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Sirtuins (SIRTs) are members of the silent information regulator 2 family. In mammals, of
the seven known SIRTs, SIRT1 function is most studied and has been shown to regu-
late wide range of cellular functions that affect metabolic homeostasis and aging. SIRT1
exerts anti-apoptotic, anti-oxidative, and anti-inflammatory effects against cellular injury,
and protects the cells through the regulation of mitochondrial biogenesis, autophagy, and
metabolism in response to the cellular energy and redox status. SIRT1 also promotes
vasodilation and protects vascular tissues. In humans and animal models with diabetic
kidney disease (DKD), its expression tends to be decreased in renal cells, and increased
expression of SIRT1 was found to play a renal protective role in animal models with DKD.
In this review, we discuss the role and potential mechanisms by which SIRT1 protects
against DKD.

Keywords: SIRT1, diabetic kidney disease, senescence, deacetylation, apoptosis, autophagy, diabetes mellitus,
sirtuin

INTRODUCTION
Diabetes mellitus (DM) is a major medical problem worldwide. It
is the underlying cause of microvascular disorders such as diabetic
nephropathy and retinopathy and macrovascular diseases such as
coronary artery and peripheral vascular diseases. Currently, more
than 347 million people worldwide are suffering from DM (1),
and the World Health Organization projects that it will be the
seventh leading cause of death by 2030. The increased prevalence
of DM has led to a significant increase in the prevalence of dia-
betic kidney disease (DKD) with estimates that 44% of all new
end stage renal disease (ESRD) cases in US are due to DKD (2, 3).
Several factors including hyperglycemia, insulin resistance, renal
lipid accumulation, inflammation, and activation of the renin–
angiotensin system (RAS) are involved in the pathogenesis of
DKD (4) and they activate multiple signaling pathways resulting
in kidney cell injury and the development and progression of the
disease (5, 6).

Since the discovery of the silent information regulator 2
(Sir2) family and its beneficial effects on aging (7, 8), scien-
tists have shown that the homologs of Sir2 in higher eukaryotic
organisms, known as Sirtuins (SIRTs), are a conserved fam-
ily of a nicotinamide adenine dinucleotide (NAD+)-dependent
deacetylases/mono-ADP ribosyltransferases that are associated
with numerous cellular signaling pathways that include senescence
(9–12), apoptosis (13), DNA damage repair (14), and autophagy
(12, 15). By far, SIRT1 is the most studied member of this family
and its protective roles against kidney injury are well established,
making it a promising candidate for targeted therapies to halt
disease progression.

GENERAL CELLULAR FUNCTIONS OF SIRT1
SIRT1 exerts its cytoprotective effects through various mecha-
nisms. It has anti-apoptotic,anti-oxidative,and anti-inflammatory
effects, along with its regulation of mitochondrial biogenesis and
autophagy (Figure 1).

CELLULAR SENESCENCE, OXIDATIVE STRESS, AND MITOCHONDRIAL
DYSFUNCTION
Aging is considered the most important contributor to the etiolo-
gies of metabolic decline and related diseases (16). This process is
thought to be due mainly to the accumulation of oxidative stress
related mitochondrial DNA (mtDNA) damages, leading to mito-
chondrial dysfunction (17). Increasing Sirt1 expression by calorie
restriction (CR) in mice abrogated the dysmorphic mitochondrial
appearances associated with aging (e.g., mitochondrial swelling
and disintegration of cristae), whereas decreasing Sirt1 expression
resulted in an early aging phenotype in mice, revealing the impor-
tant role of SIRT1 on cellular senescence and other aging-related
diseases (9–12).

Increased oxidative stress has been associated with aging, and
SIRT1 has been shown to combat oxidative stress by modulating
transcriptional activities of several key proteins involved in oxida-
tive stress response and mitochondrial biogenesis. Peroxisome
proliferator-activated receptor-gamma coactivator-1α (PGC-1α)
is a transcriptional factor involved in lipid homeostasis and in
mitochondrial biogenesis, which prevents and protects against
oxidative stress (18). PGC-1α activity appears to be regulated by
SIRT1 deacetylation in a tissue specific manner (19). Deacetyla-
tion of PGC-1α by SIRT1 has been observed in skeletal muscles,
where PGC-1α deacetylation increases mitochondrial biogenesis,
mass, and improves exercise endurance (20), and in brown adipose
tissue (BAT), and endothelial cells (21).

