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Massively parallel measurements of dominant-negative inhibition by protein fragments
have been used to map protein interaction sites and discover peptide inhibitors.
However, the underlying principles governing fragment-based inhibition have thus far
remained unclear. Here, we adapted a high-throughput inhibitory fragment assay for
use in Escherichia coli, applying it to a set of 10 essential proteins. This approach
yielded single amino acid resolution maps of inhibitory activity, with peaks localized
to functionally important interaction sites, including oligomerization interfaces and
folding contacts. Leveraging these data, we performed a systematic analysis to uncover
principles of fragment-based inhibition. We determined a robust negative correlation
between susceptibility to inhibition and cellular protein concentration, demonstrating
that inhibitory fragments likely act primarily by titrating native protein interactions.
We also characterized a series of trade-offs related to fragment length, showing that
shorter peptides allow higher-resolution mapping but suffer from lower inhibitory
activity. We employed an unsupervised statistical analysis to show that the inhibitory
activities of protein fragments are largely driven not by generic properties such as
charge, hydrophobicity, and secondary structure, but by the more specific characteristics
of their bespoke macromolecular interactions. Overall, this work demonstrates funda-
mental characteristics of inhibitory protein fragment function and provides a founda-
tion for understanding and controlling protein interactions in vivo.
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Peptides have the capability to act as potent modulators of biological function by bind-
ing to proteins at specific sites, thereby altering protein activity. Compared to small
molecules, peptides have advantages in specificity, ability to target large and shallow
interaction surfaces (1, 2), and genetic encodability. Organisms have leveraged this phe-
nomenon by encoding peptide antimicrobials (3) as well as biological peptides termed
small proteins or miniproteins, which frequently regulate larger proteins (4–7). Syn-
thetic peptides can also be engineered for such inhibitory functions, providing potential
avenues for novel cancer therapeutics (8), antivirals (9), and antibiotics (10).
Fragments of native protein sequences can reproduce native interactions with bind-

ing partners while lacking other functions of the full-length protein. Similar to the case
with truncation mutants (11), these binding events allow such fragments to compete
with their parental protein for its native interactions and thereby act as dominant-
negative inhibitors. While most such examples of dominant-negative inhibition involve
intermolecular interactions, protein fragments can also inhibit intramolecular interac-
tions involved in protein folding (12, 13). Given their interference with native binding
contacts, inhibitory fragments permit functional mapping of proteins, identifying impor-
tant interaction sites at sub-gene resolution. DNA sequencing-based methods allow the
identification of such fragments in a massively parallel manner (14–16) to map functional
domains (14, 15). In these assays, a growth selection is performed on cells carrying a
protein fragment library under conditions in which the parental protein is important
for growth. Depletion of fragment-encoding sequences from the population, reflecting
inhibitory activity, is quantified by performing high-throughput sequencing before and
after selection. Peptides derived from such approaches are capable of pulling down their
expected interaction partners (15).
Here, we adapted this method to map a diverse set of 10 essential proteins in Escherichia

coli, reasoning that the abundance of structural and functional information available for
this organism should reveal biophysical principles underlying fragment-based inhibition
and empower applications of inhibitory fragments as tools to study protein function in vivo.
Measurements of E. coli growth permitted functional mapping at single residue resolution,
revealing the importance of dozens of structural elements that can act as dominant-negative
inhibitors. Many inhibitory protein fragments mapped to protein–protein interaction sites,

Significance

Peptide fragments derived from
protein sequences can inhibit
interactions of their parental
proteins, providing tools to study
protein function in vivo. Here, we
employed a massively parallel
assay to measure inhibition of
Escherichia coli growth by
fragments tiling the sequences of
10 of its essential proteins. We
leveraged these data to decipher
principles of fragment-based
inhibition, demonstrating that
parental protein concentration
drives activity and characterizing
how fragment length interplays
with activity and specificity. We
employed statistical analysis to
parse the roles of biophysical
properties in fragment-to-
fragment variation, finding that
the specific characteristics of each
fragment largely drive its
inhibitory activity. These results
advance our understanding of
protein interactions in vivo and
have implications for the rational
design of peptide inhibitors.

Author contributions: A.S. and S.F. designed research;
A.S. and A.F. performed research; A.S. analyzed data;
and A.S. and S.F. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2022 the Author(s). Published by PNAS.
This article is distributed under Creative Commons
Attribution-NonCommercial-NoDerivatives License 4.0
(CC BY-NC-ND).
1Present address: Department of Biology, Massachusetts
Institute of Technology, Cambridge, MA 02142.
2Present address: Program in Molecular and Cellular
Biology, University of Washington and Fred Hutchinson
Cancer Research Center, Seattle, Washington 98195.
3To whom correspondence may be addressed. Email:
fields@uw.edu.

This article contains supporting information online at
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2200124119/-/DCSupplemental.

Published June 24, 2022.

PNAS 2022 Vol. 119 No. 26 e2200124119 https://doi.org/10.1073/pnas.2200124119 1 of 11

RESEARCH ARTICLE | MICROBIOLOGY

https://orcid.org/0000-0002-0333-3199
https://orcid.org/0000-0001-8006-1724
https://orcid.org/0000-0001-5504-5925
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:fields@uw.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2200124119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2200124119/-/DCSupplemental
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2200124119&domain=pdf&date_stamp=2022-06-24


and others mapped to regions that inhibit intramolecular folding
interactions. Leveraging the data across diverse proteins, we per-
formed analyses that revealed the importance of fragment length,
as well as a strong negative correlation between the cellular concen-
trations of proteins and their susceptibility to fragment-based inhi-
bition. We also employed ANOVA analysis and AlphaFold
modeling to delve into the roles of biophysical properties in the
inhibitory activity of fragments. In sum, our results provide key
principles for understanding protein fragment inhibition in living
cells.

Results

A High-Throughput Protein Fragment Assay Recapitulates
a Folding-Inhibitory Region of Dihydrofolate Reductase. To
scan for dominant-negative inhibitory fragments of E. coli
proteins, we developed a high-throughput assay (Fig. 1A and

Materials and Methods) analogous to approaches employed in
yeast and human cells (14, 15, 17). We combined measurements
of growth selection depletion with an alignment of fragments to
their parental proteins, generating maps of inhibitory activity as
a function of sequence position. To systematically cover all posi-
tions of a protein with fragments of tunable length, we array-
synthesized libraries of DNA fragments tiling across the coding
sequence of each protein with single residue resolution (Materials
and Methods), similar to the approach of Ford et al. (15).

