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Abstract: Amoxicillin and sulbactam are widely used compound drugs in animal food. The
amoxicillin–sulbactam hybrid molecule can achieve better curative effects through the combina-
tion of the two drugs. However, its pharmacokinetic behavior needs to be explored. In this study,
a randomized crossover experiment was performed to investigate the metabolism of the novel
amoxicillin–sulbactam hybrid molecule in rats after gastric administration. Ultrahigh performance liq-
uid chromatography–quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS)
was used to isolate and to identify the metabolites in rats. Amoxicillin, amoxicilloic acid, amoxicillin
diketopiperazine, and sulbactam were eventually detected in the plasma, liver, urine, and kidneys;
no hybrid molecules and their metabolites were detected in feces. The in vivo metabolism results
showed that the hybrid molecule was absorbed into the body in the intestine, producing amoxi-
cillin and sulbactam, then amoxicillin was partially metabolized to amoxicilloic acid and amoxicillin
diketopiperazine, which are eventually excreted in the urine by the kidneys. In this study, four
major metabolites of the amoxicillin–sulbactam hybrid molecule were identified and their metabolic
pathways were speculated, which provided scientific data for understanding the metabolism of the
hybrid molecule and for its clinical rational use.

Keywords: hybrid molecule; amoxicillin; sulbactam; drug metabolism; ultrahigh performance liquid
chromatography–quadrupole time-of-flight tandem mass spectrometry

1. Introduction

Antibiotics are an effective means to prevent diseases and to improve feed efficiency
for agricultural animals [1]. Amoxicillin is a semi-synthetic penicillin derivative that is
widely used in veterinary and in human medicine owing to its broad-spectrum antimicro-
bial activity against Gram-negative and -positive pathogens [2,3]. However, amoxicillin
monotherapy has proven less effective in recent years owing to the widespread emergence
of multidrug-resistant bacteria [4–6]. Accordingly, amoxicillin/sulbactam combinations
have become common compound preparations in clinical studies. It is important to note
that the combination of sulbactam with β-lactam antibiotics does not improve its pharma-
cokinetic characteristics in terms of its poor oral absorption, so it is necessary to develop
new and improved drugs through new techniques.

Drug splicing refers to linking different drugs or active ingredients of drugs together
through chemical bonds to form new drugs with multiple targets or mechanisms of action.
There are two common drug-splicing strategies: One is where the chemical bonds formed
by the splicing are hydrolyzed by specific enzymes in vivo to release the original active
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ingredients, thereby playing a dual role [7,8]. The other is that the chemical bonds formed by
splicing are not hydrolyzed by enzymes in vivo and function as new hybrid molecules [9].

Sultamicillin is a diester compound formed by combining ampicillin and sulbactam
via a methylene group, it has been clinically proven to be an orally effective combination
drug [10]. Sultamicillin is hydrolyzed by enteric esterase after oral administration, releasing
equal molar amounts of ampicillin and sulbactam for absorption by the body [11]. This
expands the antibacterial spectrum of ampicillin, especially strengthening its antibacterial
activity against β-lactamase-producing bacteria [12].

In the synthesis method based on sultazicillin [13,14], we linked amoxicillin and
sulbactam through a methylene bridge and synthesized a novel amoxicillin–sulbactam
hybrid molecule (AS, Figure 1). This recovers the antibacterial activity of amoxicillin against
resistant bacteria and optimizes the pharmacokinetic properties of sulbactam.
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Drug metabolism refers to changes in the physical properties and chemical structure
of a drug under the action of biological factors in the body [15,16]. Accordingly, drug
metabolism is extremely important to the pharmacology and toxicology of a substance [17].
Drug metabolism is usually divided into two phases: Phase I involves bioconversion
under the action of enzymes and typically includes processes such as oxidation, reduction,
hydrolysis, and hydroxylation, while Phase II involves covalent binding to form complexes
with a high polarity that are thus easily secreted [18,19]. The metabolic transformation
of drugs plays an important role in their overall medicinal properties as well as their
pharmacological and toxicological characteristics [20,21]. Accordingly, the main reason for
identifying drug metabolites in clinical research is to ensure their safety [22].