Recent evidence suggests that SIRT1 can regulate the expres-
sion of a longevity gene p66Shc. p66Shc is one of three iso-
forms encoded by the proto-oncogene SHC (Src homologous
and collagen) and has been shown to promote oxidative stress,
leading to mitochondrial dysfunction, senescence, and apopto-
sis (22, 23). Deletion of p66Shc in Akita diabetic mice showed
a renoprotective phenotype that included the attenuation of
oxidative stress and glomerular/tubular injury and reduction in
albuminuria (24, 25).

www.frontiersin.org October 2014 | Volume 5 | Article 166 | 1

http://www.frontiersin.org/Endocrinology
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/about
http://www.frontiersin.org/Journal/10.3389/fendo.2014.00166/abstract
http://www.frontiersin.org/people/u/58696
http://www.frontiersin.org/people/u/186927
http://www.frontiersin.org/people/u/152679
mailto:cijiang.he@mssm.edu
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Endocrinology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yacoub et al. SIRT1 in DKD

FIGURE 1 | SIRT1 cellular, renal, and metabolic protective effects
against aging-related and metabolic diseases.

Several studies have shown that SIRT1 negatively regulates
expression of p66Shc through deacetylation of histone H3 on its
promoter (26). Treating different cell lines that do not usually
express p66Shc with histone deacetylase inhibitors induced p66Shc

expression (23, 26), and deletion of p66Shc in Akita diabetic mice
resulted in upregulation in SIRT1 expression in mice kidneys and
ameliorated kidney fibrosis and preserved podocytes mass and
function (24).

AUTOPHAGY AND APOPTOSIS
Autophagy and apoptosis are two closely related processes that are
triggered by common upstream signaling pathways to constitute
a stress adaptation, where in general autophagy inhibits apopto-
sis to maintain survival (27, 28). SIRT1 exerts an anti-apoptotic
and pro-autophagic responses in cells under stress conditions by
directly deacetylating essential autophagy proteins (Atg), such as
Atg5, Atg7, and Atg8 (29), and by deacetylation of transcription
factors, such as FOXO3a, to increase the expression of autophagy
proteins (12, 15). Deacetylation of FOXO3a by SIRT1 also pre-
vents apoptosis by enhancing the expression of p27Kip1, a cyclin-
dependent kinase inhibitor that causes G1 arrest to maintain cell
viability (12, 30).

In addition, SIRT1 has been shown to deacetylate and inactivate
the transcriptional activity of p53, a tumor suppressor responsi-
ble of maintaining cellular integrity by inducing cell-cycle arrest,
and if necessary evoking apoptotic cell death (31). With aging,
the depletion of NAD+ storage attenuates SIRT1 activity, lead-
ing to hyperacetylation of p53. p53 has been shown to stimulate
or repress autophagy depending on its subcellular localization,
where cytoplasmic p53 promotes apoptosis and inhibits autophagy
(32). While it is known that SIRT1 regulates p53 function by
deacetylation, whether it affects its cytoplasmic localization is not
known (33).

ADIPOSE TISSUE TRANSFORMATION
One of the mechanism by which CR is thought to extend life span is
through fat mobilization. Upon CR, SIRT1 binds and represses the

fat regulator peroxisome proliferator-activated receptor-gamma
(PPARγ), attenuating adipogenesis, and triggering lipolysis (34).
It also selectively decreases white adipose genes Angiotensino-
gen (Agt ), Resistin, Wdnm1L, Chemerin, and Pank3 (35). PPARγ

deacetylation by SIRT1 causes also a lipid transformation from
white adipose tissue (WAT) to BAT through regulating ligand-
dependent coactivator/corepressor exchange at the PPARγ tran-
scriptional complex (35). WAT distribution affects metabolic
risk and is linked to metabolic diseases as obesity, diabetes,
and dyslipidemia (36). The metabolic benefits of this conversion
include prevention of diet-induced obesity and increased insulin
sensitivity (37).

ROLE OF SIRT1 IN DM
It is well established that the risk of micro and macrovascu-
lar complications in patients with DM is closely related to the
glycemic control. In the fasting state, hyperglycemia is directly
related to hepatic glucose production, which in turn, along with
the decreased insulin production or increased insulin resistance,
is responsible for the hyperglycemia in the postprandial state (38).
SIRT1 participates in regulating glucose homeostasis through reg-
ulating hepatic glucose production, lipid metabolism and insulin
production, and sensitivity (39–42).

