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Abstract

Many authors have tried to explain the shape of the species abundance distribution (SAD).

Some of them have suggested that sampling spatial scale is an important factor shaping

SADs. These suggestions, however, did not consider the indirect and well-known effect of

sample size, which increases as samples are combined to generate SADs at larger spatial

scales. Here, we separate the effects of sample size and sampling scale on the shape of the

SAD for three groups of organisms (trees, beetles and birds) sampled in the Brazilian Atlan-

tic Forest. We compared the observed SADs at different sampling scales with simulated

SADs having the same richness, relative abundances but comparable sample sizes, to

show that the main effect shaping SADs is sample size and not sampling spatial scale. The

effect of scale was minor and deviations between observed and simulated SADs were pres-

ent only for beetles. For trees, the match between observed and simulated SADs was

improved at all spatial scales when we accounted for conspecific aggregation, which was

even more important than the sampling scale effect. We build on these results to propose a

conceptual framework where observed SADs are shaped by three main factors, in decreas-

ing order of importance: sample size, conspecific aggregation and beta diversity. Therefore,

studies comparing SADs across sites or scales should use sampling and/or statistical

approaches capable of disentangling these three effects on the shape of SADs.

Introduction

The species abundance distribution (SAD) is a simple yet compelling way of describing eco-

logical communities [1–3]. Because differences in the shape of SADs may represent changes in

diversity across communities, many ecologists have tried to explain what would be the main

factors shaping the SAD. There are explanations that rely on how species share niches or
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resources [4, 5] or on stochastic population dynamics [6–8]. Nevertheless, it has been known

for decades that the number of individuals sampled from the community (i.e. sample size)

greatly affects the shape of the SADs, a phenomenon known among ecologists as the "veil line"

effect [9]. In rank-abundance plots, the increase in sample size leads to less steep SADs, while

in log-abundance class plots (i.e. Preston plots) this leads to more symmetrical ones (but see

[10] for a discussion). Independently of the way the SAD is presented, the change in its shape

is mainly due to the decline of the relative contribution of rare species in the sample (i.e. spe-

cies in the first abundance classes), when compared to the contribution of more common spe-

cies [9, 11, 12]. Since the publication of Preston’s pioneer work [9, 13], a sampling theory was

developed to deduce how the shape of SADs is affected by sample size [1, 11, 14]. It was also

shown that species aggregation and detectability patterns may also play a role in shaping SADs

[15–17].

More recently, the spatial scale of sampling (i.e. the geographical extent covered by the sam-

pling units) was suggested as an explanation for changes in the shape of SADs [18, 19], a pro-

cess that some years later was termed as scale-dependent SAD by [20]. Briefly, the SAD would

become less steep or more symmetrical as samples from separate sites are pooled together.

This trend was observed for herbs sampled over tens of meters [21], and for trees sampled over

hundreds of meters [18]. The same result was obtained for corals and reef fishes [22], arthro-

pods [17] and for birds and island fishes [18] sampled in scales of hundreds to thousands of

kilometers. Indeed, computer simulations showed that the SAD do change in shape as non-

overlapping samples are combined, a process that depends on the degree of species aggregation

and species turnover between samples [19, 23]. Therefore, there is evidence of a sampling scale

effect on the shape of the SAD, as shown for the species-area and similarity distance-decay

curves [24, 25].

However, previous work did not disentangle the effects of sample size and sampling spatial

scale in shaping SADs. In these studies, larger sampling scales are obtained by pooling entire

samples taken from separate sites [18, 22], leading to an increase in sampling spatial scale and
sample size as samples are combined [21]. Although some authors have even treated the effect

of sample scale and sample size practically as equivalents [22, 26, 27], it is easy to conceive sam-

pling designs where one can increase sampling scale without increasing sample size and vice-

versa (e.g. [24]). One can also use randomization or rarefaction methods to tell apart the effects

of sample size and sampling scale in the shape of SADs [20, 28]. Independently of the approach

chosen, the control of sample size effects shaping the SAD is a crucial step in the attempt to

understand the ecological processes behind community patterns [29, 30]. This is particularly

relevant to explain differences in community diversity sampled at different places or times

[28], becoming crucial if these communities were sampled differently [31, 32]. Surprisingly,

none of the previous studies claiming an effect of sampling scale on the shape of SADs have

explicitly addressed such an important issue.

