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Abstract: Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer,
whose diversified occurrence worldwide indicates a connection between genetic variations among
individuals and the predisposition to such neoplasms. Mounting evidence has demonstrated
that long non-coding RNA (lncRNA) H19 can have both promotive and inhibitory effects on
cancer development, revealing a dual role in tumorigenesis. In this study, the link of H19 gene
polymorphisms to hepatocarcinogenesis was assessed between 359 HCC patients and 1190 cancer-free
subjects. We found that heterozygotes for the minor allele of H19 rs2839698 (T) and rs3741219 (G)
were more inclined to develop HCC (OR, 1.291; 95% CI, 1.003–1.661; p = 0.047, and OR, 1.361; 95% CI,
1.054–1.758; p = 0.018, respectively), whereas homozygotes for the polymorphic allele of rs2107425
(TT) were correlated with a decreased risk of HCC (OR, 0.606; 95% CI, 0.410–0.895; p = 0.012).
Moreover, patients who bear at least one variant allele (heterozygote or homozygote) of rs3024270
were less prone to develop late-stage tumors (for stage III/IV; OR, 0.566; 95% CI, 0.342–0.937; p = 0.027).
In addition, carriers of a particular haplotype of three H19 SNPs tested were more susceptible to
HCC. In conclusion, our results indicate an association between H19 gene polymorphisms and the
incidence and progression of liver cancer.
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1. Introduction

Hepatocellular carcinoma (HCC) is currently the sixth most common type of malignancy with
a high death rate and an increasing incidence globally [1]. A heterogeneous occurrence rate of HCC
was detected across distinct geographic areas, with the highest rates in Southeast Asia and sub-Saharan
Africa [2]. Although approximately 70–90% of HCC occurs within a well-established background
of chronic liver diseases [3], liver tumorigenesis is a complex process that is correlated to a variety
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of risks such as exposure of aflatoxin B, chronic infection with hepatitis B virus (HBV) or hepatitis
C virus (HCV), excessive consumption of alcohol and tobacco, iron overload, and diabetes [4,5].
In addition, recent studies have revealed that single-nucleotide polymorphisms (SNPs) are associated
with the formation of hepatic neoplasm independently or together with the recognized risk factors in
particular ethnic populations [6–8]. These findings suggest that an individual’s gene polymorphisms
influence oxidative stress, DNA repair, iron metabolism, cell signaling, inflammatory and immune
responses, which contribute to the predisposition to hepatocarcinogenesis and partly address the
global heterogeneous incidence of HCC.

Current large-scale sequencing studies have revealed that a considerable part of the human
genome is transcribed into RNA, but just less than 2% encodes for proteins [9,10]. This has shifted
our understanding of functional genomics from messenger RNAs to the noncoding transcriptome,
with attention being given to the recognition of an expanding category of long noncoding RNAs
(lncRNAs). Arbitrarily described as RNA molecules that are greater than 200 nucleotides and
possess no protein-coding potential, lncRNAs exhibit diverse functionality by controlling transcription,
translation, and regulation of cellular signaling cascades [11]. In addition to their versatile functionality,
lncRNAs are estimated to outnumber the protein-coding genes [9]. Moreover, mounting evidence has
implicated an increasing list of lncRNAs in the pathogenesis of a great variety of human disorders [12],
including cancer. Extensive transcriptomic investigations have connected the delicate orchestration
of lncRNA expression to cancer initiation and poor outcome in various tumors, and surveys of
cancer genomes have uncovered a catalogue of functional variants within the lncRNA genes [13,14],
highlighting a strong link between tumorigenesis and the modulation of lncRNAs.

