA3 (Zhu et al., 2020), OsMYB6 (Tang
et al., 2019), and ONAC66 (Yuan et al., 2019). Our DR prediction
model placed OsHSFA3 at rank 96 (decile 1), OsMYB6 at rank
376 (decile 2), and ONAC66 at rank 615 (decile 3), indicating that
our model performs with great accuracy in the real-world.

CONCLUSION

We integrated publicly available gene expression data of rice
to infer an abiotic-stress response GRN. Because we used only
microarray samples to create the gene expression matrix, our
workflow was primed to be missing a considerable fraction of
known rice genes not represented on the Affymetrix chip. This
limitation could have been overcome by using RNA-seq datasets
to assay a larger fraction of the genome. However, the number of
RNA-seq datasets currently available to cover the broad spectrum
of rice’s abiotic stress responses is limited. Using microarray
chips allowed us to achieve a relatively larger sample-size while
covering gene expression dynamics under various abiotic-stress
treatments, growth stages, and cultivars.
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FIGURE 9 | Phenotyping bHLH148 as experimental validation of the GRAiN web application. OsbHLH148 was strongly predicted for association with drought by
our network-based SVM classifier. We queried OsbHLH148 in the GRAiN web application and sought to test the predictions experimentally. (A) Increased sensitivity
of bhlh148 mutant plants under controlled drought stress conditions. Forty-five-day old plants were maintained at 100% (well-watered – WW) and 40% (drought –
DR) FC (field capacity) for 10 days by a gravimetric approach, and performance was measured at the end of the stress period. (B–F) The phenotype of the WT

(Continued)
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FIGURE 9 | Continued
and bhlh148 mutant plants under drought stress. (B) Assimilation rate, (C) instantaneous water use efficiency (WUEi), (D) the efficiency of Photosystem II in
light-adapted leaves, (E) above-ground biomass (dry weight), and (F) relative water content (RWC). Gas exchange measurements were taken using a portable
photosynthesis system LI-6400XT at a CO2 concentration of 370 µmol/mol and light intensity of 1000 µmol/m2/s. The data are the means ± SE (n = 10) and
significance using the t-test (**P ≤ 0.01). (G–J) Reduced grain yield of bhlh148 plants under well-watered as well as drought stress conditions. Drought stress was
applied by withholding irrigation at the R3 stage for 4–8 days until the leaves roll and wilt, followed by re-watering and maintaining under well-watered conditions until
physiological maturity. Yield components were measured under well-watered and drought stress conditions at physiological maturity. (G) the number of spikelets, (H)
percent spikelet sterility, (I) grain yield, and (J) the total number of panicles. The data are means ± SE (n = 6) and significance using t-test (*P ≤ 0.05 and
**P ≤ 0.01). (K,L) Experimental validation of predicted OsbHLH148 targets predicted from the GRAiN web application. (K) Electrophoretic mobility shift assay
(EMSA) was performed with bHLH148 protein and biotin-labeled promoter elements of potential bHLH148 regulated genes. bHLH148-6xHis recombinant protein
was incubated with promoter elements at room temperature for 20 min. For competition analysis, the binding reaction was incubated for 10 min on ice before
adding 100-fold excess of unlabeled promoter elements, followed by incubation at room temperature for 20 min. The samples were subjected to EMSA by PAGE
and subsequent chemiluminescence detection. + and - indicate the presence and absence of the respective component in the binding reaction. Arrows indicate the
labeled “free probe” and DNA-protein complex “bound probe” positions. (L) Direct activation of OsRAP2.6 and OsDREB1B by bHLH148. Rice protoplasts were
transfected with a bHLH148-HER fusion construct driven by the CaMV35S promoter. Transfected protoplasts were treated with estradiol (EST), cycloheximide
(CHX), or EST and CHX together. The expression levels of OsRAP2.6 and OsDREB1B in control and treated protoplast was analyzed by qPCR and shown for
RAP2.6 and OsDREB1B. Each data point is mean values ± SE of three biological replicates. (M) Venn diagram showing overlaps between GRAiN predicted targets
of OsbHLH148 and genes that are differentially expressed in the mutant as well the mutant treated with drought.