Gas chromatography, liquid chromatography, and tandem mass spectrometry are
important methods used to identify different metabolites in drug analysis [23–26]. With the
advent of liquid chromatography–mass spectrometry (LC–MS), metabolites can be fully
separated, and even trace substances can be detected. Accordingly, LC–MS-based methods
have become the most effective and widely used analytical tools for the identification of
drug metabolites [27,28].

For instance, using human liver microsomes incubated with amitriptyline and vera-
pamil as test samples, Rousu et al. found and preliminarily identified 97 metabolites while
comparing the metabolite screening characteristics of triple quadrupole, mixed linear ion
trap triple quadrupole, time-of-flight, and combined mass spectrometries. The authors
reported that time-of-flight mass spectrometry (TOF–MS) was the only method that de-
tected all the metabolites, and it was also the quickest [29]. The applicability of different
types of mass spectrometry to metabolite mapping varies greatly [30]. The advantage of
TOF–MS is that it can obtain detailed information on biotransformation sites and has high
sensitivity, quality, accuracy, chromatographic compatibility, and data collection rates [31].
In addition, TOF–MS can collect more qualitative and quantitative information about drugs
and their metabolites, and even endogenous biomarkers, from the same sample at the same
time, simplifying the screening process. Accordingly, it is a very powerful tool for drug
discovery and development [32,33].

In this study, the metabolism of AS in rats was studied by ultrahigh performance
liquid chromatography–quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-
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TOF-MS/MS), and the metabolites of the hybrid molecule were identified, providing
scientific data for rational clinical use of the compound.

2. Materials and Methods
2.1. Materials
2.1.1. Drugs and Reagents

Amoxicillin (87.00%, Batch No. 130409-201913) was obtained from the China National
Institute for Food and Drug Control (Beijing, China).

Sulbactam (98.54%, Lot No. DM21022603) was obtained from Guangzhou Juanmu
Biotechnology Co., Ltd. (Guangzhou, China).

Amoxicillin diketone piperazine (93.68%, Lot No. DM20051896) was obtained from
Guangzhou Juanmu Biotechnology Co., Ltd. (Guangzhou, China). Amoxicilloic acid
(99.18%, Lot A634265) was obtained from Toronto Research Chemicals (Wuhan, China).

AS (content detected by HPLC: 93.00%) (amoxicillin content: 55.50%; sulbactam
content: 35.37%). The NMR spectrum of AS is: 1H NMR (600 MHz, DMSO-d6) δ 9.82 (s,
1H, OH), 9.28 (d, J = 7.5 Hz, 1H, NH), 8.57 (s, 1H, NH), 7.28 (d, J = 8.6 Hz, 2H), 6.80 (d,
J = 8.6 Hz, 2H), 5.91 (q, J = 6.1 Hz, 2H, OCH2O), 5.59 (t, J = 4.8 Hz, 1H), 5.45 (d, J = 4.1 Hz,
1H), 5.20 (dd, J = 4.6, 1.8 Hz, 1H), 4.95 (s, 1H), 4.56 (s, 1H), 4.42 (s, 1H), 4.03 (q, J = 7.1 Hz,
1H), 3.73–3.65 (m, 1H), 1.49 (s, 3H), 1.46 (s, 3H), 1.36 (s, 3H), 1.35 (s, 3H).

Acetonitrile, methanol, and formic acid were obtained at chromatographic grade from
Thermo Fisher Scientific (China) Co., Ltd. (Shanghai, China).

2.1.2. Instruments

The following equipment was used in this study:
A UPLC1290-6540B Q-TOF; a 1290 ULTRA high-pressure liquid chromatography

system; a 6540B Q-TOF quadrupole tandem TOF-MASS spectrometry system with AJS,
ESI, and APCI sources; a Mass Hunter workstation, and Metabolites ID software (Agilent
Technologies, Ltd.) (Beijing, China).

