
O
R
IG

IN
A
L
A
RT

IC
LE

Nephrology Dialysis Transplantation (2023) 38: 372–383
https://doi.org/10.1093/ndt/gfac157
Advance Access publication date 22 April 2022

Kidney outcomes with finerenone: an analysis from the
FIGARO-DKD study

Luis M. Ruilope1,2,3, Bertram Pitt4, Stefan D. Anker5, Peter Rossing 6,7, Csaba P. Kovesdy 8,
Roberto Pecoits-Filho9,10, Pablo Pergola11, Amer Joseph12, Andrea Lage13, Nicole Mentenich14,
Markus F. Scheerer15 and George L. Bakris16; on behalf of the FIGARO-DKD Investigators
1Cardiorenal Translational Laboratory and Hypertension Unit, Institute of Research imas12, Madrid, Spain, 2CIBER-CV, Hospital Universitario
12 de Octubre, Madrid, Spain, 3Faculty of Sport Sciences, European University of Madrid, Madrid, Spain, 4Department of Medicine, University
of Michigan School of Medicine, Ann Arbor, MI, USA, 5Department of Cardiology (CVK), and Berlin Institute of Health Center for
Regenerative Therapies, German Centre for Cardiovascular Research Partner Site Berlin, Charité Universitätsmedizin, Berlin, Germany, 6Steno
Diabetes Center Copenhagen, Gentofte, Denmark, 7Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark,
8Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA, 9Arbor Research
Collaborative for Health, Ann Arbor, MI, USA, 10School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil, 11Renal
Associates, PA, San Antonio, TX, USA, 12Research and Development, Cardiology and Nephrology Clinical Development, Bayer AG, Berlin,
Germany, 13Cardiology and Nephrology Clinical Development, Bayer SA, São Paulo, Brazil, 14Statistics and Data Insights, Bayer AG,
Wuppertal, Germany, 15Global Medical Affairs & Pharmacovigilance, Pharmaceuticals, Bayer AG, Berlin, Germany and 16Department of
Medicine, University of Chicago Medicine, Chicago, IL, USA

Correspondence to: Luis M. Ruilope; E-mail: ruilope@icloud.com; George L. Bakris; E-mail: gbakris@gmail.com

ABSTRACT

Background. In FIGARO-DKD, finerenone reduced the risk
of cardiovascular events in patients with type 2 diabetes
(T2D) and stage 1–4 chronic kidney disease (CKD). In
FIDELIO-DKD, finerenone improved kidney and cardiovas-
cular outcomes in patients with advanced CKD. This analysis
further explores kidney outcomes in FIGARO-DKD.
Methods. FIGARO-DKD (NCT02545049) included pa-
tients with urine albumin-to-creatinine ratio (UACR) 30–
<300 mg/g and estimated glomerular filtration rate (eGFR)
25–90 mL/min/1.73 m2 or UACR 300–5000 mg/g and
eGFR ≥60 mL/min/1.73 m2. Outcomes included two com-
posite kidney endpoints, a composite of ≥40% decrease in
eGFR from baseline sustained over≥4 weeks, kidney failure or
renal death, and a composite of ≥57% decrease in eGFR from
baseline sustained over≥4weeks, kidney failure or renal death.
Changes in albuminuria and eGFR slope were also analyzed.
Kidney and CV outcomes were evaluated by baseline UACR.

Results. A lower incidence rate for the eGFR ≥40% kidney
composite endpoint was observed with finerenone compared
with placebo, but the between-group difference was not
significant [hazard ratio (HR) = 0.87; 95% confidence interval
(CI): 0.76–1.01; P = .069]. A greater treatment effect was
observed on the eGFR ≥57% kidney composite endpoint
(HR = 0.77; 95% CI: 0.60–0.99; P = 0.041) with a 36% relative
risk reduction for end-stage kidney disease. A largermagnitude
of effect on kidney outcomes was observed with finerenone
versus placebo for patients with severely increased albuminuria
than with moderately increased albuminuria. Improvements
in UACR, eGFR slope and cardiovascular risk were evident in
both subgroups with finerenone.
Conclusions. The present analyses suggest that finerenone
protects against kidney disease progression and cardiovascular
events in patients with T2D and early- or late-stage CKD.
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GRAPHICAL ABSTRACT

KEY LEARNING POINTS

What is already known about this subject?
• Increased albuminuria is an independent marker of progression to kidney failure and adverse cardiovascular (CV)
outcomes, and patients with chronic kidney disease (CKD) and type 2 diabetes (T2D) remain at high risk despite best-
recommended therapies.