We sought to establish this approach in E. coli using a model
protein with a known inhibitory fragment acting by a well-
characterized mechanism: dihydrofolate reductase (DHFR), a
monomeric protein for which a C-terminal fragment inhibits the
refolding of the full-length protein in vitro (12). We reasoned that
similar protein fragments might also affect DHFR folding in vivo.
We generated an inhibitory fragment map by plotting the inhibi-
tory activity (selection enrichment, E) of 30-residue fragments as a
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Fig. 1. Mapping protein functional regions with dominant-negative inhibitory fragments. (A) Schematic describing the high-throughput inhibitory
fragment assay. Fragments generated from genes of interest are cloned into an expression vector and transformed into E. coli. A growth selection is
performed, and inhibitory fragment depletion from the population is quantified by high-throughput sequencing, allowing determination of the enrichment
E = log2(fpost-selection/fpre-selection), where f denotes frequency, with E < 0 indicating depletion. Fragment alignment to the parental protein sequence allows iden-
tification of inhibitory regions. (B) Tiling inhibitory fragment scan results for E. coli DHFR, at a tile step size of 1 amino acid (aa). Enrichment (E) is plotted as a
function of fragment center position. Points: individual fragment measurements; error bars: SEM from multiple experiments; dashed horizontal lines: guide
lines at ±1E (±twofold change in frequency). Colored rectangular markers indicate positions of inhibitory (inhib.) peaks, with width indicating a representative
fragment. (C) DHFR crystallographic structure (PDB ID 7dfr) with N- and C-termini indicated, overlaid by the N-terminal and C-terminal inhibitory peaks (Left) and
the known refolding-inhibitory fragment (Right) from the work of Hall and Frieden (12). A higher-resolution version of this figure is available on figshare (18).
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function of sequence position (Fig. 1B). We observed an inhib-
itory peak in the same C-terminal region of the protein as the
known folding inhibitor (12) (Fig. 1C), suggesting that these
fragments also inhibit folding in cells. We additionally observed
an N-terminal inhibitory peak, mapping to a region involved
in binding dihydrofolate, that might inhibit DHFR via sub-
strate titration (Fig. 1C). We used a Nextera transposase-based
random fragment library (14) of the DHFR-encoding folA gene
to demonstrate coding frame-dependence of inhibition, with out-
of-frame fragments predominantly neutral (E ≈ 0) (SI Appendix,
Fig. S1); these results underscore that fragment inhibitory activity
is sequence dependent and acts at the protein level.

Tiling Fragment Scans of Essential E. coli Proteins Map Key
Interaction Sites. Given the results with DHFR, we applied
high-throughput inhibitory fragment mapping to a set of nine
additional bacterial proteins (Table 1), spanning several core
processes: DNA replication (DNA gyrase subunit A, GyrA;
single-stranded DNA binding protein, Ssb), transcription
(RNA polymerase subunit beta, RpoB), translation (isoleucyl
tRNA synthetase, IleS; 50S ribosomal protein L7/L12, RplL),
protein quality control (GroEL; GroES), cell division (FtsZ),
and outer membrane maintenance (lipopolysaccharide transport
protein G, LptG ). Overall, this assay yielded a raw enrichment
signal that delineated inhibitory peaks without requiring
coverage-based smoothing (Fig. 2 A–G), as employed previ-
ously (14, 15). An overview of the results is presented in Tables
1 and 2.
We first considered measurements with tiling fragments of

30 residues, as used with DHFR. The results for FtsZ (Fig. 2A,
Left) exemplify what can be learned using this approach. FtsZ
forms filaments that are essential for bacterial cell division (20);
monomers polymerize head-to-tail (21), providing a well-
characterized binding interface (Fig. 2A, Right). Several binding
contacts from either side of this interface yielded inhibitory
fragment peaks. The two strongest inhibitory peaks mapped to
loop structures with flanking helices, which formed portions
of the oligomerization interface that we term sites 1 and 20
(Fig. 2A); inhibitory fragment peaks also mapped to the com-
plementary regions of the adjacent FtsZ monomer, sites 10 and
2 (Fig. 2A). These results suggest that fragments from these
regions inhibit filament assembly, similar to the miniprotein
MciZ (22); and indeed, we found that a fragment from site 1

inhibited FtsZ polymerization in vitro by ∼20% (SI Appendix,
Fig. S2). Conversely, no inhibitory peaks were observed mapping
to interaction interface regions 3 and 30 (residues 65 to 69 and 1
to 11; Fig. 2A), consistent with a B-factor analysis suggesting that
the interactions of these sites are weak (21). Outside of the head-
to-tail monomer interface, the fragment scan detected an inhibitory
region at the junction of the intrinsically disordered C-terminal
linker and the C-terminal-most 15 residues, which enable modula-
tion of FtsZ activity by binding partners such as FtsA, ZipA, and
MinC (23). This result demonstrates the utility of inhibitory frag-
ment scanning for functionally mapping intrinsically disordered
regions for which no structural information is available.

Inhibitory fragments mapped to key interaction sites across
the sequences of several additional proteins. For RplL, the
single inhibitory peak was localized to an N-terminal region
responsible for RplL dimerization and binding to 50S ribo-
somal protein L10; both interactions are required to form the
ribosomal stalk (Fig. 2B). For Ssb, the single inhibitory peak
mapped to an alpha-helical region involved in the dimerization
of Ssb, which further tetramerizes (Fig. 2C). For GyrA, multi-
ple inhibitory peaks were observed (Fig. 2D), with the strongest
two mapping to the C-Gate formed by a GyrA dimer interface;
the C-Gate must properly open and close to control the direc-
tionality of DNA strand transfer during gyrase activity, with
errors resulting in double-stranded DNA (dsDNA) breaks (24).
Several peaks were also identified for RpoB, including one local-
ized to a site that interacts with single-stranded DNA (ssDNA) in
the context of a transcription-translation “expressome” complex
(Fig. 2E; ref. 25). For GroEL, several inhibitory fragment peaks
mapped to the interface between the two stacked GroEL hep-
tamers (Fig. 2F, Right and Bottom Left), suggesting inhibition of
proper GroEL/ES complex assembly and chaperone function. On
the other hand, we observed no inhibitory peaks in a fragment
scan of GroES (Fig. 2F, Top Left).