Our study agrees with the previous reports which claimed
that rather than using a single algorithm, an ensemble-centric
approach improves the GRN inference performance. Adding
diverse methods to an ensemble of network prediction methods
should, theoretically, stabilize biologically relevant relationships
between TFs and target genes (Marbach et al., 2012). We observed
this phenomenon in our study, as the consensus predictions from
the five network prediction algorithms outperformed individual
methods (Figure 3). Interested researchers who wish to apply this
consensus approach should also note that having more ensemble
algorithms does not guarantee superior network inference
performance. The correct combination of methods will depend
on several factors, including the dimensions and the nature of the
underlying dataset. In our study, removing the two correlation-
based methods from the ensemble seems to have improved
the final network’s performance in the experimental benchmark
(ChIP-seq data) and not the two secondary reference networks
(Figure 3). This could be explained by the fact that simple
correlation-based methods are prone to a high accumulation
of false positives arising from indirect correlations. The other
three algorithms (CLR, GENIE3, and ARACNe) are specially
designed to attenuate this problem. Using a consensus of only
these three were better able to detect direct regulatory edges
represented by ChIP-seq data. The ad hoc reference networks,
on the other hand, might contain several false positives because
they were built from derived data rather than direct experimental
evidence. Therefore, removing the correlation-based methods
from the ensemble barely made any difference when tested
on this benchmark.

Several other algorithms not used in our study can
potentially further improve the ensemble’s diversity. For example,
module-based algorithms first apply clustering algorithms
to the expression data and then assign regulators to the
identified modules. While such an approach can potentially
retrieve targets of TFs with less correlated expression profiles
(De Smet and Marchal, 2010), there are several places in the
module-based inference workflows where subjective biases can
be introduced (e.g., the choice of the number of clusters to
extract, which should ideally be chosen by thorough testing a

range of clustering parameters). We found that module-based
network inference algorithms generally have a more considerable
computational burden (data not shown), especially on the
relatively larger rice gene expression matrices. Other algorithms
that use an integrative or supervised approach could also not be
used in our study (Bonneau et al., 2006; Banf and Rhee, 2017;
Zarayeneh et al., 2017). This is because the only other mutually
exclusive datatype available for integration is the sequence-based
DNA motif data. However, unlike expression patterns, most DNA
binding motifs of rice TFs are not experimentally determined
but predicted based on homologies. Also, a large fraction of
rice TFs do not even have their corresponding binding sites
predicted. Therefore, using DNA-motif data only to gauge the
quality of the networks we predicted, but not the network
inference itself, kept us in line with our goal of including as many
genes as possible.

We named our network GRAiN. GRAiN is essentially a
bipartite network as it has two types of nodes (TFs and modules).
Our final goal was to develop an algorithm that uses machine
learning to identify GRAiN patterns that characterize a particular
set of nodes with verifiable attributes (gold standard TFs).
To select our gold standard, we surveyed various phenotype
databases. Our survey shows that while currently ∼2% (1098 at
the time of this study) of all known rice genes have been
linked to various abiotic stresses experimentally, more than
15% of these stress genes are TFs linked with drought or
water deficit related responses. Our survey suggests that the
genetic selection of favorable alleles of the stress-inducible
TFs has been widely and inadvertently used as a tool to
improve/select for drought tolerance. We listed 165 TFs linked
with drought to train the machine learning algorithm. Our
observations that most of these gold-standard drought regulators
do not show sizeable differential expression patterns under
drought further motivated us to develop such a computational
model (Figure 4).

Our framework funnels an inferred modular GRN into the
SVM that learned to discriminate between real drought TFs from
those that are likely not regulators of drought, based on their
network connectivity patterns. Our model’s application ranked
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every TF in the network according to their predicted association
with DR. Therefore, the selection of regulatory genes using our
approach remains less prone to subjective bias.

GRAiN and the subsequent network-based machine learning
approach we presented in this study can also be applied to
transcriptome collections within other biological contexts for
which enough training labels are also available. Furthermore,
the vertical integration of different data types could allow
the development of more mechanistically informed models.
Integrating GRAiN with other diverse sources of information
(representing different layers of gene regulation) into a single
prediction model will allow candidate gene selection in a
truly holistic manner. For example, datasets featuring paired
measurements of transcriptome networks (tissue or cell-type
specific) and post-transcriptional regulation (e.g., small RNA-
sequencing). Integration of other data types such as epigenetic
profiles and post-translational modifications (PTM) such as
phosphorylation also seems feasible with the SVM approach.
Some excellent resources, such as the Plant PTM Viewer
(Willems et al., 2019) and the database of phospho-sites
in plants (Cheng et al., 2014) currently allow such data
mining for a few plant TFs. Perhaps, vertical integration of
heterogeneous data types could also help achieve a better
classification of functional alleles in indica and japonica sub-
types of rice, which remains a limitation of our study. However,
the prediction models’ generalizability will depend upon the
quality of training examples, the standard of validation data, and
feature engineering.