HYPERGLYCEMIA
SIRT1 decreases hepatic glucose production via deacetylation and
activation of the AMPK kinase LKB1 (39). When activated, AMPK
switches off hepatic glucose, cholesterol, and triglyceride pro-
ductions and promotes fatty acid oxidation. AMPK in turn also
activates SIRT1 via increasing its substrate NAD+ (43). This reci-
procal activation/dynamic interaction between AMPK and SIRT1
is disrupted by hyperglycemia, which decreases AMPK expression,
leading to reduced SIRT1 expression (44).

LIPID METABOLISM AND INSULIN PRODUCTION AND SENSITIVITY
Under the fasting state, hepatic SIRT1 regulates lipid homeosta-
sis and gluconeogenesis by positively regulating PPARα and its
coactivator PGC-1α (10). In addition, SIRT1 also suppresses gly-
colysis via deacetylation of phosphoglycerate mutase-1 (PGAM1)
and decreasing the expression of glycolysis genes glucokinase (GK )
and liver pyruvate kinase (LPK ), while PGC-1α increases the
expressions of GK and LPK (10, 40). In contrast, under the feed-
ing state hepatic SIRT1 negatively regulates gluconeogenesis via
mTorc2/Akt signaling pathway, resulting in decreased transcrip-
tion of gluconeogenic genes glucose-6-phosphatase (G6pase) and
phosphoenolpyruvate carboxykinase (Pepck) (45). Experimental
mice model of hepatic Sirt1 deficiency displayed hyperglycemia,
glucose intolerance, hepatic insulin resistance, and oxidative stress
in insulin-sensitive organs through disrupted mTorc2/Akt sig-
naling (45). This bimodal regulation of gluconeogenesis under
feeding/fasting states by SIRT1 promotes adaptation to nutrient
deprivation (10, 41).

SIRT1 also enhances insulin secretion from the pancreatic beta
cells by regulating the expression of uncoupling protein 2 (Ucp2)
(42), and decreases insulin resistance via reducing the expres-
sion of the proteins in the insulin receptor signaling pathway,
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such as protein tyrosine phosphatase 1B (PTP1B), and by inhibit-
ing insulin-induced IRS-2 (insulin receptor substrate-2) tyrosine
phosphorylation by deacetylation (46, 47).

EXPRESSION OF SIRT1 IN DIABETIC KIDNEY
SIRT1 expression changes under different physiological and mor-
bid conditions. It is decreased in conditions of chronic metabolic
stress, oxidative stress, or hypoxia that drives the pathophysiolo-
gies of age-related diseases including diabetes, cardiovascular, and
renal diseases. In aging kidneys both the expression and activity
of SIRT1 is decreased due to age-associated reduction in systemic
NAD+ biosynthesis (12). Similarly, reduction in SIRT1 expression
was observed in kidney glomeruli and tubulointerstitial compart-
ments of patients with mild to severe DKD, which was inversely
correlated with the histopathological severity of the renal disease
and with the amount of proteinuria (48, 49). Experimental mouse
models of DM similarly showed a loss of Sirt1 in renal proximal
tubules (PT) and podocytes (48, 49), where the loss of PT Sirt1
preceded the loss of podocyte Sirt1 and the concomitant albumin-
uria. Interestingly, restoration of PT Sirt1 was sufficient to increase
pore densities in podocytes and to mitigate albuminuria and wors-
ening of DKD (49), suggesting that PT Sirt1 confers protection
in maintaining the glomerular structure and function during the
early stages of DKD and that therapeutic agents that increase the
renal SIRT1 expression and activity may have a favorable impact
in slowing the disease progression of DKD.

ROLE AND CELLULAR MECHANISMS OF SIRT1 IN DKD
Among many studies indicating SIRT1’s protective role in numer-
ous different cell types, several studies have described its protective
role in different kidney cells. Some of these effects are in the gen-
eral context of SIRT1’s cytoprotective actions, while others seem to
have a unique specificity to specialized renal cells. In the following
section, we will discuss the deleterious effects of reduced SIRT1
expression on kidney cells, and the mechanisms by which SIRT1
is found to exert its benefits on renal cells and on the concomitant
inflammation, angiogenesis, and fibrosis, all of which contributes
to the progression of DKD (Table 1).