Here, we disentangle the role of sampling spatial scale and sample size in shaping SADs.

Based on similar frameworks that take into account sampling intensity [1, 11, 14, 15], we simu-

late samples of communities that preserve the properties of observed communities at a given

reference scale, but that do not vary in their average sample sizes. This procedure controls for

possible effects of sample size while increasing the spatial scale of observation of the commu-

nity. Following the early work of Preston [9, 13], our basic prediction is that sample size has a

greater influence on the shape of SADs than sampling scale. Our prediction would be sup-

ported if the shape of an observed SAD matches the shape of the simulated SAD generated

from higher-scale observed SADs but controlling for sample size. To assess the generality of

our results, we examine our prediction using datasets of three very distinct groups of
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organisms (i.e. plants, invertebrates, and vertebrates) and SADs constructed using counts of

individuals and biomass.

Materials and methods

Observed SADs

We used data from three very distinct groups of organisms sampled in the Brazilian Atlantic

Forest: trees (including palms and tree-ferns), dung beetles (Coleoptera, Scarabaeidae) and

understorey birds (see details in S1 Appendix in S1 File). Sampling was divided into four spa-

tial scales: sample (tens of meters), habitat (one to few hundreds of meters), site (hundreds of

meters to kilometers), and regional scales (hundreds of kilometers). For trees, the sample scale

corresponded to 256 40×40 m permanent forest plots (total of 40.96 ha, 60 838 trees of 483 spe-

cies sampled) placed in four different sites, which are 75–300 km apart from each other. For

beetles, the sample scale corresponded to 134 pitfall traps baited with human feces (7505 bee-

tles of 71 species captured over more than 24 000 trap-hours) placed at three sites (250–300

km apart from each other). For birds, the sample scale corresponded to 65 sampling sites, each

of them being sampled using 10 mist nets (6127 individuals and 140 species captured over a

total of more than 41 000 net-hours) placed at three sites (50–150 km apart from each other).

For all groups, habitat scale was defined by contiguous samples (plots, pitfalls and mist

nets) that could be grouped based on the existence of marked environmental differences

within sites, such as topographic positions, size of forest fragment, soil types or differences in

disturbance history of the forest. The site scale for all groups was defined by the combination

from samples taken from the same site, while the regional scale was obtained by merging all

samples from all sites. Because the three groups were sampled using different methods and

sampling designs, the mean number of individuals sampled at each scale, used here as a mea-

sure of sample intensity, varied among groups as well (S1 Table in S1 Appendix). The popula-

tion biomass of trees was obtained using allometric equations for woody species, palms, and

tree-ferns. For beetles, population biomass was obtained directly from the dry weight of indi-

viduals captured in the field. For birds, the average body mass obtained from the literature was

used to obtain the population biomass.

Simulated SADs

To control the effect of sample size on SADs at different spatial scales, we used an approach

similar to parametric bootstrapping sensu [33]. In general terms, we combined subsamples

with size equal to ni/x taken from x separate sites, where ni the sample size at scale i and x is

the number of sites available at the same scale. This procedure creates community samples at a

larger sampling scales but with the same average sample size ∑ni/x of the lower sampling scale.

In practical terms, the expected abundance of species i in simulated samples pooled at scale j,
ordered from the smallest to the largest scale (j = 1, 2, 3, 4), was:

E½xij�¼xij�Nj=Nk ð1Þ

where k is the index for any given upper scale (k = 2, 3, 4); xik is the observed abundance of spe-

cies i in the pooled samples at scale k; Nj and Nk are the observed abundances of all species at

scale j and k and, thus, Nj/Nk is the sampling intensity. When we combine the expected abun-

dances of all i species, then the resulting SAD kept the same relative abundances of the

observed SAD, but with a sample size that matches the mean size of the sample units observed

at the scale below (S2 Appendix in S1 File). The mean size used to generate the simulated

SADs varied according to the scale and group of organisms considered (S1 Table in S1 File).
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For instance, the mean sample sizes at the sample scale were 238, 58 and 94 individuals for

trees, beetles and birds, respectively.