For IleS, the strongest inhibitory peaks clustered in the
C-terminal region (Fig. 2G). The structure of E. coli IleS has
not been determined, but these results are congruent with func-
tional data; the strong C-terminal inhibitory peaks overlap with
a large C-terminal fragment (residues 585 to 939) that acts as
a folding inhibitor in vitro and a dominant negative in vivo
(13). The results of the inhibitory fragment scan suggest that
this folding-inhibitory activity is localized more finely in the
sequence, with several distinct peaks at residues ∼600 to 800.

Table 1. Overview of inhibitory fragment assay targets, their properties, and overall results

E. coli gene Protein Length (aa)

Cellular abundance
(protein molecules/

cell)
<E> for 30-aa tiling

fragments

folA Dihydrofolate reductase (DHFR) 159 2,515 �1.78
gyrA DNA gyrase subunit A (GyrA) 875 5,219 �1.21
ileS Isoleucyl tRNA synthetase (IleS) 938 6,143 �1.26
ftsZ Cell division protein FtsZ 383 6,750 �1.20
rpoB RNA polymerase subunit beta (RpoB) 239 16,156 �0.99
rplL 50S ribosomal protein L7/L12 (RplL) 1,342 472,965 �0.84
ssb Single-stranded DNA binding protein (Ssb) 121 14,444 �0.66
groL 60 kDa chaperonin (GroEL) 178 52,165 �0.28
groS 10 kDa chaperonin (GroES) 548 59,001 �0.21
lptG Lipopolysaccharide transport protein G

(LptG)
97 775 —

Properties of each E. coli protein assayed by inhibitory fragment scanning are compiled, together with the average inhibitory effects of tiling 30-residue fragments. Cellular
concentrations of proteins are from ref. 19.
aa, amino acid.
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Fig. 2. Inhibitory fragments map interaction interfaces of essential bacterial proteins. Inhibitory fragment scans of E. coli proteins with tiling fragments, at a
tile step size of 1 amino acid (aa). Enrichment (E) is plotted as a function of fragment center position. Points: individual fragment measurements; error bars:
SEM from multiple experiments; dashed horizontal lines: guide lines at ±1E (±twofold change in frequency). Colored rectangular markers indicate positions
of inhibitory peaks (with width indicating a representative fragment, unless otherwise noted). In protein structures to the right of the plots, locations of
inhibitory peaks (generally representative fragments) are overlaid on the structure in a color matching the corresponding peak marker in the plot to the left
(generally black). (A–G) 30-residue tiling fragment scans of indicated proteins. (H) A 14-residue tiling fragment scan of LptG. Additional features are present
as indicated: (A), salmon line indicates average E per residue due to all fragments covering that residue; the width of the peak 1 marker indicates the peak
width (16 residues); the lavender asterisk marks the inhibitory peak that falls in the C-terminal intrinsically disordered region; and the colored bar at the top
of the plot indicates the layout of structural elements in the linear sequence; NTD, N-terminal domain, CTD, C-terminal domain. (H) Shaded regions denote
indicated topological domains. PDB IDs for structures: (A) FtsZ: 6unx; (B) RplL: 3j7z (Upper) and 1rqu (Lower); (C) Ssb: 1eqq; (D) GyrA: 6rks; (E) RpoB: 6×9q;
(F) GroEL-ES: 1aon; (H) LptG: 6mi7. No structure is shown for E. coli IleS because it has not yet been determined. A higher-resolution version of this figure is
available on figshare (18).
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To determine whether membrane proteins are amenable to
fragment-based inhibition, we performed an inhibitory fragment
scan of LptG, a transmembrane protein involved in lipopoly-
saccharide transport from the inner to the outer membrane. To
better resolve functions of the multiple short cytosolic, transmem-
brane, and periplasmic domains found throughout the sequence,
we scanned LptG with fragments of 14 residues. The fragment
scan yielded four inhibitory peaks, which all mapped to trans-
membrane alpha-helices (TM1, TM2, TM4, or TM5; Fig. 2H).
It seems unlikely that this inhibition arises from mechanisms
generic to hydrophobic peptides (e.g., aggregation), as fragments
mapping to the remaining two transmembrane alpha-helices,
TM3 and TM6, did not yield inhibitory peaks, although we can-
not rule out the possibility that the TM3 and TM6 fragments are
less stable. We hypothesize that the inhibitory fragments localize
to the membrane and inhibit LptG folding and/or interactions
with other membrane proteins. For example, structures of the Lpt
complex (26) reveal that LptG TM5 forms a binding interaction
with the TM1 helix of LptF. Similarly, LptG TM1 interacts with
the transmembrane helix of LptC (26), although the inhibitory
fragment peak maps to the center of the TM1 helix rather than
the end that directly binds LptC. Membrane localization of these
hydrophobic alpha-helical fragments is consistent with posttransla-
tional membrane insertion of short hydrophobic sequences (e.g.,
an 18-mer helix of YkgR) by the signal recognition particle (SRP)
(27). Given the low protein copy number of LptG (Table 1),
even limited membrane entry by its inhibitory fragments may per-
turb function.
Activity of fragments in this assay is a function of both inherent

inhibitory activity and steady-state cellular concentration. Tran-
scription and translation levels should be similar due to the com-
mon expression system, but fragments may vary in stability. The
common N-terminal tag (Materials and Methods) should reduce
stability differences (28, 29); nonetheless, an absence of inhibitory

activity may in some cases reflect fragment instability, even for an
inherently active fragment.

A Simple Principle Underlies Variable Susceptibility of Proteins
to Fragment-Based Inhibition. We sought to understand the
factors driving the varied susceptibility of different proteins to
fragment-based inhibition. For example, fragments derived
from GroEL and especially GroES had lower average inhibitory
activity than fragments derived from the other E. coli proteins
(Fig. 2F, Left and Table 1). In contrast, fragments derived from
DHFR exhibited a baseline inhibitory effect (Fig. 1B), resulting in
these fragments exhibiting the highest average inhibitory activity of
the proteins tested (Table 1). Many factors could play a role in this
differential susceptibility, including localization, folding stability,
structural characteristics, number of interaction partners, strength
of native binding interactions, and cellular concentration of the
parental proteins. This last factor seemed likely to be important, as
a given concentration of fragments that bind competitively with
native interactions should be less inhibitory when the parental pro-
tein is more abundant.