H19 is an oncofetal lncRNA that is expressed in the embryo, downregulated at birth and then
replenished in tumors [15]. The broad spectrum of H19’s oncogenic actions covers the complex process
of tumorigenesis, including translational dysregulation, genomic instability, proliferative imbalance,
and metastasis. However, numerous investigations point to the contradictory effects of H19 on tumor
development, progression, and treatment [16–20], and indicate the complexity of H19 functionality.
In addition, polymorphisms within the H19 gene in many ethnic populations have been related to the
susceptibility to various tumor types, including bladder [21,22], gastric [23], colorectal [24], lung [25],
breast [26–28], ovarian [29,30], liver [31], bone [32], and oral cancer [33]. Nevertheless, these results
provide no consensus regarding the promotive or protective effect of individual H19 SNPs on cancer
risk. Here, we conducted a hypothesis-driven case-control study to assess the correlation of H19 gene
variations with the incidence and clinical parameters of HCC and detected associations of HCC risk
with H19 SNPs and haplotype.

2. Materials and Methods

2.1. Subjects

This hospital-based study, consisting of 359 patients with HCC and 1190 cancer-free controls
accrued from 2006 to 2017, was approved by the institutional review board of Chung Shan Medical
University Hospital in Taichung, Taiwan (CSMUH No: CS15099 approved the 20 August 2015).
All participants provided informed written consent at enrollment. Diagnosis of all cases was
histologically verified, and their clinical stage was assigned at the time of diagnosis according
to the TNM staging system of the American Joint Committee on Cancer (AJCC) [34]. Diagnosis of
liver cirrhosis was based on liver biopsy, biochemical evidence of liver parenchymal damage with
endoscopic esophageal or gastric varices, or abdominal sonography. Clinical features, including liver
cirrhosis, the levels of α-fetoprotein (AFP), aspartate aminotransferase (AST), alanine aminotransferase
(ALT), tumor staging, tumor size, lymph-node metastasis, distant metastasis, presence of HBV surface
antigen (HBsAg), and reactivity with antibody against HCV (anti-HCV), were collected from the
chart reviews. Within the same study period, 1190 ethnicity-matched individuals who have neither
self-reported history of cancer of any sites nor diagnosed with HCC were enrolled as the controls.
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2.2. Demographic Data

A survey concerning age, gender, alcohol drinking, and cigarette smoking was collected from each
subject. Having up to an average of more than 2 drinks per day was considered alcohol consumption.
Current smoking of at least one cigarette per day during the latest three months was considered
a persistent smoking habit.

2.3. Genotyping

We used QIAamp DNA blood mini kits (Qiagen, Valencia, CA, USA) to isolate genomic
DNA. TaqMan assay with an ABI StepOne™ Real-Time PCR System (Applied Biosystems,
Foster City, CA, USA) was used to evaluate allelic discriminations of five H19 SNPs (rs217727, rs2107425,
rs2839698, rs3024270, and rs3741219). Genotypes were analyzed with SDS version 3.0 software
(Applied Biosystems).

2.4. Predicting the Structure of H19/miRNA Duplex

The interaction between H19 and miRNA targets was predicted by the RNAhybrid algorithm,
which determines the most favorable hybridization site between two RNA sequences [35].

2.5. Statistical Analysis

The Hardy-Weinberg equilibrium was evaluated by using a goodness-of-fit v2 test for biallelic
markers. Differences in demographic characteristics between healthy controls and HCC patients were
compared by using the Mann–Whitney U test and Fisher’s exact test. The adjusted odds ratios (AORs)
with their 95% confidence intervals (CIs) for the association between genotype frequencies and the risk
of HCC plus clinicopathological characteristics were assessed by multiple logistic regression models
after controlling for other covariates. The haplotype-based analysis was performed using the Phase
program [36]. A p-value < 0.05 was considered significant. The data were analyzed by using SAS
statistical software (Version 9.1, 2005; SAS Institute Inc., Cary, NC, USA).