We simulated community samples by generating random draws from the Poisson distribu-

tion and the Negative Binomial (NB) distribution. Both distributions have a long tradition in

ecological literature to simulate data under the assumption of spatial randomness and spatial

aggregation of conspecific individuals, respectively [1, 11, 15, 16, 34]. Generating random Pois-

son draws is similar to performing an individual-based rarefaction of the observed SAD [22,

28] and the comparison between the methods used here and rarefaction techniques indeed

yielded similar results (not shown). On the other hand, the use of the NB adds complexity to

the analysis which is related to the additional aggregation parameter (). The estimation of is

generally scale and density-dependent: species with larger populations tend to have less aggre-

gated distributions (higher ) and vice-versa [35]. In this study, we use scale-specific and spe-

cies-specific values of that were estimated from the empirical data using maximum likelihood

techniques. Whenever the estimation of this parameter was not possible, we assigned an arbi-

trary value of that was equal to the community average of this parameter at the same sampling

scale. Details on the estimation of are given in S2 Appendix in S1 File.

Since both Poisson and NB are discrete distributions, they cannot be used directly to assess

changes in species biomass distributions. Thus, the generation of simulated samples for bio-

mass distributions was conducted in two steps. The first step was identical to the Poisson and

NB draws described above, used to obtain random numbers of individuals per species. Then,

for each species with n individuals, we sampled with replacement n values of biomass from the

empirical biomass distribution of the same species at the same scale. Although it may not be

the ideal solution, this bootstrapping procedure was very easy to implement and provided

results that were appropriate enough for the purposes of this study (S2 Appendix in S1 File).

For each group of organisms and for both measures of abundance, we draw 10000 simulated

community samples.

Observed versus simulated SADs

For each group of organisms (i.e., trees, beetles and birds) and measure of abundance (i.e.,
counts of individual and biomass), the observed and simulated SADs were presented using

rank-abundance plot on logarithmic scales, as suggested by [36]. We used relative measures of

abundance in order to make the rank-abundance plots comparable among groups of organ-

isms. Each rank-abundance plot presents only the mean of the observed and simulated SADs

at each sampling scale. For instance, the observed SAD at the sample scale represents the mean

SAD obtained in 256, 134 and 65 sample units for trees, beetles and birds, respectively. For the

simulated SADs, plots present the mean SAD obtained from the 10000 draws for each sam-

pling scale. For the sake of comparison, we also represented SADs using histograms of the

mean proportion of species per abundances classes on a log2 scale (i.e., Preston plots), which

are presented along with the 5% and 95% quantiles of simulated abundance values per abun-

dance class (S3 Appendix in S1 File). Differently from [9], we used true octaves that are closed

on the right (1, 2, 3–4, 5–8, 9–16 and so on). Although this is not the commonly adopted

choice of bins and it is different from the binning proposal of [37], the results remain essen-

tially the same using both binning approaches (results not shown).

We used the Kolmogorov-Smirnov test to compare the observed and simulated SADs. We

compared each of the 10 000 simulated SADs obtained from each reference sampling scales

(site, habitat and sampling scales) with the mean observed SAD at the same sampling scale.

Prior to the Kolmogorov-Smirnov test, we discretized the mean observed SAD and excluded

ranks with zero individuals from both observed and simulated SADs. For biomass, we also
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excluded the ranks with values of relative biomass smaller than the minimum observed, which

were 0.00001, 0.00005 and 0.00009 for trees, beetles and birds, respectively. Then, for each pair

of observed and simulated SADs, we obtained the value of the test and the p-value associated

with the hypothesis that the two SADs come from the same distribution. Here, we used the

proportion of simulated SADs being regarded as equal to the mean observed SAD as a measure

of goodness of fit. If 5% of the 10000 simulated SADs or more had a p-value�0.05, then the

simulated and observed SADs were considered as being equal. The results of the Kolmogorov-

Smirnov test applied using the mean observed SAD and the mean simulated SADs (i.e. only

one test instead of using the mean of 10000 tests) resulted in very similar results for almost all

groups of organisms and measures of abundance (S2 and S3 Tables in S1 File). All analyses

were performed in R (www.R-project.org) using the package sads [38] and dgof [39].