• Finerenone is a novel, selective, nonsteroidal mineralocorticoid receptor antagonist that slowed CKD progression and
improvedCVoutcomes versus placebo in patients with predominantly stage 3–4CKDwith severely increased albuminuria
in the FIDELIO-DKD trial.

• In the FIGARO-DKD trial, finerenone reduced the risk of CV events in patients with stage 2–4 CKD and moderately
increased albuminuria or stage 1–2 CKD with severely increased albuminuria. Although there was a trend favoring
finerenone for the first kidney composite endpoint, this difference was not statistically significant.

What this study adds?
• The purpose of this analysis was to further evaluate the effects of finerenone on kidney outcomes in patients with CKD
and T2D in FIGARO-DKD.

• This exploratory analysis demonstrated that there are beneficial effects of finerenone on clinical kidney outcomes, including
a 36% relative risk reduction of end-stage kidney disease compared with placebo.

• In FIGARO-DKD, despite showing greater treatment effects on kidney composite outcomes in patients with severely rather
than moderately increased albuminuria, finerenone reduced the risk of CV events and markers of CKD progression in
patients with both severely increased albuminuria and moderately increased albuminuria.

What impact this may have on practice or policy?
• Finerenone offers an important treatment advance for patients with CKD and T2D with both moderately or severely
increased albuminuria to protect against CV events and kidney disease progression.

• These findings emphasize the need for albuminuria screening in clinical practice for patients with T2D to enable earlier
identification of CKD and initiation of appropriate treatment.
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INTRODUCTION
Diabetes is one of the main causes of kidney failure [1],
and approximately 40% of patients with type 2 diabetes
(T2D) globally are estimated to be affected by chronic kidney
disease (CKD) [2]. Patients with CKD and T2D are also at
increased risk of cardiovascular (CV)morbidity andmortality;
compared with T2D alone, and comorbid CKD increases the
risk of all-cause and CV mortality approximately threefold
[3]. Albuminuria is an independent and robust prognostic
marker of progression to kidney failure as well as CV disease.
The risk of CV mortality and heart failure (HF) in patients
with diabetes increases as albuminuria progresses beyond a
urine albumin-to-creatinine ratio (UACR) of 10 mg/g and
as estimated glomerular filtration rate (eGFR) falls below
75 mL/min/1.73 m2 [4]. Standard-of-care in CKD and T2D
includes control of blood glucose and blood pressure, and
guidelines recommend treatment with a renin–angiotensin
system (RAS) inhibitor and a sodium-glucose co-transporter-2
inhibitor (SGLT-2i) in most patients [5, 6]. However, patients
with CKD and T2D remain at high risk of CV events
and kidney disease progression despite best-recommended
therapy, particularly for patients in whom albuminuria per-
sists [7, 8]. Therefore, there remains a high therapeutic
unmet need in these patients and an opportunity for drugs
with mechanisms of action that extend beyond glomerular
hemodynamics [7].

Finerenone is a novel, selective, nonsteroidal miner-
alocorticoid receptor antagonist (MRA) that slowed CKD
progression and improved CV outcomes versus placebo in
patients with predominantly stage 3–4 CKD with severely
increased albuminuria in the Phase 3 FIDELIO-DKD trial [9].
FIGARO-DKD was a parallel study investigating the effect of
finerenone in patients with earlier stages of CKD and included
more patients with moderately increased albuminuria (UACR
30–<300mg/g), a population under-represented in other stud-
ies in CKD. FIGARO-DKD showed a statistically significant
benefit favoring finerenone versus placebo for the primary CV
composite endpoint (time to CV death, nonfatal myocardial
infarction, nonfatal stroke or hospitalization for HF) [10].
However, although there was a trend favoring finerenone for
the first secondary kidney composite endpoint in the testing
hierarchy (time to kidney failure, sustained ≥40% decrease
in eGFR or renal death), this difference was not statistically
significant [10].

