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Pro-opiomelanocortin (POMC) is a polypeptide precursor known to yield biologically 
active peptides related to a range of functions. These active peptides include the adre-
nocorticotropic hormone (ACTH), which is essential for maintenance of adrenal growth 
and steroidogenesis, and the alpha-melanocyte stimulation hormone, which plays a key 
role in energy homeostasis. However, the role of the highly conserved N-terminal region 
of POMC peptide fragments has begun to be unraveled only recently. Here, we review 
the cascade of events involved in regulation of proliferation and growth of murine adrenal 
cortex triggered by ACTH and other POMC-derived peptides. Key findings regarding 
signaling pathways and modulation of genes and proteins required for the regulation 
of adrenal growth are summarized. We have outlined the known mechanisms as well 
as future challenges for research on the regulation of adrenal proliferation and growth 
triggered by these peptides.
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inTRODUCTiOn

The primary function of the adrenal cortex is to produce steroids. Each zone of the adrenal cortex 
synthesizes different steroids in response to endocrine and paracrine stimuli. Adrenal function and 
maintenance of adrenal size are associated with regulation of adrenocortical growth, a topic that 
has been covered by other studies (1, 2). This review summarizes our understanding of growth 
regulators of the murine adrenal and highlights the action of adrenocorticotropic hormone (ACTH) 
and N-terminal peptides of pro-opiomelanocortin (N-POMC) in the control of proliferation and 
maintenance of the adrenal cortex.

PRO-OPiOMeLAnOCORTin in MURine

Pomc is a gene that belongs to the opioid/orphanin family. It is a highly conserved gene found from 
agnathan fish to mammals (3). In murines, this gene encodes a prohormone of 235 amino acids 
produced mainly by corticotropic cells in the pituitary gland. Post-translational processing at specific 
sites results in production of various smaller peptides, including peptide hormones with a range of 
physiological functions (Figure 1). In addition to the pituitary gland, POMC peptides are found 
in a diverse range of tissues, including the hypothalamus, skin, lung, gut, and pancreas (4). POMC 
transcripts found in these tissues are not full length, resulting in low levels of protein (5), and its 
function is not clear. POMC peptides in the circulation are derived mainly from the pituitary, and 
thus, the peptides produced in peripheral tissues act in an autocrine or paracrine way. The enzymes 
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FiGURe 1 | Processing of POMC in the murine pituitary, highlighting 
the resulting peptides that act in the proliferation of adrenocortical 
cells. γ-MSH, gamma-melanocyte-stimulating hormone; JP, joining peptide; 
ACTH, adrenocorticotropic hormone; B-LPH, beta-lipotropin; NP, N-terminal 
peptides of pro-opiomelanocortin; Asp, adrenal serine protease.

2

Lotfi and de Mendonca POMC Peptides on Adrenal Growth

Frontiers in Endocrinology | www.frontiersin.org May 2016 | Volume 7 | Article 39

responsible for cleavage of POMC are called prohormone con-
vertases (PC) and are of two types, PC1 and PC2. In the anterior 
lobe of the pituitary, the action of PC1 generates the main four 
POMC-derived peptides: the N-terminal peptide 1–74 (N-POMC 
1–74 or pro-gamma-MSH), the joining peptide (JP), ACTH, 
and beta-lipotrophin (β-LPH). In the intermediate lobe, ACTH 
is cleaved by PC2 to produce alpha-melanocyte- stimulating 
hormone (α-MSH) and the corticotrophin-like intermediate 
peptide (CLIP); β-LPH is completely processed to γ-LPH and 
β-endorphin; and pro-gamma-MSH is cleaved to generate γ1- or 
γ3-MSH and N-POMC 1–49. γ1-MSH is found in humans but 
not in murines, as the cleavage site (a dibasic residue pair required 
for processing γ3-MSH into γ1-MSH) is missing in rodents (6). 
γ-MSH appears to potentiate the steroidogenic effect of ACTH 
in the adrenal gland, but the exact form of the peptide (γ1, γ2, 
or γ3) that produces this effect is still unclear (7). Currently, the 
concept of tissue-specific cleavage of POMC is acceptable, at least 
in the adrenal gland, where a serine-protease has been cloned and 
is responsible for cleaving the pro-gamma-MSH into a 52-residue 

peptide (8). The family of G-protein-coupled receptors named 
melanocortin receptors (composed of five members) is responsi-
ble for intermediating the action of POMC peptides.