We performed an analysis of the relationship between the aver-
age inhibitory effects of 30-residue fragments derived from each
protein and the corresponding protein concentration (protein copy
number per cell; refs 19, 30). We uncovered a robust negative cor-
relation between parental protein concentration and susceptibility
to fragment-based inhibition, observed as a linear relationship
(R2 = 0.95) between the log of the protein copy number per cell
and the average enrichment <E> of fragments derived from that
protein (Fig. 3), with a higher <E> corresponding to lower average
inhibitory activity. The slope indicates that a ∼10-fold increase in
protein concentration is associated with ∼50% less fragment deple-
tion in our assay (an average E increase of ∼1). Thus, the poor sus-
ceptibility of GroEL and GroES to fragment-based inhibition
might be explained by their high cellular concentrations, and the

Table 2. Overview of highlighted inhibitory peaks

E. coli protein
Example inhibitory peak locations

in sequence (aa) Notes

DHFR 17, 120 Peaks map to a substrate-binding region (17) and a known
refolding-inhibitory region (120)

GyrA 386, 493 Strongest two peaks both map to dimeric C-gate, which controls
DNA strand transfer directionality; one peak (386) maps to the
homodimer contact required for gate closure, the other (493)
to the C-gate “hinge” structure

IleS Cluster of peaks at positions 600 to 800 Example peaks map within a known refolding-inhibitory region
FtsZ 131, 178, 201, 273, 368 Example peaks map to reciprocal interaction sites for filament

formation (131 and 201; 178 and 273) and an intrinsically
disordered region implicated in regulatory interactions with
other proteins (368)

RpoB 211 Strongest peak maps to a protein region that interacts with
ssDNA

RplL 20 Peak maps to a region of RplL (50S L7/L12) involved in
homodimerization and interaction with L10, required for
ribosome stalk formation

Ssb 67 Peak maps to only region of defined secondary structure,
involved in Ssb tetramer formation

GroEL 18, 102, 176, 244/261, 446, 501 Multiple peaks map to the GroEL–GroEL heptameric ring
interface (18, 102, 446, and 501)

GroES — No inhibitory peaks observed
LptG 21, 77, 292, 324 All four peaks map to specific transmembrane domains (TM1,

TM2, TM4, TM5)

Summary of example inhibitory peaks highlighted in the text, for each E. coli protein assayed by inhibitory fragment scanning.
aa, amino acid.

PNAS 2022 Vol. 119 No. 26 e2200124119 https://doi.org/10.1073/pnas.2200124119 5 of 11



broad sensitivity of DHFR to fragment-based inhibition by its
low concentration (Fig. 3 and Table 1). The sole exception to
the correlation was the ribosomal protein RpIL, fragments of
which were much more inhibitory than expected from its cellular
concentration (Fig. 3). A possible reason for this exception is that
even weak inhibition of ribosome assembly may be amplified in
the assay due to the large effect of ribosome levels on growth rates
(31). Additionally, RplL fragments may target dynamically assem-
bling pre-ribosomes, which likely exist at much lower concentra-
tions than mature ribosomes.
In sum, these results suggest that protein fragment-based

inhibition is driven primarily by fragments acting as competi-
tive inhibitors of native interactions formed by their parental
proteins, despite the complexities of the in vivo scenario. Addi-
tionally, these findings are inconsistent with the idea that the
inhibitory effects of fragments are largely due to more generic
effects, such as toxicity due to peptide aggregation.
We asked whether the relationship between protein concen-

tration and fragment inhibition could also be observed for frag-
ments tiling cancer-related proteins in a breast cancer cell line
(15, 32). However, this correlation was absent from the cancer
cell data (SI Appendix, Fig. S3), potentially reflecting important
differences from the E. coli experiments. First, the E. coli pro-
teins we investigated are essential, whereas the essentiality of
the cancer-related proteins studied is not well-defined. Second,
human cells may employ additional regulatory mechanisms (e.g.,
certain proteolytic activities) that reduce the impact of inhibitory
protein fragments in a sequence-specific manner.

Relationship between Fragment Length and Inhibitory Activity.
We sought to understand how the inhibitory effects of protein
fragments might depend on fragment length. For example,
shorter fragments might allow finer mapping of structural ele-
ments, but fragments that are too short might have little effect
due to limited binding energy. Conversely, longer fragments
might exhibit stronger inhibitory activity by forming larger
interaction surfaces or folding more stably in isolation. To
investigate these questions, we examined the results of scans
performed with fragments of 20 or 50 residues, compared with
those performed with 30-residue fragments (Fig. 4 A–C and SI
Appendix, Fig. S4).

The results demonstrate several general features of fragment-
based inhibition. First, tiling fragments of different lengths gen-
erally mapped out the same structural features of the parental
proteins (Fig. 4A and SI Appendix, Fig. S4). That the func-
tional maps produced with different fragment lengths are
so correlated—along with the finding that average inhibitory
effects of fragments of 50 residues also negatively correlated
with the concentrations of their parental proteins (SI Appendix,
Fig. S5)—further supports the idea that protein fragments typi-
cally act in a target- and sequence-specific manner.

Second, the average inhibitory activity was larger for longer
fragments (Fig. 4B and SI Appendix, Fig. S4). Increasing the
fragment length from 20 to 30 residues increased the magnitude
of inhibitory peaks while maintaining similar levels of background
inhibition throughout the sequence (i.e., the baseline was almost
unaffected), representing an increase in both inhibitory activity
and sequence specificity. However, further increasing the length
to 50 residues produced diminishing returns, as these fragments
exhibited a marked increase in generic inhibitory activity across
the sequence (a baseline shift to lower E) and, moreover, a
decrease in the strength of many inhibitory peaks relative to the
30-residue fragments (e.g., in FtsZ, RplL, Ssb, GyrA, IleS; Fig.
4A and SI Appendix, Fig. S4 A–D and H), which in almost all
cases led to a decreased maximum inhibitory activity (higher mini-
mum E) (Fig. 4C). We interpret this result as reflecting a compe-
tition between distinct target-specific and nonspecific inhibitory
mechanisms (unrelated to perturbation of parental protein interac-
tions) of the longer fragments, leading to reduced inhibition by
50-residue fragments from strong interaction sites. These results
suggest that there is a fragment length between 20 and 50 residues
that optimizes the balance of inhibitory activity and specificity; a
length of 30 residues appears to be near this optimum (Fig. 4C).