In a nutshell, our study developed a novel computational
framework for network-based prioritization of regulatory genes.
Application of this pipeline accomplished three main challenges
in rice: (i) identification of genes that participate in similar
biological processes and pathways on the occurrence of abiotic-
stresses, (ii) identification of genes co-regulated by a group of
TFs, and (iii) prioritization of regulatory genes and modules
associated with DR. We expect our drought prediction model
to have superior performance in the real-world scenario, evident
by the fact that three recently reported drought TFs, which we
did not include in training our models, were correctly predicted.
The network-based machine learning approach presented here,
in conjunction with resources like the KitaakeX Mutant Database
(Li et al., 2017), can support targeted screens to narrow
down the search for TFs involved in specific physiological,
morphological, and biochemical phenotypes to delineate specific
DR mechanisms further. We anticipate that our study will be
valuable for exploring the transcriptional regulatory code of stress
responses in rice.

MATERIALS AND METHODS

Development of the Consensus Gene
Regulatory Network
A set of 35 Affymetrix microarray datasets comprising 265
individual gene expression samples under the context of
abiotic stress were obtained from the gene expression omnibus
(Supplementary Data 9). Datasets with at least four samples

and two groups were retained, normalized, and processed into
an integrated expression matrix. A comprehensive list of 2304
known rice genes annotated as TFs in several public databases
was obtained (Yilmaz et al., 2009; Jung et al., 2010; Priya
and Jain, 2013; Jin et al., 2014). This list of TFs and the
gene expression matrix was supplied to five reverse-engineering
algorithms. ARACNE was downloaded from the web link in the
original publication. GENIE3 (Huynh-Thu et al., 2010) and CLR
(Faith et al., 2007) runs were performed using the R package
minet (Meyer et al., 2008). PCC and SCC were calculated using
the Sleipnir library of functional genomics (Huttenhower et al.,
2008). Note that all these algorithms are non-integrative and
un-supervised. Meaning they aim to infer relationships between
TFs and target genes solely from gene expression data (non-
integrative), and without leveraging any prior knowledge of
known interactions in the prediction process (un-supervised).
Then, assuming no combinatorial regulation and feedback
loops, ∼80 million regulatory links could have been predicted
(35,151 genes X 2304 TFs) from the gene expression matrix.
However, GRN inference remains an underdetermined problem,
and knowing the exact number of true edges in a network is
impossible (De Smet and Marchal, 2010). Therefore, to reduce
the runtime of our workflow’s subsequent steps, we selected only
the top 500,000 edges from each algorithm’s output (sorted and
ranked based on the confidence metric given by the individual
algorithm). Then, the union of selected edges from all algorithms
was used to create an edge matrix E, with edges i in rows of E and
algorithms j in columns of E. Each cell in the Eij was populated
by the rank given to i by j. Missing edges were substituted with
the lowest rank of that column plus one (Marbach et al., 2012).
The average rank of each row (edge) was then computed, and
these averages were re-ranked to generate the final rankings.
Hence, edges with small final ranks indicated greater confidence
in all five methods. Edges with a final rank value of more
than 500,000 were removed and the rest retained in the final
consensus network.

Creation of the ChIP-Seq Benchmark
and Other Reference Networks
The ChIP-targets of 9 TFs were extracted from published data
files with the original studies. The Position Weight Matrices
(PWM) of ∼588 rice TFs listed in the CIS-BP database were
obtained (Weirauch et al., 2014). PWMs indicate DNA sequence
preferences of TFs and can infer DNA motifs in the promoter
regions of functional genes. The 1000 bp upstream promoters
were scanned for at least one or more PWM motifs using the
FIMO tool in the MEME suite (Bailey et al., 2015). Motifs
found in more than 50% of all the genes were treated as
‘constitutive elements’ and removed. Genes harboring all the
remaining motifs with a p-value < 1E-10 were linked to the
corresponding TFs. The GO BP reference was created by using
evidence of functional relationships between TFs and non-TF
genes co-annotated in the rice biological process (BP) ontologies.
Only those annotation labels consisting of less than 200 genes
were chosen for this. Excluding large BPs ensured that minimally
related genes (in processes such as ‘translation,’ ‘DNA repair,’
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‘signal transduction’ etc.) did not become part of the reference
network. The PPI reference network of rice was obtained from
the PRIN database (Gu et al., 2011) hosted at http://bis.zju.edu.
cn/prin/download.do. Only experimentally verified interactions
were used, and edges with at least one TF as a corresponding node
were identified.