3. Results

3.1. Characteristics of Subjects

Since various risk factors, such as age, gender, alcohol consumption, and tobacco use have been
demonstrated to contribute to the etiology and pathogenesis of liver cancer [37,38], we first compared
the demographic information of 359 HCC patients with that from 1190 normal controls (Table 1). As no
difference in the ratio of males to females was achieved between the case and control group (p = 0.678),
subjects with advancing age were more prone to develop HCC with the average age of patients at onset
of HCC in this study being 62.9 ± 11.5. In addition, we observed that alcohol consumption, but not
tobacco use (p = 0.762), tended to elevate the risk of developing HCC.
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Table 1. The distributions of demographical characteristics in 1190 controls and 359 patients with
hepatocellular carcinoma (HCC).

Variable Controls (N = 1190) Patients (N = 359) p-Value

Age (yrs) 59.4 ± 7.1 62.9 ± 11.5 p < 0.001 *
Gender

Male 835 (70.2%) 256 (71.3%)
Female 355 (29.8%) 103 (28.7%) p = 0.678

Cigarette smoking
No 720 (60.5%) 214 (59.6%)
Yes 470 (39.5%) 145 (40.4%) p = 0.762

Alcohol drinking
No 1022 (85.9%) 227 (63.2%)
Yes 168 (14.1%) 132 (36.8%) p < 0.001 *

HBsAg
Negative 208 (57.9%)
Positive 151 (42.1%)

Anti-HCV
Negative 193 (53.8%)
Positive 166 (46.2%)

Stage
I+II 249 (69.4%)

III+IV 110 (30.6%)
Tumor T status

T1+T2 252 (70.2%)
T3+T4 107 (29.8%)

Lymph node status
N0 349 (97.2%)

N1+N2+N3 10 (2.8%)
Metastasis

M0 341 (95.0%)
M1 18 (5.0%)

Child-Pugh grade
A 281 (78.3%)

B or C 78 (21.7%)
Liver cirrhosis

Negative 65 (18.1%)
Positive 294 (81.9%)

Mann-Whitney U test or Fisher’s exact test was used between healthy controls and patients with HCC. * p-value <
0.05 as statistically significant.

3.2. Association of H19 Gene Polymorphisms with HCC

To determine whether H19 gene polymorphism was associated with the risk of HCC,
genotype frequencies of five H19 SNPs (rs217727, rs2107425, rs2839698, rs3024270, and rs3741219)
(Figure 1) and their association with the susceptibility to liver cancer were assessed (Table 2). For five
SNPs tested, no deviation (p > 0.05) from Hardy-Weinberg equilibrium was detected in either the case
or control group. We utilized AOR (with 95% CI), which was estimated by multiple logistic regression
models after adjustment for two potential confounders, age and alcohol consumption, together with
OR (with 95% CI) in each comparison. Among the loci studied, heterozygotes for the minor allele of
H19 rs2839698 (T) and rs3741219 (G) were more inclined to have HCC with the OR being 1.291 (95%
CI, 1.003–1.661; p = 0.047), and 1.361 (95% CI, 1.054–1.758; p = 0.018), respectively. Although adjusted
for age and alcohol use, their association with a predisposition to liver cancer (AOR, 1.353; 95% CI,
1.038–1.765; p = 0.026, for rs2839698; AOR, 1.429; 95% CI, 1.092–1.817; p = 0.009, for rs3741219) was
further strengthened. Intriguingly, we detected an association between the homozygous genotype for
the polymorphic allele of rs2107425 (TT) and a decreased risk of HCC (OR, 0.606; 95% CI, 0.410–0.895;



Genes 2019, 10, 506 5 of 11

p = 0.012 and AOR, 0.616; 95% CI, 0.409–0.926; p = 0.02). Nevertheless, no difference in genotypic
frequencies for rs217727 and rs3024270 individually was identified between the two study groups.

Figure 1. Genomic structure of human H19 and locations of the single-nucleotide polymorphisms
(SNPs) examined in this study. The genome structure of human lncRNA H19 is within the region of
1995 K–2000 K bp of chromosome 11 for the GRCh38.p12 primary assembly. H19 contains 5 exons as
represented by boxes in blue and flanking introns shown by lines. miR-675, which is embedded in the
1st exon of H19, is indicated by the red box. The five SNPs tested, rs2107425 (in the promoter region),
rs2839698 (exonic), rs3024270 (intronic), rs217727 (exonic) and rs3741219 (exonic), are shown above
the scale.