Third, shorter fragments allowed for finer-resolution func-
tional mapping, localizing inhibitory peaks to a narrower range
of fragment center positions. In the case of FtsZ (Fig. 4A), the
20-residue fragment scan yielded a peak width of just 10 resi-
dues for the major inhibitory region (compared to 16 with
30-residue fragments, and 22 with 50-residue fragments), con-
taining only one turn of the H7 alpha-helix but still encompassing
the loop of monomer interaction site 1 (Fig. 4A, Middle). How-
ever, the weaker inhibitory activity on average also meant that
some peaks observed with 30-residue fragments were less evident
in the 20-residue fragment scan.

In sum, there are trade-offs between fragment length and
important functional parameters that include inhibitory strength,
specificity, and resolution of functional mapping. Shorter protein
fragments allow higher-resolution mapping but are associated
with weaker inhibitory activity. Longer fragments can provide
greater sequence-specific activity, but only to a point, with non-
specific background inhibition and reduced inhibitory peak mag-
nitudes becoming evident by a fragment size of 50 residues in
E. coli.

The Bulk of the Variability in the Inhibitory Effects of Individual
Fragments Is Case Specific. The effects of parental protein con-
centration and fragment length explain only a portion of the
individual fragment-to-fragment variability (SI Appendix, Fig.
S6). Indeed, the strength of inhibition attainable at any specific
site in a protein sequence must depend on unique features of
each protein’s binding interactions. Hence, we sought to identify
common features of individual fragments that might explain
which sites in protein sequences are susceptible to fragment-based
inhibition. Using analysis of variance (ANOVA), we approached
this question across all protein targets investigated and several
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physicochemical and structural properties. In particular, we deter-
mined the percentage of total variability in the inhibitory effects of
protein fragments that is attributable to hydrophobicity, charge,
secondary structure features, fragment length, parental protein, rel-
ative position in the protein sequence, predicted peptide stability,
and fragment-specific effects not explained by these other proper-
ties (see Materials and Methods and SI Appendix, Table S1).
We found that a striking ∼72% of the total variability was

attributable to fragment-to-fragment variation, outside of that
attributable to any of the properties considered (Fig. 5). The
properties that contributed the most to variability were frag-
ment length, accounting for ∼10% of the total variation, and
parental protein, accounting for ∼4.2%, matching the overall
trends in fragment function. All other properties considered
each explained less than 1% of the variation. Added together,
secondary structure features of the fragment-covered portion of
the protein structure explained ∼1.5% of the variation: ∼0.3 to
0.7% each for alpha-helical, beta-sheet, or turn content.
Hydrophobicity had a comparable effect to secondary structure
(∼0.7% of the variation), and charge had an even smaller
effect, well below that attributable to error, providing addi-
tional evidence against a generic inhibitory mechanism of
aggregation due to charge and/or hydrophobicity, similar to the
results of Ford et al. (15). Relative position of the fragment in
the protein sequence and predicted fragment stability (33) were
both negligible for explaining variability, each being associated
with a fraction of the variation similar to or below the contri-
bution of error, suggesting that stability differences are not a
significant factor for inhibitory activity. The results of this anal-
ysis speak to the diversity of inhibitory function seen among
protein fragments, mirroring the vast diversity of possible folds
and interactions of proteins that provide the likely basis for
most inhibitory activity.
Inhibition by random peptides not derived from protein sequen-

ces might have simpler unifying features, reflecting nonspecific

inhibitory mechanisms. To search for such features, we performed
a similar analysis of out-of-frame fragments of E. coli DHFR (SI
Appendix, Fig. S7). Only fragment length explained a substantial
fraction of the variability (∼16%), with the majority (∼77%)
explained by none of the properties considered, similar to the
in-frame fragment results (Fig. 5). These results suggest that
even nonspecific inhibition by random peptides depends strongly
on specific sequence and structural features. There may also be a
weak charge-driven effect (∼1.6% of variability) specific to ran-
dom peptides.
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Fig. 4. Inhibitory activity depends on fragment length. (A) Inhibitory fragment scans of FtsZ with tiling fragments, at a tile step size of one amino acid (aa),
comparing different fragment lengths. Data are plotted as in Fig. 2, with individual fragment measurements and their SEM across multiple experiments
shown. A comparison of 20- (Top), 30- (Middle), and 50-residue (Bottom) fragment scans is displayed. For each plot, the width of inhibitory peak 1 is indicated.
Structures of FtsZ monomers to the right are overlaid with the width of the corresponding inhibitory peak in black. (B) Average inhibitory activity (E) of
fragments tiling each cytosolic protein plotted as a function of fragment length. (C) Strongest inhibitory fragment among fragments tiling each protein, as a
function of fragment length. A higher-resolution version of this figure is available on figshare (18).
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plotted, based on a nested ANOVA. Properties include fragment length,
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covered sequence region of the full-length protein; “fragment ID” designa-
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PNAS 2022 Vol. 119 No. 26 e2200124119 https://doi.org/10.1073/pnas.2200124119 7 of 11

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2200124119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2200124119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2200124119/-/DCSupplemental


AlphaFold Predictions of Protein–Peptide Interactions Provide
a Complementary Approach. Our ability to predict protein
fragments that inhibit native interactions might be improved
by employing computational models of protein–peptide inter-
actions. In particular, predicted modes of peptide binding and
the extent to which they are native-like may correlate with the
experimentally measured inhibitory strength of peptides from dif-
ferent binding interfaces. If so, peptide and interface properties
used by the model to make these predictions might be extracted
to determine design principles for inhibitory peptides. Given that,
in the case of protein fragments, the major inhibitory mechanism
appears to be the mimicry of native interactions, we reasoned that

machine learning-based structure prediction algorithms trained on
native folds and sequences would be a good choice of model.