A UPLC 1290-6470A ultrahigh performance liquid chromatography-triple quadrupole
mass spectrometer equipped with an ultrahigh-pressure binary gradient pump, an ultra-
efficient automatic sampler, an ultra-efficient column temperature chamber, and triple
quadrupole mass spectrometer (Agilent Technologies Co., Ltd., Beijing, China).

A Waters UPLC (I-class) ultrahigh performance liquid chromatographer with a PDA
detector (Waters Corporation, Milford, MA, USA) (Beijing, China).

A Waters Xevo TQ-S Micro with a Tipped XBOBbie Dynamic Range (XDR) detector
and an electrospray ion source (ESI) source.

An Oasis HLB solid-phase extraction column (200 mg/3 mL; Waters Corporation,
Milford, MA, USA).

2.1.3. Solution Preparation

Standard solutions: Accurately weigh 11.49 mg, 10.08 mg, and 10.67 mg of amoxi-
cillin, amoxicilloic acid, and amoxicillin diketopiperazine standard in three 10 mL brown
volumetric flasks, then add in acetonitrile/water (1:1, v/v), dissolve and dilute to vol-
ume, prepare 1.00 mg/mL standard stock solution of amoxicillin, amoxicilloic acid, and
amoxicillin-diketopiperazine, and store at −75 ◦C for later use.

Sulbactam standard solution: The standard sulbactam (10.15 mg) was precisely
weighed into a 10-mL brown volumetric flask and dissolved in ultrapure water to a volume
of 10 mL to obtain a standard solution with a concentration of 1.00 mg/mL.

AS solution: The AS (107.53 mg) was weighed into a 10-mL brown volumetric flask
and dissolved in ultrapure water to 10 mL to obtain a heterozygous molecular solution
with a concentration of 10 mg/mL.
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2.2. Metabolites of AS in Rats
2.2.1. Animal Tests

Healthy male and female SD rats (SPF grade, SCXK (Liao) 2020-0001) weighing
180–220 g were used in this study. All animals were reared in standardized conditions with
a relative humidity of 60%, temperature of 21 ◦C, and 12-h light/dark cycle and allowed
free access to a standard diet and water. Animal experiments were conducted in strict
agreement with protocols approved by the Institutional Animal Care and Use Committee
of South China Agricultural University.

For sample collection, 28 rats were adaptively fed for 7 days, then fasted but allowed
access to water for 12 h before the experiment. They were then randomly divided into
seven groups (4 rats each: 2 males and 2 females), one control group (group A) and the
other sample groups (group B), which were treated with 100 mg/kg b.w. (group A was
given the same dose of normal saline). One of the groups was randomly selected to collect
blood, urine, and feces at 0.5 h, 1 h, 2 h, 3 h, 6 h, and 12 h after administration. After
that, the rat’s liver and kidneys of the group were harvested after death from excessive
ether anesthesia. Blood samples were quickly added to heparin sodium and centrifuged
at 1720 rcf and 4 ◦C for 10 min to separate the plasma. All plasma and urine samples in
group A were absorbed in the same volume and combined with homogenization. All liver
and kidney samples were pooled and homogenized, and the above steps were repeated for
group B. The samples were stored at −20 ◦C.

2.2.2. Sample Pretreatment

Plasma and urine: A 200-µL sample was accurately transferred to a 1.5-mL centrifuge
tube, and 800 µL acetonitrile was added before vortexing for 2 min and then ultrasonication
for 5 min. After being centrifuged at 10,700 rcf and 4 ◦C for 10 min, the supernatant
was taken into a 2-mL centrifuge tube and dried with nitrogen at 40 ◦C. The residue was
redissolved in 200 µL acetonitrile in water (30%) with vortexing for 2 min and then ultra-
sonication for 5 min, followed by centrifugation for 10 min at 10,700 rcf. The supernatant
was filtered through a 0.22-µm organic membrane for UPLC-Q-TOF-MS/MS analysis.