PROLiFeRATive ADRenAL CORTeX 
ReSPOnSeS TO ACTH

The 39-amino acid peptide ACTH is the primary regulator of adre-
nal gland growth, maintenance, and function. Due to the actions 
of corticotropin-releasing hormone (CRH), arginine vasopressin, 
and other secretagogues, ACTH stimulates the pituitary cortico-
troph cells to release ACTH (9). ACTH binds to specific high-
affinity receptors [melanocortin receptor 2 (MC2R)] located on 
the surface of adrenal cortical cells, stimulating the production of 
cortisol and corticosterone in murines, which in turn suppresses 
ACTH-releasing factors. ACTH increases rat adrenal weight by 
inducing both hyperplasia and hypertrophy in specific zones. In 
fact, administration of chronic exogenous ACTH in rats induces 
hyperplasia and hypertrophy in the outer and inner zona fascicu-
lata, respectively (10), and results in a 70% increase of adrenal 
mass in rats (11). This phenomenon is also seen in knockout 
mice for both glucocorticoid and dopamine receptors showing 
elevated levels of circulating ACTH (12, 13). On the other hand, 
low levels of ACTH, such as those seen in animals submitted to 
hypophysectomy (14) or treated with dexamethasone (15), result 
in adrenal atrophy. When adrenal growth occurs to compensate 
for unilateral adrenalectomy in hypophysectomized rats, neither 
a decrease in circulating corticosterone nor elevated ACTH levels 
are observed (16), suggesting the action of neural mediation or 
other POMC-derived peptides.

MOLeCULAR MeCHAniSMS iMPLiCATeD 
in ACTH ADRenOCORTiCAL GROwTH

Abundant data relating to the signaling triggered by ACTH have 
been provided by experiments performed in cultured normal 
and tumoral adrenocortical cells. However, the in  vitro action 
of ACTH on signaling pathways involved with adrenocortical 
growth is controversial and seems to depend on the cell type, the 
state of the responding cell, and other environmental signals from 
extracellular matrices (17, 18).

ACTH In Vitro
In support of the mitogenic or antimitogenic action of ACTH, 
there are studies analyzing the regulation of ERK/MAPK and 
related pathways, in different cell types. In quiescent Y1 mouse 
adrenocortical tumor cells, the molecular mechanisms of cell 
cycle control comprise two contrasting control pathways for 
1-nM ACTH treatment: (1) a mitogenic effect via induction of 
the fos and jun gene families and weak activation of ERK/MAPK; 
and (2) a cAMP/PKA-mediated antimitogenic mechanism 
comprising Akt pathway deactivation, cMyc degradation, and 
p27Kip1 induction (17, 19, 20). However, the ability of activate the 
ERK/MAPK was not interrupted in the cAMP-resistant mutant 
Y1 cells (Kin-8 cells) stimulated by ACTH, indicating the PKA 
not mediate the mitogenic action of ACTH (21). Arola  and 
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collaborators (22) also found an ACTH-inducible biphasic 
growth effect in rat adrenocortical cells in primary culture, in 
which a 7–70  nM ACTH-mitogenic effect transduced through 
the cAMP-mediated system and an ACTH-antimitogenic took 
place via a cAMP-independent pathway.