Table 2. Genotypic frequency of H19 SNP in HCC and normal controls.

Variable Controls
(N = 1190) (%)

Patients
(N = 359) (%) OR (95% CI) AOR (95% CI) a

rs217727

CC 495 (41.6%) 154 (42.9%) 1.000 (reference) 1.000 (reference)
CT 539 (45.3%) 170 (47.3%) 1.014 (0.790–1.302) 1.044 (0.802–1.358)
TT 156 (13.1%) 35 (9.8%) 0.721 (0.479–1.085) 0.727 (0.474–1.116)

rs2107425

CC 422 (35.5%) 134 (37.3%) 1.000 (reference) 1.000 (reference)
CT 560 (47.0%) 185 (51.5%) 1.040 (0.806–1.344) 1.041 (0.795–1.362)
TT 208 (17.5%) 40 (11.2%) 0.606 (0.410–0.895) b 0.616 (0.409–0.926) e

rs2839698

CC 532 (44.7%) 140 (39.0%) 1.000 (reference) 1.000 (reference)
CT 524 (44.0%) 178 (49.6%) 1.291 (1.003–1.661) c 1.353 (1.038–1.765) f

TT 134 (11.3%) 41 (11.4%) 1.163 (0.782–1.728) 1.165 (0.769–1.763)

rs3024270

CC 334 (28.1%) 87 (24.2%) 1.000 (reference) 1.000 (reference)
GC 593 (49.8%) 187 (52.1%) 1.211 (0.908–1.614) 1.237 (0.915–1.672)
GG 263 (22.1%) 85 (23.7%) 1.241 (0.883–1.743) 1.237 (0.866–1.768)

rs3741219

AA 517 (43.5%) 129 (35.9%) 1.000 (reference) 1.000 (reference)
GA 536 (45.0%) 182 (50.7%) 1.361 (1.054–1.758) d 1.429 (1.092–1.817) g

GG 137 (11.5%) 48 (13.4%) 1.404 (0.959–2.056) 1.368 (0.918–2.039)
a Adjusted for the effects of age and alcohol drinking; b p = 0.012; c p = 0.047; d p = 0.018; e p = 0.020; f p = 0.026;
g p = 0.009.

3.3. Correlation between Polymorphic Genotypes of H19 and Clinical Status of HCC

Since H19 gene polymorphisms were found to be correlated with susceptibility to liver cancer,
the relationship between the H19 gene variations and clinicopathologic characteristics of HCC patients
was also evaluated in this study. We observed that patients who possess at least one variant allele
(heterozygote or homozygote for the minor allele) of rs3024270, rather than rs2107425, (Table 3) were less
prone to develop late-stage tumors (for stage III/IV; OR, 0.566; 95% CI, 0.342–0.937; p = 0.027, and AOR,
0.564; 95% CI, 0.340–0.935; p = 0.026). However, none of the SNPs tested was found to be correlated
with the levels of serological markers of HCC, including α-fetoprotein (AFP), alanine transaminase
(ALT), and aspartate transaminase (AST) (Table 4). These data suggest that different genotypes of
different SNPs within H19 gene may exert additional effects on tumor suppression besides their
oncogenic capacities.
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Table 3. Odds ratio (OR) and 95% confidence interval (CI) of clinical status and H19 rs3024270 genotypic
frequencies in 359 HCC patients.