Feces, liver, and kidneys: First, 1 g samples were accurately weighed into a 10 mL
centrifuge tube, and 3 mL acetonitrile was added before vortexing for 1 min, ultrasonication
for 5 min, and full oscillation for 5 min. The samples were then centrifuged for 10 min at
10,700 rcf and 4 ◦C. The supernatant was taken into a 5 mL centrifuge tube and blow-dried
with nitrogen at 40 ◦C. Then, 1 mL ultrapure water was added to dissolve the residue,
and 3 mL dichloromethane was added before the mixture was vortexed for 1 min and
centrifuged again.

A Waters HLB solid-phase extraction column was activated with 3 mL methanol
and ultrapure water successively, and the supernatant obtained by centrifugation was
drawn onto the extraction column, which was rinsed with 1 mL ultrapure water and
eluted with 2 mL 95% acetonitrile/water. The eluent was dried with nitrogen at 40 ◦C.
Then, the residue was redissolved in 0.2 mL 30% acetonitrile, centrifuged at 10,700 rcf for
10 min, and the supernatant was filtered through a 0.22-µm organic filter membrane prior
to UPLC-Q-TOF-MS/MS analysis.

2.2.3. Liquid Chromatography Conditions

Separation was performed using an Agilent ECLIPSE PLUS C18 (2.1 × 100 mm,
1.8 µm) chromatographic column. The mobile phases were (A) acetonitrile and (B) 0.2%
formic acid water. The flow rate was 300 µL/min, the column temperature was 40.00 ◦C,
and the injection volume was 5 µL. Table 1 shows the gradient elution protocol.

2.2.4. Mass Spectrometry Conditions

An ESI source was used in positive/negative ion mode; scan range: 100–1000 Da;
atomization temperature: 300 ◦C; sheath gas: nitrogen; atomizing flow: 8 L/min; nebulizer:
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45 PSIG; sheath gas temperature: 350 ◦C; sheath gas flow: 10 L/min; capillary voltage:
4000 V; nozzle voltage: 1000 V; fragmentor voltage: 130 V.

Table 1. Gradient elution protocol.

Time (min) Rate of Flow (µL/min) A (%) B (%)

0.0
3.0

300
300

5
10

95
90

16.0 300 30 70
18.0 300 75 25
19.0 300 90 10
21.0
25.0

300
300

5
5

95
95

3. Results and Discussion
3.1. Metabolism of Heterozygous Molecules

The metabolites were preliminarily predicted based on the principle of splicing. There
is only one hydroxyl difference between the spliced drug AS and Sultamicillin, so infor-
mation on Sultamicillin metabolism in vivo could help us to preliminarily predict the
metabolites. Sultamicillin is hydrolyzed into sulbactam and ampicillin by enterolactase
in the intestinal wall after oral administration [11,34,35], so it is speculated that AS hy-
drolyzed in vivo to amoxicillin and sulbactam. Because amoxicillin is easily metabolized to
amoxicilloic acid (AMA) and amoxicillin diketopiperazine (DIKETO) [36,37], it is specu-
lated that some of the amoxicillin will be metabolized to these compounds in vivo. It has
been reported that sulbactam exists mainly in the archetypal form in rats [38,39], so it is
speculated that sulbactam exists in rats. The metabolite-prediction diagram for AS in rats
is shown in Figure 2.

3.2. UPLC-Q-TOF-MS/MS Analysis of Standards

The EIC and mass spectrometry results for AS are shown in Figure 3. The retention
time is 11.73 min, and the ion peak is m/z 611.1478 [M+H]+. The fragment ions are m/z 594,
m/z 456, m/z 331, m/z 208, and m/z 114. The characteristic ions are m/z 594, m/z 456, and
m/z 331.
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spectrum of AS; (c) Two-stage mass spectral data of AS.