PODOCYTES
One of the earliest changes in DKD is the loss of podocytes, lead-
ing to proteinuria and further kidney damage (60–62). In DKD,
podocyte apoptosis is aggravated by hyperglycemia via increas-
ing the production of advanced glycation end products (AGEs),
which in turn increases FOXO4 acetylation and suppresses SIRT1
expression (48). This decreased SIRT1 expression leads to the accu-
mulation of acetylated FOXO4 and to the expression of the pro-
apoptotic gene Bcl2l11 (also known as Bim), resulting in apoptosis
(48). Hyperglycemia also stimulates the generation of intracellular
reactive oxygen species (ROS) through NADPH oxidase and mito-
chondrial pathways, leading to activation of the pro-apoptotic p38
mitogen-activated protein kinase (p38 MAPK) and Caspase 3 in
podocytes (5).

PROXIMAL TUBULAR CELLS
Tubular SIRT1 has been shown to affect podocyte function via
maintaining a high glomerular nicotinamide mononucleotide

(NMN) concentration via diffusion of the NMN produced in the
PTs (49, 63). Decreased expression of NMN has been observed in
DKD (64), which is likely to be the first pathological changes pre-
ceding proteinuria (65). PT SIRT1 communicates with podocytes
through the release of NMN. PT SIRT1 appears to negatively mod-
ulate the expression of the tight junction protein Claudin-1 (49).
In healthy conditions, Claudin-1 is not expressed in podocytes but
primarily expressed on glomerular parietal cells. However, in dia-
betic mice models podocytes express Claudin-1, possibly as a part
of a podocyte dedifferentiation mechanism that occurs in DKD or
by reorganization of the podocyte actin cytoskeleton (63). SIRT1
also protects PTs under hypoxic conditions by inducing autophagy
and inhibiting apoptosis (12, 24).

RENAL MEDULLA
In a healthy individual, a quarter of the cardiac output is directed
to the kidneys, with most of this flow going to the cortex to opti-
mize glomerular filtration. However, the renal medulla’s blood
flow is low to preserve osmotic gradient and enhance concen-
tration ability. The renal medulla is also under chronic and
constant oxidative stress due to the rapid change in interstitial
tonicity and the low oxygen tension (66, 67). A small percent-
age of oxygen consumed by the mitochondria is incompletely
reduced to ROS, which then targets the other mitochondrial com-
ponents and augments the generation of increased ROS by the
injured mitochondria. Under these conditions, renal mitochon-
dria undergo a constant autophagy process. To cope with hypoxia,
higher organisms’ adaptive mechanisms includes switching energy
metabolism from oxygen phosphorylation to HIF-1 mediated
anaerobic glycolysis (68), which concurrently blocks mitochon-
drial energy metabolism and biogenesis (69). SIRT1 is normally
expressed in the inner medulla and is upregulated during intermit-
tent hypoxia-reoxygenation and protects against oxidative stress
via stabilizing HIF-1α and regulating of cyclooxygenase 2 (COX2)
(54, 70). However in chronic hypoxic state, the renal medulla
endures in DKD, SIRT1 activity is inhibited due to decreased
NAD+ (58).

MESANGIAL CELLS
Mesangial injury and expansion mark early histological changes
in DKD, and they are correlated closely with the degree of
albuminuria. SIRT1 attenuates TGF-β1 induced mesangial cell
apoptosis through its direct interaction and deacetylation of
Smad7, enhancing its ubiquitin-mediated proteasome degrada-
tion (51). SIRT1 also prevents high glucose-induced mesangial
cells hypertrophy by augmenting the AMPK–mTOR signaling
pathway (53) and subsequently blocking the activation of Akt
signaling (71). NAD+ treatment mitigates the high glucose-
induced Akt and mTOR phosphorylation in cultured mesangial
cells (53).

ENDOTHELIAL CELLS AND ANGIOGENESIS
As in diabetic retinopathy, new vessel formation is observed in
DKD patients (72) and in animal models (73), contributing
to its pathogenesis. Early on in DKD, there is an increase in
endothelial cells number, caused by the imbalance between prolif-
eration and apoptosis, where VEGF-A appears to be the major
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Table 1 | Role and cellular mechanisms of SIRT1 in DKD.

Renal cell/

compartment

SIRT1 role Mechanism Reference

Podocytes Anti-apoptosis Deacetylates FOXO4, decreasing the expression of the pro-apoptotic gene

Bcl2l11 (Bim)

(48)

Decreases albuminuria Negatively regulating Claudin-1 (49)

Proximal tubular

cells

Decreases apoptosis and improves

autophagy

Deacetylates FOXO3a leading to enhanced expression of Bnip3

(pro-autophagy) and p27Kip1 (anti-apoptosis)

(12)

Attenuates hypoxia-associated

mitochondrial damage

Decreases age-associated mtDNA oxidative damages (12)