Variable Genotypic Frequencies

CC (N = 87) GC + GG (N = 272) OR (95% CI) AOR (95% CI) a

Clinical Stage

Stage I/II 52 (59.8%) 197 (72.4%) 1.00 1.00
Stage III/IV 35 (40.2%) 75 (27.6%) 0.566 (0.342–0.937) b 0.564 (0.340–0.935) c

Tumor Size

≤T2 54 (63.3%) 198 (72.8%) 1.00 1.00
>T2 33 (26.7%) 74 (27.2%) 0.612 (0.368–1.017) 0.611 (0.367–1.017)

Lymph Node
Metastasis

No 83 (95.4%) 266 (97.8%) 1.00 1.00
Yes 4 (4.6%) 6 (2.2%) 0.468 (0.129–1.698) 0.484 (0.132–1.778)

Distant Metastasis

No 81 (93.1%) 260 (95.6%) 1.00 1.00
Yes 6 (6.9%) 12 (4.4%) 0.623 (0.227–1.713) 0.624 (0.226–1.723)

Vascular Invasion

No 68 (78.2%) 234 (86.0%) 1.00 1.00
Yes 19 (21.8%) 38 (14.0%) 0.581 (0.315–1.073) 0.572 (0.309–1.060)

Child-Pugh Grade

A 65 (74.7%) 216 (79.4%) 1.00 1.00
B or C 22 (25.3%) 56 (20.6%) 0.766 (0.435–1.349) 0.766 (0.435–1.351)

Liver Cirrhosis

Negative 16 (18.4%) 49 (18.0%) 1.00 1.00
Positive 71 (81.6%) 223 (82.0%) 1.026 (0.549–1.915) 1.013 (0.539–1.902)

The ORs analyzed by their 95% CIs were estimated by logistic regression models, >T2: multiple tumor more than
5 cm or tumor involving a major branch of the portal or hepatic vein(s), * p-value < 0.05 as statistically significant,
a Adjusted for the effects of age and alcohol drinking, b p = 0.027, c p = 0.026, d p = 0.037.

Table 4. Association between H19 genotypic frequencies and the HCC laboratory findings.

Characteristic α-Fetoprotein a

(ng/mL) AST a (IU/L) ALT a (IU/L) AST/ALT a Ratio

rs217727

CC 464.9 ± 201.5 52.6 ± 5.9 45.1 ± 3.6 1.2 ± 0.1
CT + TT 932.2 ± 301.0 47.3 ± 4.5 46.0 ± 4.2 1.2 ± 0.1
p-value 0.197 0.480 0.867 0.880

p-value b 0.234 0.468 0.873 0.884

rs2107425

CC 556.9 ± 236.3 45.9 ± 3.4 42.0 ± 3.1 1.2 ± 0.02
CT + TT 836.9 ± 272.6 51.5 ± 5.3 47.6 ± 4.1 1.2 ± 0.02
p-value 0.438 0.367 0.277 0.925

p-value b 0.489 0.446 0.347 0.930

rs2839698

CC 749.2 ± 296.7 54.9 ± 7.6 47.3 ± 5.5 1.2 ± 0.02
CT + TT 726.6 ± 257.1 45.4 ± 2.6 44.3 ± 2.8 1.2 ± 0.03
p-value 0.954 0.234 0.618 0.255

p-value b 0.954 0.185 0.593 0.277

rs3024270

CC 660.7 ± 325.5 52.1 ± 9.2 49.7 ± 8.1 1.2 ± 0.02
CG + GG 764.6 ± 237.5 48.5 ± 3.6 44.1 ± 2.5 1.2 ± 0.03
p-value 0.797 0.656 0.512 0.270

p-value b 0.812 0.653 0.385 0.385

rs3741219

AA 590.3 ± 246.5 52.7 ± 7.5 45.7 ± 5.5 1.2 ± 0.02
GA + GG 840.9 ± 282.8 47.2 ± 3.1 45.5 ± 3.0 1.2 ± 0.03
p-value 0.525 0.498 0.972 0.302

p-value b 0.524 0.450 0.970 0.329

Mann-Whitney U test was used between two groups. a Mean ± S.E. b Adjusted age and alcohol drinking.
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In addition, to provide a preliminary assessment of how the change in the exonic sequences
affects the putative function of H19, a bioinformatic analysis for the interaction of H19 with its
microRNA targets was performed. H19 was previously reported to act as a natural sponge for many
microRNAs [39–41]. Here, we showed that transcripts of H19 derived from distinct genotypes for three
exonic SNPs examined in this study had different affinities and formed different secondary structures
with miR-106a and miR-141 (Figure 2).