The EIC and mass spectrometry results for amoxicillin are shown in Figure 4. The
retention time is 2.5 min, and the ion peak is m/z 366.1117 [M+H]+. The fragment ions are
m/z 349, m/z 321, m/z 234, m/z 208, m/z 160, m/z 114, and m/z 70. The characteristic ions
are m/z 349, m/z 208, m/z 160, and m/z 114.
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The EIC and mass spectrometry results for amoxicilloic acid are shown in Figure 5.
The retention time is 2.2 min, and the ion peak is m/z 384.1223 [M+H]+. The fragment ions
are m/z 367, m/z 323, m/z 189, m/z 160, m/z 229, m/z 277, and m/z 107. The characteristic
ions are m/z 367, m/z 323, and m/z 189.
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amoxicilloic acid.

The EIC and mass spectrometry results for amoxicillin diketopiperazine are shown
in Figure 6. The retention time is 6.4 min, and the ion peak is m/z 366.1118 [M+H]+. The
fragment ions are m/z 207, m/z 160, and m/z 114. The characteristic ions are m/z 207 and
m/z 160.
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The EIC and mass spectrometry results for sulbactam are shown in Figure 7. The
retention time is 3.4 min, and the ion peak is m/z 232.0292 [M−H]−. The fragment ions are
m/z 188, m/z 140, m/z 91, and m/z 64. The characteristic ions are m/z 140 and m/z 64.



Metabolites 2022, 12, 662 11 of 24Metabolites 2022, 12, x FOR PEER REVIEW 11 of 24 
 

 

 

Figure 7. EIC and mass spectrometry results for Sulbactam. (a): EIC spectrometry results for sulb-

actam; (b): Mass spectrum of sulbactam; (c): Two-stage mass spectral data of sulbactam. 

3.3. Metabolites in Different Tissues 

A total of four metabolites with retention times of 2.5, 2.2, 6.4, and 3.4 min, respec-

tively, are detected in the samples. Their molecular weights are 365, 383, 365, and 233 Da, 

denoted as M1, M2, M3, and M4, respectively. No drug or metabolites are detected in the 

feces. The results for the urine, kidney, plasma, and liver are as follows: 

M1, M2, M3, and M4 are detected in the urine samples. The EIC and total ion chro-

matogram (TIC) for the urine sample are shown in Figure 8 and Figure A1 in the Appen-

dix A, respectively. 

Figure 7. EIC and mass spectrometry results for Sulbactam. (a): EIC spectrometry results for
sulbactam; (b): Mass spectrum of sulbactam; (c): Two-stage mass spectral data of sulbactam.

3.3. Metabolites in Different Tissues

A total of four metabolites with retention times of 2.5, 2.2, 6.4, and 3.4 min, respectively,
are detected in the samples. Their molecular weights are 365, 383, 365, and 233 Da, denoted
as M1, M2, M3, and M4, respectively. No drug or metabolites are detected in the feces. The
results for the urine, kidney, plasma, and liver are as follows:

M1, M2, M3, and M4 are detected in the urine samples. The EIC and total ion
chromatogram (TIC) for the urine sample are shown in Figures 8 and A1 in the Appendix A,
respectively.

M1, M3, and M4 are detected in the kidney samples. The EIC and TIC for the kidney
sample are shown in Figures 9 and A2 in the Appendix A, respectively.

M1, M3, and M4 are detected in the plasma samples. The EIC and TIC for the plasma
sample are shown in Figures 10 and A3 in the Appendix A, respectively.

M1, M3, and M4 are detected in the liver sample. The EIC and TIC for the liver sample
are shown in Figures 11 and A4 in the Appendix A, respectively.
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No drug or metabolites are detected in the feces. The total ion chromatogram (TIC) for
the feces sample is shown in Figure A5 in the Appendix A.