Finding Modules in the Gene Regulatory
Network
Note that the network structure obtained by taking the consensus
of the ensemble was essentially a mixed bipartite graph. One set
of nodes represented TFs, and the other set of nodes represent
target genes (functional genes plus TFs). To detect modules
in such a network, the graph’s biadjacency matrix was first
converted to a unipartite network following the approach used to
build the Arabidopsis stress network (Vermeirssen et al., 2014).
Then, the similarity in predicted regulators of every pair of
genes was estimated using the JI of overlap. Operationally, this
technique accounts for the dogma of co-regulation instead of
co-expression, thus preserving the network’s regulatory nature.
Then, we applied the Markov clustering algorithm (mcl) on this
network to find modules of co-regulated genes. The inflation
parameter of the mcl algorithm was set to a value of 2 after tuning
(data not shown).

Functional Annotations of Network
Modules
Annotations in the rice GO, the KEGG, and CYC pathways
were obtained from the plant GSEA server (Yi et al., 2013). The
mapman annotation file was obtained from the MapManStore2.
GO annotations were propagated from parent terms to child
terms using the true-path rule, as described before (Ambavaram
et al., 2014). From all these databases, categories that annotate
more than 500 genes and less than three genes were removed.
Statistical significance of overlaps between remaining gene-
sets and co-regulated gene modules was calculated using
hypergeometric tests. The resulting p-values were corrected
for multiple testing using the Benjamini–Hochberg method
(Benjamini and Hochberg, 1995). A q-value threshold of 0.05 was
set to declare an observed enrichment as significant.

De novo Analysis of CREs
The FIRE tool was supplied with 1000 bp upstream promoter
sequences of genes within each module identified by the mcl
algorithm. The parameter k, which defines the length of seed
sequences, was kept between 3 and 12, and only DNA motifs
were inferred. Only those motifs that occur within at least 50% of
each module’s genes were selected for all FIRE runs. These motifs
were then matched against plant CREs listed in various public
databases using the STAMP server (Mahony and Benos, 2007).
Matching CREs with a p-value less than 0.001 were tagged as
associated with the corresponding module. FIRE detected motifs
were converted to meme format and matched with DAP-seq
motifs from Arabidopsis using the tomtom tool in the meme suite
(Bailey et al., 2015). CIS-BP motifs were similarly compared.

2https://mapman.gabipd.org/mapmanstore

Development of the GRAiN Application
The GRAiN web application is open source3. The code is written
in the R programming language (R Core Development Team,
2012) and runs on the Shiny platform4. The application uses the
piano package (Väremo et al., 2013) to estimate the statistical
significance of overlaps between a query geneset (user entered
list of genes or retrieved TF targets) and a collection of genesets
(modules or GO BP sets). All genesets with the Fisher’s exact test
FDR corrected p-value < 0.05 are returned to the user. Network
data is processed using the igraph library (Csardi and Nepusz,
2006) and visualized using the visNetwork package5.

Generating Examples for Machine
Learning
The gene keyword file from the funRiceGenes server was
obtained https://funricegenes.github.io/ in May 2019. Gene lists
available in the Oryzabase database were obtained from https://
shigen.nig.ac.jp/rice/oryzabase/download/gene on the same day.
The rice mutant database was obtained from the published article
(Zhang et al., 2006). Using a word cloud analysis (not shown),
most prominent keywords in these databases were visualized.
Genes linked with keywords related to abiotic stress such as
“drought,” “water-deficit,” “salt,” “cold,” “heat,” and “temperature”
were then extracted. The retrieved locus IDs and publication
records of genes were manually scanned for consistency by
expert stress biologists, and TFs linked with drought (and related
keywords) were labeled as positives. Note that OsbHLH148
was initially present in our dataset as a drought positive TF
(Seo et al., 2011). However, we removed it from the positive
list before training the models as a hidden example on which
wet-lab experiments were performed later. We listed negative
examples from the remaining TFs as those that were not positive
for any abiotic stress (salt, cold, and heat), since many genes
are multi-stress responsive. We also reanalyzed seven published
gene expression datasets covering drought stress responses
in various organs and tissues of rice plants across multiple
genotypes. TFs that did not differentially express in these datasets
were also counted as drought negatives. In addition to this,
the rice stress TF database was downloaded (Priya and Jain,
2013) from http://www.nipgr.ac.in/RiceSRTFDB.html and TFs
not listed as responsive to drought and salt in this database
was also included as negative TFs. Altogether, we created a
pool of 752 TFs that are most likely not regulators of drought
stress responses.