Results

All group of organisms presented very similar trends in their results using counts of individu-

als: the observed SADs became more concave (less linear on a log-log scale rank-abundance

plots − Fig 1) or more symmetrical (on log2 Preston plots − S1 Fig in S1 File) as we increase

the spatial scale of observation. For SADs constructed using biomass instead of counts of indi-

viduals, the observed biomass distributions were already concave even at the smaller sampling

scales (Fig 2 and S2 Fig in S1 File). However, we still observed the same tendency of more con-

cave shapes at higher scales for all groups, particularly for trees. The change of the shape of the

SADs with increasing scale was more conspicuous when results are presented using Preston

plots (S1 and S2 Figs in S1 File) instead of rank-abundance plots (Figs 1 and 2), but the latter

provides a more complete representation of the response of each individual species in the

community.

The simulated SADs presented shapes very similar to the observed ones (Figs 1 and 2) and

results were mostly the same for all groups of organisms and for both measures of abundance.

The Kolmogorov-Smirnov test confirmed that simulated and observed SADs had very similar

shapes in almost all possible combinations of reference sampling scales and community sam-

ple sizes (Table 1). Beetles had more deviations between simulated and observed SADs, but the

Kolmogorov-Smirnov test did not suggest significant differences between their shapes. This

lack of significance for this group, despite the visual differences between simulated and

observed SADs (Figs 1 and 2), may be due to the much smaller number of species of beetles in

comparison to the two other groups. Simulated samples taken from Negative Binomial distri-

bution (NB) did improve the match between the observed and simulated SADs for trees at all

spatial scales when compared to samples taken from the Poisson distribution (S3 Fig in S1

File). The same was not true for beetles and birds, although the latter group did present a non-

significant tendency of improvement when samples were taken from the NB. Therefore, we

present simulated SADs (Figs 1 and 2; S1 and S2 Figs in S1 File) generated by NB sampling for

trees and by Poisson sampling for beetles and birds.

Discussion

As previously found for corals, fish, trees, and birds [18, 22], pooling samples together to

increase the spatial scale of observation does indeed change the shape of the SAD. For all

groups of organisms studied here, the pooled SADs were progressively more concave down

(rank-abundance plots) or more symmetrical (Preston plots). However, this change in the

shape of the SAD was close to what would be expected from the increase in sample size caused

by pooling sampling units. Thus, the suggested effect of sampling spatial scale on the shape of

the SAD is largely due to the well-known ‘veil line’ effect: increasing sample size decreases the
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Fig 1. Disentangling sampling scale and sample size effects in Species Abundance Distributions (SAD) using counts of individuals. Observed (black circles)

and simulated (red lines) are the mean relative abundance of species in each rank of abundance for trees, beetles and birds at four sampling spatial scales. For all

scales except for the regional one, we present the expected values of simulated samples taken from the observed SAD at the upper scale but with the same mean

sample size observed at the scale immediately below (see details on S2 Appendix in S1 File). Samples were simulated assuming conspecific aggregation (Negative

binomial sampling) for trees and complete spatial randomness (Poisson sampling) for birds and beetles.

https://doi.org/10.1371/journal.pone.0238854.g001
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Fig 2. Disentangling sampling scale and sample size effects in Species Abundance Distributions (SAD) using biomass. As in Fig 1, observed (black circles) and

simulated (red lines) are the mean relative abundance of species in each rank of abundance for trees, beetles and birds at the four sampling spatial scales. Other

details are provided in the caption of Fig 1.

https://doi.org/10.1371/journal.pone.0238854.g002
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probability of having rare species in the sample [9, 11, 12]. The similarity of trends found for

the abundance and biomass of distinct organisms, such as trees, beetles, and birds, reinforces

this conclusion. Besides the indirect effect of sample size, the shape of SADs is also influenced

by conspecific aggregation, which tends to increase the number of both rare and very common

species in the sampled SAD [15, 17]. In our study, aggregation was important for trees (S3 Fig

in S1 File), confirming that tropical tree species are often spatially aggregated [40, 41]. This

also suggests that the role of conspecific aggregation in shaping SADs may be more important

for sessile organisms, at least for the spatial scales considered here. And if we consider that the

patterns of species aggregation depend on the scale considered [35, 42], then conspecific aggre-

gation may even be regarded as an indirect effect of the sampling spatial scale.