The mass spectra of four metabolites M1, M2, M3, and M4 are shown in Figure 12.
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3.4. In Vivo Metabolism Results

The chromatographic (Figures 8–11) and mass spectrometry data (Figure 12) for M1,
M2, M3, and M4 are consistent with those of the amoxicillin, amoxicilloic acid, amoxicillin
diketopiperazine, and sulbactam standards (Figures 4–7), respectively. Thus, it can be
determined that M1, M2, M3, and M4 are amoxicillin, amoxicilloic acid, amoxicillin dike-
topiperazine, and sulbactam, respectively. Table 2 shows the molecular formulae, retention
times, measured molecular weights, mass errors, and fragment ion information for AS and
its metabolites.

Table 2. Molecular formulas, retention times, measured molecular weights, mass errors, and fragment
ions for AS and its metabolites.

Compound Molecular
Formula

Retention
Time
(min)

The Measured
Values

(Da)

The Quality of
Error (ppm)

Distribution
(Location) Fragment Ions

AS [C25H31N4O10S2+H]+ 11.7 611.1478 0.32 — 594, 456, 331, 208, 114,
AMO [C16H20N3O5S+H]+ 2.5 366.1117 1.97 P, U, L, K 349, 321, 234, 208, 160, 114, 70
AMA [C16H22N3O6S+H]+ 2.2 384.1223 1.87 U 367, 323, 277, 229, 189, 160, 107

DIKETO [C16H20N3O5S+H]+ 6.4 366.1118 0.20 P, U, L, K 207, 160, 114
SBT [C8H10NO5S−H]− 3.4 232.0292 0.28 P, U, L, K 232, 188, 140, 91, 64
M1 [C16H20N3O5S+H]+ 2.5 366.1121 0.72 P, U, L, K 366, 349, 275, 208, 160, 114,

M2 [C16H22N3O6S+H]+ 2.2 384.1228 1.49 U 384, 367, 323, 295, 229, 189,
107,

M3 [C16H20N3O5S+H]+ 6.4 366.1125 0.19 P, U, L, K 366, 207, 160, 114,
M4 [C8H10NO5S−H]− 3.4 232.0287 0.60 P, U, L, K 232, 188, 140, 91, 64

P: plasma sample; U: urine sample; L: liver samples; K: kidney sample.

4. Discussion

Four main metabolites, M1, M2, M3, and M4, were identified in the tissues and the
plasma. From their chromatograms and mass spectrograms (Figures 3–7), the four main
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metabolites were identified as amoxicillin, amoxicilloic acid, amoxicillin diketopiperazine,
and sulbactam. Below are details on the identification of each.