Network-Based Classifier
GRAiN is structured as a matrix G, with each entry in Gij
corresponding to the JI of TF i in a row with module j in
the column. G was supplied as the feature-set to the linear
kernel SVM classifier. The vector of JI values of each labeled
TF across all modules in G represented its feature vector.
The objective of an SVM function is to identify the best

3https://github.com/cngupta/GRAiN
4https://shiny.rstudio.com/
5https://datastorm-open.github.io/visNetwork/
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hyperplane that separates the two classes of the training data
(drought positive and negative TFs) using their feature vectors.
The width of the margin that separates the two classes was
controlled by optimizing the classification trade-off parameter
(C; a penalty for a miss-classified example). An optimal C = 1
was chosen by testing a range of values from 0.001 to 10
in increments of 0.1 and five-fold cross-validation tests. This
test split all training examples (drought positive and negative
TFs) into five equal parts. The model was trained on four
of the five splits and tested on the remaining split kept
hidden in training, ensuring that each split was used as the
test-set only once. Model accuracy was evaluated using ROC
statistics. Classifier training and learning were performed using
the SVMperf implementation in the Sleipnir library. Cross-
validation splits and performance evaluation was performed
using the ROCR (Sing et al., 2005) and PRROC packages in R.
The SVM returned distance from the hyperplane D for each
TF in GRAiN. The values of D were averaged over four values
from the final five-fold cross-validation test and then scaled
over a range from 0 to 1. The resulting value of each TF was
referred to as its DS.

Analysis of RNA-Seq Data and
Estimation of Differential Expression
Raw fastq files of individual samples from all external datasets
were downloaded from the SRA. The Nipponbare RefSeq (MSU
version 7) was obtained from the rice genome annotation project
website (Kawahara et al., 2013). The barley and sorghum genomes
and annotations were downloaded from the Phytozome web
portal (Goodstein et al., 2012). The following procedure was
uniformly applied across all RNA-seq samples, including samples
from mutant experiments generated in the study described here.
Reads were mapped to the respective reference genomes using
STAR version 2.7 (Dobin et al., 2013). The bam files obtained
from STAR runs we sorted using samtools and used as input
to the HTseq software version 0.11.2 (Anders et al., 2015) with
its default parameters for counting reads per gene per sample.
Count of reads obtained from HTseq runs were then integrated
as a count matrix (one for each experiment) with columns
representing individual samples and rows representing genes.
Each cell of the matrix presented raw counts of the gene in
the corresponding sample. Each gene’s count was first scaled
by its length to give reads per kilobase (RPK). The sum of all
RPK values per sample divided by 1 million gave us a scaling
factor. Then, dividing each RPK value by this scaling factor
computed gene expression as transcripts per million (TPM)
units. The effective gene length to be used in RPK values
calculations was calculated as the sum of non-overlapping exon
lengths using the genomic features package in R (Lawrence et al.,
2013). The GFF3 files of all genomes were converted to GTF
format using GFF utilities (gffread) of the cufflinks software
(Trapnell et al., 2010). The resulting GTF file was used as
input to genomic features for effective gene length calculation.
Note that the rice GFF3 file on rice MSU reference has mis-
annotations of ∼1000 gene isoforms, which hampered gene
length calculations. Conversion of GFF3 to GTF ensured proper

grouping of individual transcripts to parent gene ID. For the test
of differential expression, the raw count data was normalized
using edgeR (Robinson et al., 2009) and transformed using
voom (Law et al., 2014). The voom-transformed values were
used for linear modeling using the limma package in R (Ritchie
et al., 2015). Differential expression of genes between control
and treatment samples was estimated from the coefficients
of the linear models. The interaction between bhlh148 and
drought was estimated by subtracting the baseline effect of
drought on the WT sample from the effect of drought on
the mutant sample (on a log scale). Differential expression
from each microarray dataset was calculated as follows. Each
dataset was background corrected, normalized, and summarized
using the RMA algorithm (Irizarry et al., 2003). Then, genes
with interquartile range across samples less than the median
interquartile range were filtered. A linear model was then used to
detect the remaining genes’ differential expression using limma,
as described above. In all cases, p-values were converted to
q-values using the qvalue package in R to account for multiple
hypothesis testing.