In another study performed with Y1 cells, the authors observed 
the inhibition of ERK/MAPK and c-Jun N-terminal kinases 
pathways through a PKC and Ca2+-dependent pathway (23), 
which favors an antimitogenic action of ACTH. In agreement, it 
was demonstrated by Bey and collaborators (24) that in Y1 cells, 
MAPK phosphatase-1 is a component of the ACTH signaling 
cascade, suggesting that ACTH can downregulate MAPKs. The 
antimitogenic and pro-apoptotic action of ACTH was reinforced 
in normal adrenal cells. In rat adrenocortical cells in primary 
culture, treatment for 3 days with 1-nM ACTH-induced apop-
tosis, activation of PKA/CREB but not ERK, and expression of 
c-Fos protein (25, 26). Also in support to antimitogenic action 
of ACTH, in bovine adrenocortical cells, angiotensin II activate 
MAPK after 5 min of treatment (EC50 = 0.1 nM), whereas ACTH 
does not stimulate ERK (27). Moreover, in rat adrenal zona glo-
merulosa cells, ERK activation blocked cell proliferation (28, 29).

In another widely used cellular model, the H295 human 
adrenocortical tumor cell line, which shares similarities with 
cells of the zona glomerulosa, ACTH stimulates ERK/MAPK 
signaling. However, in H295 cells, it has been described that 
MAPK stimulation by 100-nM ACTH depends on receptor 
internalization (30). On the other hand, in MC2R-transfected 
human embryonic kidney cells (31), 1-nM ACTH induces ERK 
phosphorylation that is partially PKA dependent. However, 
arrestin-coupled internalization does not involve any level of 
ACTH-dependent ERK phosphorylation (32). In summary, the 
analysis of signaling pathways involving the action of ACTH on 
different cell types and in vitro conditions gives support for an 
antimitogenic action of ACTH.

ACTH In Vivo
In research involving depletion of the hypothalamic–pituitary–
adrenal (HPA) axis using in vivo models with various approaches 
such as enucleation-induced adrenal regeneration (33), dexa-
methasone (Dex) treatment, and hypophysectomy, most but not 
all of the evidence converges on existing signals and pathways 
related to a mitogenic effect of ACTH.

Early response genes in the Fos and Jun gene families that form 
the transcriptional factor AP-1 and stimulate cellular prolifera-
tion (34) are induced by both ACTH and FGF2 infused in the 
rat adrenal gland in situ or in the adrenal cortex of hypophysec-
tomized rats (35, 36). In enucleation-induced rat adrenal gland 
regeneration, the Fos gene was unregulated in the first 2 days of 
regeneration, while after 5 days of enucleation, downregulation of 
the Fos and Jun genes was observed (37).

Although it has been proposed that ACTH induces SAPK/
JNK signaling activation and ERK/MAPK inhibition in vivo (23), 
results of chronic ACTH treatment in Dex-treated rats showed 
that ACTH is able to induce a sustained and progressive increase 
in ERK activation and proliferating cell nuclear antigen (PCNA) 
expression in all adrenal zones (38).

Other findings link the proliferative action of ACTH in 
Dex-treated rats with regulation of the cyclin-dependent kinase 
inhibitors (CDKIs) p27Kip1 and p57Kip2 in a time- and site-
specific manner. A study shows that after Dex treatment, most 
of the cells expressed p27Kip1 but not p57Kip2. Subsequent 
ACTH treatment suppressed p27Kip1 expression and induced 
p57Kip2, while PCNA-expressing cells appeared mainly around 
the zona glomerulosa (39). Other cell-cycle regulators are also 
implicated in ACTH adrenocortical growth of Dex-treated rats. 
Besides increasing p27Kip1 expression, inhibition of the HPA 
axis downregulates cyclin D2 and D3 expression in the adrenal 
cortex. ACTH increases cyclin E and D3 expression, while it 
reduces expression of p27Kip1 protein in the outer and inner 
fraction preparations of adrenal cortex, respectively (40, 41). 
Moreover, the cell-cycle regulation is time dependent and zone 
specific. More recently, the Nek2 gene and its protein, together 
with the Notch gene, have also been shown to be involved in the 
cell cycle regulation triggered by ACTH (42).