For M1 (retention time = 2.4 min), the parent ion in the primary mass spectrometry
results is m/z 366 [M+H]+, and the molecular formula was predicted to be C16H19N3O5S
by MSC software. From secondary mass spectrometry analysis, the main fragment ions
are m/z 349, m/z 208, m/z 160, and m/z 114. Studies have found that there are three
ring-opening modes for amoxicillin in mass spectrometry pyrolysis, all of which can
generate fragment ions of m/z 114, among which fragment ions of m/z 349 can be used
as characteristic fragments for qualitative and quantitative analysis of amoxicillin [40,41].
The retention time and characteristic ion fragments of M3 are also consistent with those
of the amoxicillin standard, so it is speculated that M3 is amoxicillin. Suwanrumpha et al.
explored the cleavage mode of amoxicillin and found that the loss of amino groups from
the benzyl side chain is important for the initial fragment of cleavage, so fragment ions
at m/z 349 are easily cleaved [41]. In the papers published so far, the formation of the
ion at m/z 208 for amoxicillin was rationalized as a result of breaking two bonds of the
β-lactam ring [42–44]. Jung et al., Freitas et al., and Nägele et al. believed that the fragment
ion m/z 114 in amoxicillin was the loss of the carboxyl group of the fragment ion from
m/z 160 [42,44,45]. The possible structures of the fragment ions are shown in Figure 13.
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For M2 (retention time = 2.2 min), the parent ion m/z 384 [M+H]+ was identified in the
first-level mass spectrometry, and the molecular formula was predicted to be C16H21N3O6S
by MSC software. The secondary mass spectrometry analysis showed that the main frag-
ment ions are m/z 323, and m/z 189. Amoxicilloic acid has been reported to have m/z 323
as the quantifying ion and m/z 189 as the qualifier ion [43]. In addition, the retention time
and characteristic ion fragments of M2 were consistent with standard amoxicilloic acid, so
it was speculated that M2 was amoxicilloic acid. A weak chromatographic peak is found
near the peak of M2, so M2 may have isomers. As reported, Siegrid et al. detected and
characterized the 5R,6R- and 5S,6R-amoxycillic acid using Liquid Chromatography Com-
bined with Electrospray Ionization Tandem Mass Spectrometry [36]. Liu et al. predicted
the dissociated structures of m/z 323 and m/z 189 of amoxicilloic acid, both of which cleave
the carboxyl group at C13, without explaining the reason for the cleavage of the carboxyl
group at C13 [43]. We speculate that the carboxyl group at C21 may also be cleaved, so
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the fragment ions m/z 323 and m/z 189 in amoxicilloic acid may have two structures. The
positions of fragment ions are shown in Figures 14 and 15.
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For M3 (retention time = 6.4 min), the parent ion in the primary mass spectrometry
is m/z 366 [M+H]+, and the molecular formula was predicted by MSC software to be
C16H19N3O5S. In the secondary mass spectrometry, the main fragment ions are m/z 207,
and m/z 160. It has been reported that the quantitative ion for amoxicillin diketopiperazine
is m/z 160 and the qualitative ion is m/z 207 [43]. It can be seen that the retention time and
the characteristic ion fragment of the metabolite are consistent with those of the amoxicillin
diketopiperazine standard. Thus, the metabolite can be identified as amoxicillin dike-
topiperazine. Liu et al. predicted the fragment ion structure of amoxicillin diketopiperazine
m/z 207, m/z 160, and the prediction result of this study is consistent with the fragment
ion structure. A possible structure of the fragment ion is shown in Figure 16.
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For M4 (retention time = 3.4 min), the parent ion in the primary mass spectrometry
is m/z 232 [M−H]−, and the molecular formula was predicted to be C8H11NO5S by MSC
software. In the secondary mass spectrometry results, the main fragments are m/z 140,
m/z 64, and m/z 90. It has been reported in the literature that for sulbactam in negative
ion mode, the quantitative ion is m/z 140, and the qualitative ion is m/z 64 [46–48]. It
could be seen that the retention time and the characteristic ion fragment for the metabolite
are consistent with those of the sulbactam standard. Thus, it may be determined that the
metabolite is sulbactam.

5. Conclusions

In this study, amoxicillin, amoxicilloic acid, amoxicillin diketopiperazine, and sulbac-
tam were identified in urine. In early literature reports, sultamicillin is excreted primarily in
urine as sulbactam and ampicillin [35,38]. No heterozygous molecules or their metabolites
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were found in the stool samples, which is similar to the results for Sultamicillin, indicating
that the heterozygous molecules are fully absorbed into the body in the intestinal tract. No
intact AS hybrid molecules were found in any of the samples tested, suggesting that the
hybrid molecule is broken down into amoxicillin and sulbactam in the blood and excreted
in the urine by the kidneys.

Amoxicillin and sulbactam metabolites are mainly due to broken diester bonds, which
is consistent with the metabolic pattern of Sultamicillin. Amoxicillin and sulbactam were
detected in urine, confirming that the heterozygous molecules are broken down in vivo
into amoxicillin and sulbactam.

In this study, in vivo metabolism analysis proved that AS is completely degraded
in vivo, mainly producing amoxicillin and sulbactam, which play synergistic roles, signifi-
cantly reducing the resistance of β-lactamase bacteria to amoxicillin.

Overall, this study provides a theoretical basis for the further development and
application of amoxicillin–sulbactam hybrid molecules, and it also provides research ideas
for the development of similar drugs.
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