Controlled Drought Stress at Vegetative
Stage and Physiological Measurements
in Rice
To test the drought stress response of mutant plants at the
vegetative stage, we applied controlled drought stress on 45-day-
old plants using a gravimetric approach. One-week old equal-
sized individual seedlings were transplanted into 4 square inch
plastic pots filled with Redi-earth potting mix of a known weight
and water holding capacity. Thirty-five days after transplanting,
controlled drought stress (DR) was initiated on ten pots and
monitored gravimetrically. The soil water content was brought
down to 40% FC for 3–4 days, and plants were maintained at that
level for 10 days by weighing the pots daily at a fixed time of the
day and replenishing the water lost through evapotranspiration.
Another ten pots were maintained at 100% FC and treated
as WW conditions (Ramegowda et al., 2014). At the end of
the stress period, gas exchange and light-adapted fluorescence
measurements (Fv’/Fm’) were taken on the 2nd fully expanded
leaves from the top, using a portable photosynthesis meter, LI-
6400XT (LI-COR Inc., NE, United States) at a CO2 concentration
of 370 µmolmol−1, the light intensity of 1000 µmolm−2s−1

and RH of 55–60%. Instantaneous WUEi was calculated using
the net photosynthetic rate (A) and transpiration rate (T) as
WUEi = (A/T). Leaf RWC was measured as described (Barr
and Weatherley, 1962) in the leaves used for gas exchange
measurements. The leaf fragments of the same length were
excised, and fresh weight (FW) was measured immediately. Leaf
fragments were hydrated to full turgidity by floating them on
deionized water for six h, then blotted on a paper towel and
the fully turgid weight (TW) taken. The leaf samples were
then oven-dried at 80◦C for 72 h and weighed to determine
the dry weight (DW). The percent RWC was calculated as
RWC (%) = (FW – DW)/(TW – DW) × 100. Shoots were
harvested, oven-dried at 80◦C for 72 h, and weighed to
determine biomass.

Frontiers in Genetics | www.frontiersin.org 18 June 2021 | Volume 12 | Article 652189

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-652189 June 23, 2021 Time: 17:14 # 19

Gupta et al. Gene Regulation and Association Network

Grain Yield Analysis Under Reproductive
Drought in Rice
The effect of drought stress on grain yield of the rice genotypes
was tested by applying drought stress to plants at the R3 stage
(Counce et al., 2000). Individual plants in 4 square inch plastic
pots were grown at WW conditions until the R3 stage. Drought
stress was applied by withholding water at the R3 stage for
4–8 days until all of the leaves wilted, followed by re-watering.
Panicles exposed to drought stress during the 4–8 days window
were marked and used for yield component analysis. A set of
WW plants were also maintained as controls. Plants were further
grown in WW conditions until physiological maturity. Drought
exposed panicles were harvested, and the number of filled and
unfilled spikelets counted to determine spikelet sterility (%). The
filled spikelets were dried at 37◦C for 5 days and weighed to
determine grain yield/plant.

Electrophoretic Mobility Shift Assay
(EMSA)
The total RNA isolated from drought-stressed rice plants was
used to amplify full-length cDNA encoding bHLH148 and
cloned into pET28(a) vector at BamHI and EcoRI sites. The
bHLH148-6xHis recombinant fusion protein expression was
induced with 1 mM IPTG for 4 h and purified using Ni-NTA
resin. The identity of the purified protein was confirmed by
western blotting (data not shown) using the His-tag antibody.
The binding reaction and EMSA were carried out using a
standard protocol according to the manufacturer’s instructions
(LightShift Chemiluminescent EMSA Kit). Promoter sequences
(2 kb upstream of transcription start site) of AP2/ERF TFs
were identified using the PlantPAN database6 (Chang et al.,
2008) and searched for the presence of E-box elements in the
PLACE database7 (Higo et al., 1999). Specific sets of primers
were used to amplify 200 bp E-box flanking regions of each
of the putative bHLH148-regulated gene promoters using rice
genomic DNA as a template. The amplified promoter fragments
were biotin-labeled at the 3′ end using the Biotin 3′ End DNA
Labelling Kit (Pierce). The binding reactions were carried out
in a buffer containing 10 mM Tris (pH 7.5), 50 mM KCl,
1 mM dithiothreitol, 2.5% glycerol, 5 mM MgCl, 0.05% Nonidet
P-40, and 50 ng/µl of poly(dI-dC). For competition analysis,
the binding reactions were incubated for 10 min on ice before
adding 100-fold excess of unlabeled competitor DNA, and the
reaction mixture was further incubated for 20 min at room
temperature before loading onto a 5% native polyacrylamide
gel. The resolved DNA-protein complexes were electro-blotted
onto nylon membranes and subsequently detected using the
chemiluminescence detection kit.