Decreases albuminuria Maintains the glomerular structure through suppressing Claudin-1 expression

in podocytes

(49)

Decreases fibrosis Prevents TGF-β1 induced fibrotic response via Smad3 deacetylation (50)

Mesangial cells Anti-apoptosis Attenuates TGF-β1 induced mesangial cell apoptosis through its direct

interaction and deacetylation of Smad7

(51)

Inhibition of ROS-mediated apoptosis P53 deacetylation (52)
Decreases mesangial expansion Prevents hyperglycemia-induced hypertrophy by augmenting the

AMPK–mTOR signaling pathway

(53)

Binds and activates ACE2 promoter leading to increased Ang1–7 production (4)

Renal medulla Protects against oxidative injury Stabilizes HIF-1α and regulates COX2 during intermittent

hypoxia-reoxygenation

(54)

Reduces apoptosis and fibrosis Regulates COX2 decreasing oxidative stress-induced apoptosis (54)

Collecting ducts Solute and water handling Represses α-ENaC transcription (55)

Endothelial cells Prevents early senescence and fibrosis Upregulates MMP-14 leading to increased matrilytic activity and angiogenesis (56)
Modulates angiogenesis Prevents increased permeability and cellular junction disruption via

downregulation of VEGF and Flk-1 (in podocytes too)

(57)

Promotes vasodilatation Decreases the expression of AT1R, and increases NO by deacetylating eNOS (58)

Glomeruli Attenuates hypoxia-associated

mitochondrial damage

Decreases age-associated mtDNA oxidative damages (12)

Renal cortex Anti-inflammatory Decreases macrophages infiltrates, deacetylates NF-κB p65 subunit and

negatively regulates MCP-1, ICAM-1, and VCAM-1

(59)

Glomerular/tubular

compartments

Decreases cellular senescence and

apoptosis

Deacetylates H3 on p66Shc promoter (24)

FOXO, forkhead box protein O; Bnip3, BCL2/adenovirus E1B 19 kDa protein-interacting protein 3; ACE2, angiotensin-converting enzyme 2; Ang1–7, angiotensin-(1–7);

COX2, cyclooxygenase 2; HIF-1α, hypoxia-inducible factor 1α; α-ENaC, α-epithelial sodium channel; MMP-14, matrix metalloproteinase-14;VEGF, vascular endothelial

growth factor; Flk-1, fetal liver kinase-1; AT1R, angiotensin II receptor-type 1; NO, nitric oxide; eNOS, endothelial nitric oxide synthase; NF - κB, nuclear factor kappa

B; MCP-1, monocyte chemotactic protein-1; ICAM-1, intercellular adhesion molecule-1; VCAM-1, vascular cell adhesion molecule-1.

driver of this imbalance. Other factors affecting angiogenesis
include nitric oxide deficiency, glomerular hypertension (74),
altered expressions of VEGF receptors 1 and 2, Angiopoietin
2, and Tie-2 (57, 75, 76). In vivo and in vitro studies have
shown that resveratrol (RSV), a SIRT1 activator, downregulates
high glucose-induced VEGF-A and Flk-1 (VEGFR-2) expres-
sions in both glomerular podocytes and endothelial cells. RSV
also inhibits VEGF-A induced increased permeability and cel-
lular junction disruption of cultured endothelial cells (57).
SIRT1 also maintains endothelial cells function and prevents
early senescence via upregulating matrix metalloproteinase-14

(MMP-14), an important factor for endothelial cells regenera-
tion after injury. MMP-14 cleavage products serve as a ligand
for epidermal growth factor (EGF) receptors (56). Endothelial
cells have also been shown to express early senescence features
in presence of high glucose through the down regulation of
SIRT1 expression, leading to an increased acetylation of FOXO1
by p300 (77).

INFLAMMATION
Microinflammation of the glomeruli and tubulointerstitial regions
and subsequent extracellular matrix expansion are common
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pathways for the progression of DKD, which occurs in response
to renal damage as a defense mechanism. This dynamic process
of pro-inflammatory macrophages M1 and anti-inflammatory
macrophages M2 recruitment to the kidneys eventually leads to
kidney fibrosis, highlighting the importance of inflammation as
a therapy target to slow the DKD progression (78). SIRT1 can
deacetylate NF-κB p65 subunit and negatively regulate the NF-
κB signaling mediated expression of the inflammation-related
proteins monocyte chemotactic protein-1 (MCP-1), intercellu-
lar adhesion molecule-1 (ICAM-1), and vascular cell adhesion
protein-1 (VCAM-1) (59). Dietary restriction in Wistar fatty
rates restores Sirt1 expression and ameliorates diabetic nephropa-
thy abnormalities (i.e., albuminuria, mesangial matrix expansion,
and renal fibrosis), which is in part mediated by Sirt1’s anti-
inflammatory effects as evidenced by decreased macrophages infil-
trates and changes in expression of NF-κB p65, MCP-1, ICAM-1,
and VCAM-1 (59).