We performed AlphaFold modeling of protein–peptide interac-
tions (ref. 34; Materials and Methods) using the FtsZ results as a
case study. This modeling predicted that representative protein
fragments from the strongest inhibitory peak (site 1) and its recip-
rocal peak (site 10) both form native-like interactions with FtsZ
(Fig. 6, Top Right). Fragments from the second-strongest inhibi-
tory peak (site 20) and reciprocal site 2 were predicted to form
interactions with FtsZ that were nonnative but nearby to their
native interaction sites in the crystal structure, and still along the
monomer interaction interface (Fig. 6, Middle Right). Finally, a

Interaction site 1 Interaction site 1′

Experiment AlphaFold Experiment AlphaFold

Native-like Native-like

Interaction site 2 Interaction site 2′

Experiment AlphaFold Experiment AlphaFold

Nearby to 
native site

Nearby to 
native site

Interaction site 3 Interaction site 3′

Experiment AlphaFold Experiment AlphaFold

Nearby to 
native site No binding

protein
fragment

Inhibitory peak
(strongest)

Inhibitory peak
(reciprocal to 1)

Inhibitory peak
(reciprocal to 2′)

Inhibitory peak
(second-strongest)

No inhibitory peak No inhibitory peak

Fig. 6. Computational modeling of FtsZ protein–peptide complexes suggests that AlphaFold can predict strong inhibitory peaks. For each of the major
interaction sites of FtsZ filament formation, 1, 10, 2, 20, 3, and 30, a side-by-side comparison is shown between 1) the 30-residue protein fragment represent-
ing the site in question, bound to the adjacent monomer, from the experimentally determined structure of the FtsZ filament (Left; from PDB ID 6unx)
and 2) the AlphaFold-predicted structure of the corresponding protein–peptide complex (Right). FtsZ monomers are colored from blue (N terminus) to red
(C terminus), as in Fig. 2, and protein fragments are colored black. Experimental results from the protein fragment scanning experiments are noted below
the crystallographic structures, and the predicted binding mode (or lack thereof) is noted below the predicted structures. A higher-resolution version of this
figure is available on figshare (18).
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fragment representing site 30, which yielded no inhibitory peak,
was predicted to make only tenuous (and nonnative) interactions
with FtsZ (Fig. 6, Bottom Right), and a fragment from the simi-
larly noninhibitory site 3 was predicted to form substantial but
nonnative interactions, again along the interaction interface (Fig. 6,
Bottom Right). These results thus show an approximate associa-
tion between the potency of inhibitory protein fragment peaks
and AlphaFold predictions of native-like binding for this case
study, suggesting that these predictions indeed contain latent
information on features underlying peptide-based inhibition that
might be extracted to determine unifying properties of inhibitory
fragments and enable fragment design.
An important caveat is that the predicted structures of these

complexes could be influenced by memorization of the FtsZ struc-
ture by AlphaFold, due to the presence of multiple FtsZ orthologs
(though not E. coli FtsZ itself) in the training set (34). However,
the training set does not include protein complexes, only single
polypeptide chains (34–36). Thus, while there may be an influ-
ence of memorization, the interactions between these peptides and
FtsZ are not drawn from the training set and likely reflect learned
predictions. Consistent with not strictly using memorization,
AlphaFold was unable to predict the 30 interaction site (Fig. 6,
Bottom Right), whereas it has predicted novel protein–peptide
interactions through learning (35).

Discussion

In this work, we uncovered numerous inhibitory fragment
peaks localized to protein interaction sites, indicating that these
sites are likely susceptible to perturbation by competitive bind-
ing. As the parental proteins are essential, these peak regions
constitute promising target sites for the development of antimi-
crobials, potentially based on the protein fragments themselves
(15, 16). Furthermore, these proteins are extremely well con-
served in sequence and structure across many bacterial strains and
species, including human pathogens such as Shigella, Klebsiella,
and Salmonella (37), thus making inhibition-prone sites derived
from E. coli fragment scans likely to be directly translatable to
other strains.
In the case of FtsZ, our results suggest that the 1, 10, 2, and

20 interaction sites (Fig. 2A) employed in filament formation
are good targets, but that the 3 and 30 interaction sites are not.
Although no approved antibiotic targets FtsZ, multiple inhibi-
tors thought to target the cleft between the N- and C-terminal
domains, the guanosine triphosphate (GTP)-binding pocket,
and the T7 loop (site 20) have been reported (38), and the small
protein MciZ binds sites 10 and 20 simultaneously (22). The
fragment scans of DHFR, GyrA, and Ssb similarly yielded both
known antimicrobial binding sites and potential novel ones (SI
Appendix, SI Text).
The protein fragments characterized here bear a striking resem-

blance to biologically encoded miniproteins (39, 40). Miniproteins
consist of ≤50 residues and are frequently composed of simple
structural motifs, such as individual alpha-helices (6), similar to
many of the inhibitory protein fragments we report. These natively
produced peptides commonly regulate proteins by binding to spe-
cific sites, analogous to the mapping of inhibitory fragments to
interaction surfaces. The functional similarities are in some cases
direct. Fragments of E. coli FtsZ mapping to the 1–10 and 2–20
interaction site pairs tended to be inhibitory (Fig. 2A), presumably
by competitively inhibiting the corresponding monomer–monomer
interactions. In Bacillus subtilis, the MciZ miniprotein performs
this function by binding in a manner comparable to the inferred
binding modes of interaction site 1 and 2 fragments, occluding the

10 and 20 (T7 loop) interaction sites and thereby inhibiting fila-
ment assembly and cell division (22). The lack of inhibitory peaks
mapping to the 3 and 30 interaction sites suggests that these are
poorer sites for competitive inhibition, consistent with the MciZ
binding target.

Hydrophobic alpha-helical miniproteins, often just long enough
to traverse the membrane, are common in bacteria (4, 6, 41), and
structures of such miniproteins bound to their membrane protein
targets have been determined (e.g., ref. 42). These miniproteins
regulate their membrane protein targets (e.g., AcrZ modulates
antibiotic export by the AcrAB-TolC efflux pump (6, 43)) and
can readily enter the inner membrane through a mechanism medi-
ated by posttranslational binding to SRP (27).