Steroid-Inducible System for Testing
Direct Activation of Genes by bHLH148
The bHLH148-HER expression construct was generated by
ligating the PCR-amplified full-length cDNA of bHLH148 at

6http://plantpan.itps.ncku.edu.tw/
7http://www.dna.affrc.go.jp/PLACE/

the KpnI site fused with the regulatory region of HER at the
C terminus between the CaMV 35S promoter and the NOS
terminator in pUC19 vector. The construct was transfected into
rice protoplasts by electroporation and incubated with 2 µM
estradiol for 6 h to release cytoplasmic bound bHLH148. For
the control reactions, the same concentration of ethanol used
to dissolve estradiol was used. Protoplasts were treated with
cycloheximide (2 µM) for 30 min before the addition of estradiol
to inhibit new protein synthesis. Total RNA was isolated from
the treated protoplasts and used for qPCR analysis. The data
presented are the averages of three biological replicates.

All primers used in this study can be found in Supplementary
Table 2.
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Supplementary Figure 1 | Analysis of cis-regulatory elements within coregulated
modules. (A) A bar plot showing the proportion of co-regulated modules (x-axis)
containing a differing number of cis-regulatory elements (CREs) (y-axis). (B) A
waffle plot (alternative to a circular pie chart) showing the fraction of de novo
identified CREs that matched different sources (colored uniquely) of
putative plant CREs.

Supplementary Figure 2 | A network analysis of novel cis-regulatory elements.
Besides recovering several known plant CREs, FIRE identified three novel motifs
that did not match to any known plant CRE. The heatmap shows that these novel
motifs could potentially be direct or ‘associative’ binding sites of members from
seven TF families, based on significant overlaps of the predicted targets of TFs
from the families on the x-axis within the genes that harbor the three novel CREs
on the y axis (FDR-corrected hypergeometric tests p-value < 0.01). The color
gradient indicates the network score, calculated as the average ranks of edges
from the consensus gene regulatory network. Darker color indicates a stronger
association between the CRE and the TF family, as indicated in the key.

Supplementary Figure 3 | A line plot showing relationships between the
predicted drought score and network degrees of TFs.

Supplementary Figure 4 | A subset of modules with the highest feature
importance scores from the drought classifier were connected to cis-regulatory
elements (CREs; predicted by de novo analysis) found enriched within them, as
well as to their predicted regulators (TFs). The regulators were, in turn connected
to the CREs based on enrichment analysis (FDR corrected hypergeometric test
p-value < 0.01). This interconnected network with three node types (modules,
CREs, TFs) was visualized in Cytoscape (version 3.0). Modules are indicated in
rounded rectangles, CREs in ellipses and TFs in triangles colored according to the

family membership indicated in the key on the right. The network shows hubs of
different node-types.

Supplementary Figure 5 | Predicted drought scores in relation to the
pan-genome of rice. Boxplots showing drought score distributions of (A) core TF,
(B) indica dependent TFs, and (C) japonica dependent TFs.

Supplementary Table 1 | Evaluation of different network inference
methods. Algorithms were tested for their ability in recovering putative cis
elements listed in CIS-BP database in the promoters of their predicted target
genes.

Supplementary Table 2 | Primers used in the study.

Supplementary Data 1 | Top 500,000 edges inferred by the ensemble and
their aggregate.

Supplementary Data 2 | Gene-module memberships.

Supplementary Data 3 | Module CRE annotations.

Supplementary Data 4 | Module pathway/process annotations.

Supplementary Data 5 | Drought scores.

Supplementary Data 6 | Feature importance scores.
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