The extracellular matrix (ECM) contributes to the regulation 
of cell proliferation and cell differentiation and therefore has a role 
in embryonic development and adult tissue homeostasis. Feige 
and colleagues have described the composition and expression 
of ECM components in the adult adrenal gland (43, 44). From 
the periphery to the center of the gland, the authors observed 
differential expression of fibronectin and laminin, which can be 
associated with specific activities of the cell components of the 
zones. However, studies conducted by the Gallo-Payet group 
show that ECM modulates basal and ACTH-induced cell func-
tions, with fibronectin and collagen I and IV favoring steroid 
secretion, while laminin promotes proliferation (18). These 
findings illustrate the importance of the morphological changes 
associated with ACTH.

Despite the in  vivo evidence that ACTH is the only factor 
that stimulates adrenal growth, other studies point in a different 
direction. As briefly described above, there are considerable data 
showing that ACTH inhibited growth of adrenal cells in vitro. In 
addition, Rao and colleagues (45) showed that rats treated with 
antiserum against ACTH had significant reduction of blood 
corticosteroids levels but did not exhibit adrenal atrophy. These 
and other results, which have been described in comprehensive 
reviews of the last 60 years of POMC research (46, 47), suggest 
that another factor distinct from ACTH has the ability to promote 
adrenal growth.

PROLiFeRATive ADRenAL CORTeX 
ReSPOnSeS TO n-POMC PePTiDeS

In 1980, Estivariz and colleagues (48) extracted and purified 
pro-gamma-MSH from human pituitaries and showed that this 
peptide could not prevent adrenal atrophy in hypophysectomized 
rats. However, smaller N-POMC peptides (without the γ3-MSH 
portion) produced by trypsin digestion of pro-gamma-MSH or 
extracted from pituitary glands proved to be potent mitogens 
both in  vivo and in  vitro. In this section, we present informa-
tion on the proliferative effect of the most important N-POMC 
peptides.
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n-POMC 1–28
N-POMC 1–28 was first isolated from human pituitary glands 
and later characterized as an extraction artifact (49). Even 
though N-POMC 1–28 is not an endogenous peptide, it has been 
extensively used to show the mitogenic effect of the N-POMCs. 
Moreover, the first 28 amino acids of the N-terminal portion of 
POMC have been shown to be essential to the triggering of adre-
nal cell proliferation. The mitogenic activity of N-POMC 1–28 
has been demonstrated in vivo in murine models (40, 50, 51) and 
in vitro in Y1, NCI-H295R, and rat primary culture cells (26, 52, 
53). Peripheral delivery of this peptide in Pomc KO mice does not 
promote any alterations in the adrenal gland (54) but may prevent 
atrophy of regenerating adrenal glands after hypophysectomy 
(55). These findings mean that besides promoting mitosis, this 
peptide may prevent apoptosis of adrenal cells. Indeed, our group 
has shown the anti-apoptotic effect of N-POMC 1–28 in adrenal 
glands of hypophysectomized rats (51). However, the molecular 
mechanisms underlying this effect are not clear. The positions of 
two disulfide bridges (between cysteine residues 2–24 and 8–20) 
seem to be essential to its biological activity (56).

n-POMC 1–49
N-POMC 1–49 is an endogenous peptide produced and secreted 
by the intermediary lobe of the pituitary. It is one of the products 
from the cleavage of pro-gamma-MSH into smaller peptides. 
In vitro studies have shown that this peptide may promote pro-
liferation of Y1 and NCI-H295R cells (52, 53). However, in vivo 
studies have shown that N-POMC 1–49 does not increase adrenal 
weight in fetal sheep when infused for 48 h (57). Interestingly, 
the presence of an O-linked glycan seems to be crucial for its 
proliferative effect. However, cleavage of pro-gamma-MSH in the 
pituitary occurs only if the O-linked glycan is not present in the 
molecule, resulting in an N-POMC 1–49 without the glycan 
[reviewed in Bicknell and Lowry (58)]. Clearly, the present data 
are controversial, and more assays must be done before it can be 
concluded that N-POMC 1–49 is the natural N-POMC peptide 
involved in adrenal proliferation and maintenance.