Although sample size is the preponderant effect on the SAD, we found some deviations

between observed and simulated SADs that could not be attributed to sample size or conspe-

cific aggregation. Thus, there is evidence of a sampling scale effect, which is related to the beta

diversity of the metacommunity [19]. Beta diversity depends on the correlation of species

abundances across communities, which in turn defines the joint SAD of two or more commu-

nities as a multivariate probability distribution [31, 32]. Taking two communities as a simple

example, there is a small probability that a given species is very abundant or very rare in both

samples when beta diversity is high (negative correlation, inset plot in Fig 3a). This probability

is higher when beta diversity is low (positive correlation, inset plot in Fig 3b). Therefore, when

we combine samples the resulting SAD will have larger variance as beta diversity increases,

because the proportion of rare species in the pooled SAD increases. In our study, beta diversity

was higher for beetles at all sampling scales (probably due to the larger extent of the sampling

coverage for this group), which may explain the deviations between observed and simulated

SADs. Moreover, conspecific aggregation also increases the variance in the correlation

between samples and of the pooled SAD (Fig 3c and 3d − see S4 Fig in S1 File for the same

results presented using Preston plots). Unlike the effect of sample size and species aggregation,

which can be efficiently handled using sampling theory, beta diversity is more related to eco-

logical and evolutionary processes, such as habitat partitioning, dispersal limitation, biogeog-

raphy and disturbance history. Since these processes are hardly perceived at very small scales

(e.g. [3]), beta diversity will probably affect the shape of SADs at larger spatial scales, by

Table 1. Summary of the Kolmogorov-Smirnov tests comparing the observed and simulated SADs.

Simulation scale Organism Reference scale

Counts of individuals Biomass

Regional Site Habitat Regional Site Habitat

Site Trees 0.815 0.370

Beetles 1 1

Birds 0.999 1

Habitat Trees 0.993 0.977 0.581 0.519

Beetles 1 1 1 1

Birds 0.995 0.541 0.999 1

Sample Trees 0.982 0.999 0.000 0.013 0.754 0.945

Beetles 1 1 0.973 1 0.999 1

Birds 0.999 0.164 0.000 0.733 0.999 0.571

Values correspond to the proportion of the 10000 simulated SADs being regarded as equal (p-value�0.05) to the mean observed SAD for each reference sampling scale.

Values in bold mean that observed and simulated SADs are different (α = 5%). For each reference sampling scale (i.e., regional, site and habitat), we simulated

communities using the same number of species and relative densities but with a mean sample size of the corresponding scale of simulation (i.e., site, habitat and sample).

https://doi.org/10.1371/journal.pone.0238854.t001
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Fig 3. The influence of conspecific aggregation and of the correlation of species abundances among communities (beta diversity) in the shape of the SAD,

while combining samples to increase the sampling scale. Here, we exemplify this influence by pooling together two samples taken from a bivariate Lognormal

distribution with the exact same parameters and controlling for possible sample size effects. We present the resulting rank-abundance plots (on log-log scale) from

the combination of sites where individuals of all species are randomly distributed and beta diversity is high (a) or low (b) and when there is conspecific aggregation

with high (c) or low beta diversity (d). In each panel, the inset plot shows the ellipses that encompass 95% of the bivariate distributions and the marginal Preston

plots of the sample SADs. Gray ellipses delimit the joint distribution of abundances in the communities and black ellipses delimit the distribution of abundances in

the samples.

https://doi.org/10.1371/journal.pone.0238854.g003
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increasing relative contribution of rare species (Fig 3 and S4 Fig in S1 File). Thus, beta diversity

may explain the increase in the contribution of rare species at very large spatial scales found by

[17, 20, 43].