3.4. Association between H19 Haplotypes and HCC

The link between H19 gene haplotypes and the risk of HCC was also investigated. The frequency
distributions of seven H19 rs2107425, rs2839698, and rs3741219 haplotypes are shown in Table 5,
with the most common haplotype in the controls (TCA) being selected as the reference. We found that
a specific haplotype of H19 (CTG) was significantly associated with increased susceptibility to HCC
(OR, 1.237; 95% CI, 1.015–1.507; p = 0.035; AOR, 1.240; 95% CI, 1.008–1.526; p = 0.042), further suggesting
a genetic predisposition of H19 to liver cancer.

Figure 2. Prediction of potential binding between H19 and its interacting microRNAs. The structure
exhibits hybridization between miR-106a and H19 with rs3741219 allele T (a) or C (b), as well as between
miR-141 and H19 with rs217727 allele C (c) or T (d). The positions of exonic SNPs are indicated by blue
arrows. mfe, minimum free energy.

Table 5. Frequency of H19 haplotypes in HCC patients and control subjects.

Haplotype
Block Controls Patients

rs2107425 C/T rs2839698 C/T rs3741219 A/G N = 2380 N = 718 OR (95% CI) AOR (95% CI) a

T C A 946
(39.8%)

260
(36.2%)

1.000
(reference)

1.000
(reference)

C T G 750
(31.5%)

255
(35.5%)

1.237
(1.015–1.507)

b

1.240
(1.008–1.526) c

C T A 582
(24.5%)

175
(24.4%)

1.094
(0.880–1.360)

1.074
(0.855–1.350)

C C G 43
(1.8%)

18
(2.5%)

1.523
(0.864–2.685)

1.404
(0.770–2.559)

C T A 29
(1.2%)

5
(0.7%)

0.627
(0.240–1.637)

0.734
(0.271–1.989)

T C G 17
(0.7%)

5
(0.7%)

1.070
(0.391–2.928)

1.220
(0.432–3.446)

T T A 13
(0.5%)

0
(0.0%) - -

a Adjusting for the effects of age and alcohol drinking; b p = 0.035; c p = 0.042.
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4. Discussion

The initiation and progression of liver cancer is a series of complicated actions influenced by
both inherited and external factors. In this study, we found that gene variations of H19 rs2839698 and
rs3741219 increase the predisposition to HCC, whereas rs2107425 and rs3024270 are associated with
a decreased risk of HCC occurrence and developing advanced tumors, respectively. Our data reveal
the complexity of H19 gene variations in regulating hepatocarcinogenesis.

Even though the significance of H19 in cancer has been recognized for years, its exact role in
tumorigenesis is still a subject of controversy as both oncogenic and oncostatic effects have been
demonstrated [42]. Moreover, it has been proposed that the functionality of H19 in liver cancer
is seemingly much more intricate than that in other types of tumors [42,43] because of the highly
heterogeneous etiology. This involves a complex interplay between genetic alterations and inflammatory
conditions associated with viral hepatitis as well as with alcoholic and non-alcoholic steatohepatitis [44].
In this study, we found that two exonic SNPs of H19, rs2839698 and rs3741219, are correlated with
elevated susceptibility to liver cancer (Table 2). H19 gene consists of five exons, and rs2839698 and
rs3741219 are located within the 1st and 5th exon, respectively. Largely consistent with findings from
other reports [23,24,31,45], we also detected an association between rs2839698 and an increased risk of
HCC. However, the rs2839698 polymorphism has been shown to exhibit the opposite associations for
cancer risk in a population in the Netherlands [21]. It is conceivable that variations in the exonic region
of H19 may alter its conserved secondary structure or sequence complementarity to its target genes
(chromatin or mRNA), thereby modifying its binding affinity to the interacting partners (Figure 2).
Supporting this notion, a previous bioinformatic analysis has shown that rs2839698 may change H19’s
crucial folding structures and targeted microRNAs [24]. In addition, we, for the first time, observed
an association between increased risk of HCC and another exonic SNP of H19, rs3741219 (Table 2).
Of note, the region of H19 loci where rs3741219 resides expresses another antisense transcript named
the H19 opposite tumor suppressor (HOTS) [46]. The HOTS transcript encodes for a nucleolar protein
in primates but lacks an open reading frame in mice [47]. It is demonstrated that HOTS acts as
a tumor suppressor in vivo and that the levels of HOTS and H19 appear to be uncoordinated [47].
Such complexity may in part account for the discrepancy in the association between individual H19
SNP and distinct cancer types.