This work highlights important considerations for future appli-
cations of high-throughput inhibitory fragment assays. Parental
proteins must be selected carefully based on cellular concentration;
abundant proteins would require substantially higher levels of
peptide to inhibit their interactions. Protein fragment length is
another crucial variable that must be controlled; for example, inhi-
bition by fragments mapping to different sequence regions can be
directly compared only if they are of the same size. In applications
for which the primary goal is peptide inhibitor development, lon-
ger fragments (here ∼30-residue) are preferred as these provide
more robust inhibitory activities. In studies geared toward func-
tional mapping of interaction sites, scanning with multiple peptide
fragment lengths (e.g., 14 to 30 residues) might be best, as shorter
fragments yielded higher-resolution maps while longer fragments
more readily identified weaker peaks. Fragments that are too long
(here ∼50 residues) should generally be avoided due to increased
background inhibition and loss of site-specific inhibition.

Given its effectiveness in cells of Saccharomyces cerevisiae, Homo
sapiens, and now E. coli, inhibitory fragment scanning should be
generalizable to essentially any genetically tractable species,
enabling comparative analyses of fragment inhibition across
orthologous proteins. Total proteome-wide fragment mapping is
also within reach, though currently limited to a lower resolution
than the measurements in this work. This approach also holds
promise for comprehensively measuring the relative importance of
interaction sites under multiple environmental settings and drug
treatments, enabling the elucidation of condition-specific roles of
interactions across the proteome.

Materials and Methods

Tiling Fragment Library Construction. Tiling oligonucleotides were designed
to cover each parental protein in each fragment size of interest with a 3-bp (one
codon) step size. DNA oligonucleotides encoding these fragments were array-
synthesized by Twist. Oligo sequences were centered around an exact match to
the desired region of endogenous parental protein sequence, with the following
features added in the flanking sequences of each fragment: 1) flanking sequen-
ces for Gibson assembly into the desired plasmid vector; 2) gene-specific pairs of
3nt indices at the 50 and 30 ends of the fragment, which uniquely identified the
parental protein and allowed selective PCR amplification from the library (SI
Appendix, Table S2); and 3) a stop codon at the 30 end of the fragment (down-
stream of the gene-specific 3-bp index). Array-synthesized ssDNA libraries were
amplified into dsDNA by qPCR following manufacturer’s recommendations. The
resulting dsDNA libraries were cloned into the multiple cloning site of the pET-
9a expression vector (Novagen) by Gibson assembly (NEBuilder HiFi DNA Assem-
bly kit, NEB). Fragment-encoding sequences were expressed under control of a
T7 promoter in a shared exogenous sequence context provided by the vector.
The pET-9a vector adds an N-terminal T7 tag peptide and short linker to
expressed polypeptides, so the resulting sequence of each protein fragment had
the following structure: MASMTGGQQMGRGS-X1-(fragment)-X2*, where the T7
tag sequence is underlined and X1 and X2 are serine, alanine, or leucine,
encoded by the gene-specific 3-bp indices.
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Two tiling fragment-encoding libraries were constructed in this manner: one
containing 20- and 30-residue scans of the cytosolic proteins investigated
(Library 1) and another containing 50-residue scans of cytosolic proteins and
14-residue scans of the membrane protein LptG (Library 2). Each library con-
tained∼6,000 fragments. Thus, Library 2 contained a larger proportion of longer
protein fragments, which are more inhibitory on average. This compositional
difference between the libraries might produce systematic differences in growth
rates that affect the relative inhibitory peak depths with 50-residue fragments
compared to 20- and 30-residue fragments (Fig. 4C). However, a set of
25-residue fragments derived from RplL and enhanced green fluorescent protein
that were common to both libraries generally gave highly similar results (SI
Appendix, Fig. S8), yielding an average enrichment score difference of 0.08
(frequency change fold-difference of 1.06) with an SD of 0.57 (frequency change
fold-difference range of 0.71 to 1.58).

Following Gibson assembly, tiling fragment libraries were transformed into
ElectroMax E. coli cells (Thermo Fisher Scientific). Plasmids were isolated from the
transformed ElectroMax cells (Qiaprep Spin Miniprep Kit, Qiagen), and assembled
library composition was confirmed by high-throughput sequencing. These puri-
fied plasmid libraries served as the starting point for subsequent selection
experiments.

Massively Parallel Measurements of Dominant-Negative Inhibition by
Protein Fragments. The inhibitory activity of protein fragments was measured
in a high-throughput manner via growth selection experiments, similarly to pre-
vious studies (14, 15). Tiling fragment-encoding plasmid libraries were trans-
formed into highly electrocompetent E. coli BL21(DE3) cells (Sigma-Aldrich),
yielding transformants at >200-fold coverage of the library size. After 1 h in
recovery medium, each 1 mL of transformed cells was transferred to 50 mL
Luria-Bertani (LB) medium + 50 μg/mL kanamycin + 10 μM isopropyl β-d-1-thi-
ogalactopyranoside (IPTG) to begin the growth selection. These cultures were
grown at 37 °C with shaking at 220 rpm. Multiple replicate experiments, entail-
ing independent transformations and growth selections, were performed for
each library (n = 4 for Library 2 experiments with 20- and 30-residue fragments,
and n = 2 for Library 1 experiments with 14- and 50-residue fragments). Cells
were grown to a final optical density at 600 nm of 0.6 to 0.9 and harvested by
centrifugation; this constituted the end point of the selection. Plasmids were iso-
lated from each sample by miniprep (Qiagen). The selection end point samples
and the plasmid library input were prepared for sequencing as follows. PCR
amplification (≤12 cycles) was used to extract fragment-coding sequences from
the plasmid library and add sequencing adapters and sample-identifying indi-
ces. High-throughput sequencing was performed using Illumina’s NextSeq 550
platform. Paired-end sequencing was employed to uniquely identify fragments
by their 50 and 30 ends. Sequencing was performed with ∼6 million reads per
sample (1,000-fold coverage).