Pro-Gamma-MSH
Pro-gamma-MSH is considered to be an active fragment found in 
the bloodstream at the same levels as ACTH (59). When infused 
into sheep fetus, this N-POMC peptide increased adrenal weight 
(57). However, as mentioned before, when administered in hypo-
physectomized rats, no effect on the adrenal weight was observed 
(60). Since the mitogenic peptides are located in the N-terminal 
portion of pro-gamma-MSH, a hypothesis of post-secretional 
cleavage occurring at the level of specific tissues has emerged. 
Indeed, Bicknell and collaborators (8) characterized a serine 
protease they named AsP (adrenal serine protease) that is present 
in the ECM of adrenal cells and is responsible for cleaving pro-
gamma-MSH. The cleavage releases a peptide of 52 residues that 
induces proliferation of adrenal cortical cells. Moreover, Asp is 
capable of cleaving small basic substrates (e.g., arginine–arginine, 
lysine–arginine, etc.), generating N-POMC 1–49. These findings 
suggest the existence of an endogenous mitogenic N-POMC 
peptide, but no consensus about its identity has been reached.

THe MOLeCULAR MeCHAniSM 
invOLveD in THe n-POMC 
PROLiFeRATive eFFeCT

The proliferative effect of N-POMC peptides has been estab-
lished since the beginning of the 1980s, but its mechanism has 
begun to be unveiled only recently. The first study on this topic, 
conducted by Fassnacht and colleagues (52), concluded that 
N-POMC 1–28 promotes cell proliferation in NCI-H295R, Y1, 
and primary cultures of bovine adrenocortical cells by triggering 
a rapid activation of the ERK/MAPK but not the APK/JNK or p38 
pathways. Pepper and Bicknell (53) corroborated those findings 
and showed that the upstream ERK regulators c-RAF and MEK 
were activated in Y1 and NCI-H295R cells treated with N-POMC 
1–28 or N-POMC 1–49. In 2011, Mattos and collaborators (26) 
showed that ERK1/2 was activated in primary cultures of rat 
adrenocortical cells treated with N-POMC 1–28.

In 2014, we performed a PCR array to evaluate the effect of 
N-POMC 1–28 on the expression of key genes related to the 
control of the cell cycle. The genes Nek2 and Notch were upregu-
lated after treatment, suggesting that the proliferative effect of 
this peptide might be mediated by these genes (42). Additional 
research is needed to further elucidate the molecular mechanisms 
involved in the proliferative effect of N-POMC.

A fundamental question that has yet to be definitively 
answered is the identification of the receptor through which 
N-POMC peptides elicit their effects on adrenal growth. There 
have been two unsuccessful attempts to identify such a receptor 
(53, 58). In 2014, we joined efforts with Bicknell’s group and 
proposed a new approach to identifying this receptor. We cloned 
the most expressed orphan G-protein-coupled receptors in the 
rat adrenal gland and performed a magnetic cell separation 
assay using the N-POMC peptide attached to magnetic beads. 
A likely candidate for the N-POMC receptor was identified, 
confirmed by ligand-binding assays, and shown to be capable 
of activating the ERK pathway after stimulation with N-POMC. 
Further experiments are now been conducted to characterize 
in  vivo and in  vitro this potential adrenal N-POMC receptor. 
Final confirmation of the identity of the adrenal N-POMC 
receptor is essential for the understanding of cell proliferation 
in adrenocortical cells.

COnCLUSiOn

In this paper, we summarize the current state of knowledge of 
the roles of ACTH and N-POMC in the proliferation of murine 
adrenal cells. We identify gaps in knowledge and describe con-
flicting results that need to be further investigated in order to fully 
understand the biology of this phenomenon. Examples of such 
urgently needed studies include gene array assays and pathway 
analysis to provide more data on the molecular mechanisms trig-
gered by N-POMC peptides as well as to confirm the identity of 
the natural endogenous mitogenic N-POMC peptide. A holistic 
and interdisciplinary approach will be required, as none of these 
peptides or hormones act alone in nature. On the contrary, 
they trigger a net of responses and activate dozens of pathways 
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simultaneously. When we begin to examine this phenomenon 
from a holistic perspective, we may come to truly understand the 
proliferative effect of these peptides.
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