The use of multivariate distributions to describe joint SADs was advanced by [7]. By assum-

ing no conspecific aggregation and a Lognormal underlying SAD, they used a bivariate Pois-

son-Lognormal distribution to describe joint SADs where (i) communities can have different

underlying SAD parameters, (ii) with different correlation between species abundances, (iii)

which will present a sampling size effect on the SAD of the pooled samples. Sampling decreases

the correlation between species abundances, an effect that is stronger if there is conspecific

aggregation (gray and black ellipses in the inset plots of Fig 3 and S4 Fig in S1 File). Parametric

multivariate distributions are still hard to fit, especially if we want to take into account spatial

aggregation. So far, the existing investigations are based on simulations and they have shown

that the similarity between sampled communities is important [19, 23]. However, these inves-

tigations were not fully parametric and/or they were based on presence-absence similarity

indexes. Here we show that the simulation from parametric multivariate distributions with an

explicit correlation between species abundances is feasible, as exemplified in Fig 3 (see S4

Appendix in S1 File for details), and thus one could use simulation-based methods of inference

[44] to fit and compare multivariate SADs across space and time. We also present different

ways of presenting pooled SADs from samples taken at different spatial scales (S5 Appendix in

S1 File).

As found by [18, 22], SADs built using biomass instead of counts of individuals are more

symmetrical in Preston plots, a phenomenon termed ‘differential veiling’ by [45]. Here, we

attribute this difference to the fact that biomass SADs are essentially the distribution of sums

of biomass values (i.e., rare species will not necessarily have the lowest biomass ranks). If we

take biomass as random variables, then the higher symmetry of the biomass SAD can be the

product of a weak variant of the Central Limit Theorem: the sum of independent variables will

tend to a normal distribution [46]. It is reasonable to assume that biomass values are indepen-

dent within species, but biomass distributions are probably not identically among species.

Thus, biomass SAD will tend to a more symmetrical distribution, but more slowly and deviat-

ing from normality. This is a different explanation than those provided by [45, 47], both rely-

ing on differential consequences of sampling individuals (discrete) and biomasses (continuous

variable). Ecologically speaking, the higher symmetry of the biomass SAD suggests that the

dominance in ecological communities is lower than previously thought. If biomass expresses

better the partitioning of resources among species [48], a few but large individuals could suf-

fice to maintain populations, especially regarding size-structured organisms. And since growth

is more frequent than births and deaths, the biomass SADs is more variable and may be more

effective to capture changes on community structure [18, 47].

Conclusions

Sample size had a much greater influence than sampling spatial scale on the shape of SADs.

Although sample size was the leading effect, we advocate that the shape of SADs is influenced

by three factors, in decreasing order of importance: sample size [9, 13], conspecific spatial

aggregation [15] and beta diversity [19, 23]. The changes related to the first two factors can be

taken into account using an approach based on univariate distributions, while the third may

require the use of multivariate distributions [31, 32]. Analytical solutions for such distributions

may be hard to find or to deal with, and simulation-based methods of inference offer a more

feasible alternative for most ecologists. The present study and some previous work [19, 23]

showed how computer simulations can disentangle the ‘process and observation layers’ [49]
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that influence the shape of SADs (see [28] for an rarefaction-based approach to disentangle

similar effects in the number of species in samples). Future studies comparing results with dif-

ferent underlying SADs, species aggregation patterns and beta diversity scenarios are welcome

to refine our understanding of the effects of sample size, conspecific aggregation and beta

diversity on SADs and how such effects interact with existing explanations of the shape of

SADs based on species dispersal distances [2, 17], species-range distributions [34, 50] or spe-

cies strategies (e.g. core-occasional species hypothesis [51]). In addition, there is still uncer-

tainty if these hypotheses apply similarly to numerical abundance and biomass [18, 52]. Thus,

once the effects of sample size and species aggregation have been taken into account, it is possi-

ble to explore which are the mechanisms driving the shape of SADS and more broadly the

diversity of ecological communities in space and time. An assessment of how the relative role

of such mechanisms may change across taxa, environmental gradients and spatial scales is still

needed, so there is still plenty of room to explore the ecological determinants of SADs [29, 30].

Supporting information

S1 File.

(DOCX)

S2 File.

(R)

S1 Dataset.

(CSV)

Acknowledgments

We thank Vinı́cius C. Souza and Fernando Z. Vaz-de-Mello for the identification of tree and

beetle species, respectively. We also thank Hélène Morlon and Jerôme Chave for their valuable
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