Fragment Assay Data Analysis. The identity (parental protein, sequence loca-
tion, and orientation) of each fragment was determined by aligning each read
pair to the set of gene sequences included in the library using Bowtie2. Frag-
ment counts in each sample were determined, and fragments with insufficient
read depth in the input sample were filtered out of the dataset (<50 reads for
Library 1 and <100 reads for Library 2). Fragment sequences that completely
dropped out in the growth selection were assigned pseudocounts of 0.5 in the
corresponding output samples. Fragment frequencies in each sample were then
determined from the counts of each fragment in each sample, divided by the
total counts of all fragment sequences in the sample. The enrichment (E) of each
fragment was determined from its growth selection input and output frequen-
cies as E = log2(fpost-selection/fpre-selection), where f denotes frequency. E < 0 there-
fore indicates depletion. Mean and SEM values of E were calculated for each
fragment based on multiple replicate experiments. Fragment maps were gener-
ated by plotting E for each fragment tiling a protein as a function of the frag-
ment’s position along the parental protein sequence. Average and maximum
inhibitory effects of fragments derived from a protein were determined by calcu-
lating the mean and minimum of E, respectively, for the appropriate subsets of
fragments. Parental protein structures overlaid with representative fragments or
widths of inhibitory peaks were generated from protein structures found in the
RSCB Protein Data Bank (PDB) using Pymol.

Cellular concentrations of parental proteins were retrieved from the data of Li
and colleagues (19), as maintained by the EcoCyc database (30); the protein

concentrations determined under rich media conditions (Neidhardt EZ rich
defined medium) were used. Physicochemical properties of protein fragments
were determined using the Peptides package in R (44). In particular, Peptides
was employed to calculate the peptide properties hydrophobicity [Kyte-Doolittle
scale (45)]; charge [Lehninger pKa scale (46), at pH 7]; and instability [Gurupra-
sad instability index (33)]. For the ANOVA analysis, each fragment was classified
as “hydrophobic” if the Kyte-Doolittle hydrophobicity was >0 and “hydrophilic”
otherwise; as “neutral” if the Lehninger pKa-based charge was in the range
(�1,1), “negative” if the charge was less than �1, and “positive” if the charge
was >1; and as “unstable” if the Guruprasad instability index was ≥40 [follow-
ing the standard definition (33)] and “stable” otherwise. Alpha-helical, beta-
strand, and turn content of protein fragments in the full-length protein context
was determined as follows. Secondary structure annotations were retrieved from
each parental protein’s Uniprot entry (47), and each protein fragment was anno-
tated as containing each type of secondary structure content if the sequence
region covered by the fragment overlapped with the corresponding secondary
structure feature; otherwise, the fragment was annotated as lacking that type of
secondary structure.

N-way nested ANOVA was performed using the built-in “anovan” function in
Matlab. The following parameters were included in the analysis: fragment
length; parental protein; hydrophobicity, charge, and predicted instability, classi-
fied as described above; fragment alpha-helical, beta-strand, and turn content
(a binary True/False classification for each); and fragment relative position in the
parental protein sequence (classified as “N-terminal” for fragments sourced from
the first third of the sequence, “central” for fragments sourced from the central
third, and “C-terminal” for fragments sourced from the C-terminal third); finally,
fragment identity (a unique tag assigned to each fragment based on parental
protein, sequence start and stop sites, and orientation) was nested under all
other parameters. The measurable variable was fragment enrichment, E. ANOVA
was performed on the combined data from both tiling libraries, excluding only
fragments of IleS, due to a lack of structural information that prevented assign-
ment of fragment secondary structure content.

DHFR Random Fragment Library Experiments. The random fragment
library of DHFR was generated as previously described (14). Briefly, the folA
gene was PCR-amplified out of the E. coli genome and fragmented using the
Nextera transposase (Illumina). The resulting gene fragments were amplified by
PCR to add sequence adapters for Gibson assembly (as well as stop codons in all
three frames) and cloned into the pET-9a vector backbone at the multiple cloning
site. Growth selection experiments were performed as described for the tiling
fragment libraries, except 100 μM IPTG was used. High-throughput sequencing
of input and output library samples and subsequent analyses to determine frag-
ment localization, frequencies, and enrichment were performed as for the tiling
libraries. Average per-site enrichment was calculated by determining the average
E of all fragments whose sequence covered a given position in the parental pro-
tein sequence.

FtsZ Filament Polymerization Experiments. FtsZ filament polymerization
was monitored by 90° scattering of 350 nm light, as previously described (22,
48), a measurement shown to correlate with MciZ-induced filament length
reduction as revealed by electron microscopy (22) and to faithfully report the crit-
ical monomer concentration for polymerization (48). Scattering measurements
were performed on a SpectraMax M5 instrument in fluorimetry mode with exci-
tation and emission wavelengths set to 350 nm, using a quartz cuvette with a
path length of 1.5 mm. Experiments were conducted using purified E. coli FtsZ
protein obtained from Cytoskeleton and chemically synthesized FtsZ protein frag-
ment peptides (T7-tagged identically to the constructs expressed in cells, as
described in Tiling Fragment Library Construction; >97% purity) obtained from
the Swanson Biotechnology Center Biopolymers & Proteomics Core Facility at
the Massachusetts Institute of Technology. FtsZ (final concentration 5.06 μM)
was incubated for 5 to 10 min at room temperature with either a FtsZ site 1 pro-
tein fragment (residues 166 to 195) or a neutral control fragment, FtsZ residues
35 to 54 (final peptide concentration 18.4 μM) in MMK buffer (final composition
50 mM MES, pH 6.5, 10 mM MgCl2, and 50 mM KCl), then mixed with GTP or
adenosine 50-triphosphate (ATP) (final concentration 2 mM). Light scattering was
then monitored over time. Steady-state values of light scattering achieved within
5 to 20 min were recorded. Scattering in mock reactions with ATP added was
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subtracted from scattering in reactions with GTP added to determine Δ Light
scattering (GTP� ATP)= Δ Light scattering (filament polymerization).

AlphaFold Computational Predictions of Peptide–Protein Complexes.

Peptide–protein complexes were modeled using Alphafold2 (34), employing the
AlphaFold2_complexes notebook hosted on the Google Colab servers (49, 50).
Input query sequences for each model were 1) the full-length sequence of E. coli
BL21(DE3) FtsZ and 2) the sequence of a 30-residue fragment of FtsZ represent-
ing an inhibitory peak or other sequence region of interest. Default settings
were used for other parameters: num_models = 5, msa_mode = MMseqS4,
pair_msa = False. The structures reported in the paper correspond to output
model 1 from each prediction.

Data Availability. Source data have been deposited in figshare (10.6084/
m9.figshare.19617648) (https://figshare.com/articles/dataset/Source_Data_for_
Savinov_et_al_2022_protein_fragment_mapping/19617648) (18). All other
data are included in the manuscript and/or SI Appendix.
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