While exonic SNPs probably alter H19’s conserved secondary structure or sequence
complementarity to the target genes, upstream or intronic SNPs are more likely involved in
transcriptional regulation and alternative splicing of H19 transcript. Unlike the two exonic SNPs
mentioned above, we found that an upstream SNP of H19, rs2107425, is associated with a decreased risk
of HCC (Table 2). Such a protective effect of rs2107425 against cancer development is in concordance
with the findings of two recent studies using meta-analysis [45,48]. rs2107425 is located in the
differentially methylated region (DMR) of H19, which is upstream of the transcription start site and acts
as a part of a methylation-sensitive insulator. It has been reported that H19 DMR hypermethylation is
associated with loss of imprinting of the IGF2 gene, which often results in IGF2 overexpression [49].
The results from our and others’ investigations suggest that rs2107425 gene polymorphism may
regulate the expression of H19 and its co-expressed genes through an epigenetic mechanism to affect
the outcome of this devastating disease. In addition, we found that patients possessing at least
one polymorphic allele of an intronic SNP, rs3024270, have a deceased risk of developing advanced
HCC tumors (Table 3). Similarly, in patients with invasive bladder cancer, it has been shown that
homozygous carriers of the minor allele of rs3024270 may have a better prognosis [50]. Taken together,
we show that two exonic SNPs of H19, rs2839698 and rs3741219, render individuals more susceptible
to HCC, whereas upstream or intronic SNPs of H19 (rs2107425 and rs3024270) exhibit protective effects
on the development of liver cancer, revealing a functional complexity of H19 gene polymorphism in
governing hepatocarcinogenesis.

Our results reveal an effect of H19 gene polymorphisms on the incidence and progression of
HCC; nevertheless, extra work is needed to address several limitations of this study. One is that the
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impacts of environmental factors on the risk of liver cancer may be underestimated owing to a lack of
cohort stratification based on the levels of alcohol consumption. Another weakness is that the high
degree of heterogeneity in the disease severity or HCC-associated clinical manifestations, such as viral
hepatitis as well as with alcoholic and non-alcoholic steatohepatitis within HCC patients may result
in distinct findings regarding the link between H19 gene polymorphisms and liver tumorigenesis.
In addition, although numerous non-coding variants within lncRNA genes were identified as expression
quantitative trait loci [51], we failed to further prove that the upstream or intronic SNPs examined
in this study affect the expression of H19 and its co-expressed genes due to a lack of expression data
for H19 and its targets in our cohort. Furthermore, the genetic association detected in the present
investigation might be limited to unique ethnic group unless replication experiments are performed.

5. Conclusions

In conclusion, data from our present investigation demonstrated that gene polymorphisms
(rs2839698 and rs3741219) and a specific haplotype of H19 confer an increased susceptibility to HCC.
However, an inverse association between the other two SNPs, rs2107425 and rs3024270 and the
occurrence and progression of HCC was observed. These results reveal the intricacy of H19 functions
and the dual role of H19 polymorphisms in the development of hepatic tumors.
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