FIBROSIS
Kidney fibrosis is the final outcome of progressive DKD, and it
results in a significant destruction of normal kidney structure
accompanied by functional deterioration. TGF-β1 is upregulated
in response to various kidney injury stimuli, causing renal fibrosis
and epithelial–mesenchymal transformation of the renal tubules
(79). Recent studies have identified Smad2 and Smad3 acetylation
in response to TGF-β1 stimulation (50, 80, 81) and shown that the
RSV treatment of cultured PTs leads to deacetylation of Smad3
(50). In addition, RSV administration abolished TGF-β1/Smad3
induced up-regulation of α-SMA, collagen IV, and fibronectin
in UUO mouse model of kidney fibrosis, suggesting that SIRT1
activity may be essential in preventing TGF-β1 induced fibrotic
response via Smad3 deacetylation (50).

RENIN-ANGIOTENSIN SYSTEM AND SIRT1
Renin–angiotensin system, especially Angiotensin II (AngII) is
closely associated with the development and progression of DKD.
RAS inhibition by angiotensin-converting enzyme inhibitors
(ACEi), which inhibits the conversion of AngI to AngII, or
angiotensin receptors blockers (ARBs) decreases proteinuria in
patients with diabetic nephropathy and halts the disease progres-
sion to ESRD, thus improving patient survival (82). Angiotensin-
converting enzyme 2 (ACE2), a homolog of ACE not inhibited
by ACEi, counteracts AngII effects by hydrolyzing AngII into
Angiotensin 1–7 (Ang 1–7), which in turn protects against DKD by
increasing tissue triglyceride degradation and decreasing kidney
weight, mesangial expansion, proteinuria, and renal fibrosis (4).
SIRT1 regulates RAS by binding and activating ACE2 promoter,
leading to increased Ang 1–7 concentrations (4, 44). It also pro-
motes vasodilatation by decreasing the expression of the potent
vasoconstrictor angiotensin II receptor-type I (AT1R), and pro-
tects vascular tissues through increased nitric oxide production by
deacetylating eNOS in endothelial cells (58).

WATER HANDLING
Diabetes mellitus is associated with a significant polyuria
and natriuresis, as well as increased plasma aldosterone and

anti-diuretic hormone arginine vasopressin (AVP) levels. Studies
have identified serum and glucocorticoid induced kinase-1 (SGK-
1) as a key signaling element in diabetic nephropathy (83, 84).
Under the hyperglycemic state the increase in Ca2+ and TGF-
β1 leads to upregulation of SGK-1 in kidney, which regulates
epithelial Na+ channel (ENaC) activation, leading to increased
sodium absorption (85). A physiological role for SIRT1 in reg-
ulating the α-ENaC expression has been reported in cultured
renal inner medullary collecting duct cells (mIMCD3) (55). SIRT1
interacts with Dot (disruptor of telomeric silencing)-1, a his-
tone H3K79 methyltransferase, and enhances its activities on
histone H3K79 methylation in chromatin along the α-ENaC pro-
moter, and thereby repressing α-ENaC transcription in mIMCD3
cells (55).

CONCLUSION AND PROSPECTS
Since the first description of the Sir2 family and its effects on
longevity in yeast, our understanding of the specific actions and
role of SIRT1 on different kidney diseases have increased tremen-
dously. Administration of SIRT1 activators showed a restoration
of SIRT1 levels, decreased albuminuria, glomerular hypertrophy,
and kidney fibrosis in DKD models (86–90). The mechanisms by
which these activators exert their beneficiary effects are currently
under extensive research, highlighting the importance of devel-
oping therapies to increase either SIRT1 expression or activity in
patients with DKD to prevent disease progression. In addition, sin-
gle nucleotide polymorphisms (SNPs) within the gene encoding
SIRT1 have shown to have a directionally consistent association
with diabetic nephropathy leading to the assumption that SIRT1
not only play a protective role, but certain SNPs variations of
SIRT1 might predispose an individual to DKD (91). These find-
ings warrant further investigations into the functions of these SNPs
variations, and to develop new strategies for protection against
renal diseases.
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