The purpose of this exploratory analysis was to further
evaluate the effects of finerenone on cardiorenal outcomes in
patients with CKD and T2D beyond the results of the primary
analysis. This investigation included prespecified subgroup
analyses by baseline albuminuria to evaluate for treatment-
effect heterogeneity.

MATERIALS AND METHODS
Study design and participants
The study design and eligibility criteria of

FIGARO-DKD(NCT02545049), an international,multicenter,
Phase 3, randomized, double-blind, placebo-controlled,

parallel group, event-driven trial, have been described in detail
previously [11].

FIGARO-DKD enrolled patients aged ≥18 years with T2D
and UACR 30 to <300 mg/g and eGFR 25–90 mL/min/
1.73 m2 (stage 2–4 CKD) or UACR 300–5000 mg/g and an
eGFR ≥60 mL/min/1.73 m2 (stage 1–2 CKD; Supplementary
data, Fig. S1). In patients with UACR 30 to <300 mg/g,
recruitment caps limited the proportion of patients with
eGFR ≥60 mL/min/1.73 m2 to approximately 10% of the
total population, and those with no history of CV disease
to approximately 40% of the total patient number. Eligible
patients received a maximum tolerated labeled dose of a RAS
inhibitor therapy and had serum potassium ≤4.8 mmol/L at
screening. Key exclusion criteria included known significant
nondiabetic causes of kidney disease, symptomatic HF with
reduced ejection fraction and receipt of dialysis or a kidney
transplant.

Procedures and outcomes
The trial procedures and outcomes have been described

in detail previously [10, 11]. Following run-in and adjust-
ment of background medical therapies, eligible patients were
randomly assigned (1:1) to receive finerenone or placebo (10
or 20 mg once daily). Following randomization, trial visits
were conducted at months 1 and 4, then every 4 months
until study completion. Treatment was withheld if serum
potassium concentrations exceeded 5.5 mmol/L and restarted
when serum potassium levels decreased to ≤5.0 mmol/L.

Kidney outcomes of interest for this analysis included
an eGFR ≥40% kidney composite endpoint of time to
kidney failure [defined as end-stage kidney disease (ESKD;
the initiation of long-term dialysis for ≥90 days, or kidney
transplantation) or an eGFR <15 mL/min/1.73 m2 sustained
for ≥4 weeks], a sustained ≥40% decrease in eGFR from
baseline for ≥4 weeks, or renal death; a similar eGFR ≥57%
kidney composite considered a sustained ≥57% decrease in
eGFR from baseline for ≥4 weeks. A CV composite endpoint
of time to CV death, nonfatal myocardial infarction, nonfatal
stroke or hospitalization forHFwas also analyzed. All potential
endpoints were prospectively adjudicated by an independent
clinical event committee blinded to treatment assignment.

Efficacy and safety outcomes were also analyzed by UACR
subgroups at baseline. For the UACR subgroups, patients were
defined as having either moderately increased albuminuria
(UACR: 30 to <300 mg/g) or severely increased albuminuria
(UACR: 300 to 5000 mg/g). A small subgroup of patients had
UACR<30mg/g at baseline andwere excluded from subgroup
analyses because of the limited sample size.

Albuminuria regression was defined as a change from
severely increased to moderately increased albuminuria, or
moderately increased albuminuria to normal albuminuria,
accompanied by a UACR decrease from baseline of ≥30%.
Albuminuria progression for patients with moderately
increased albuminuria at baseline was defined as a change
to severely increased albuminuria, accompanied by a UACR
increase from baseline of ≥30%.
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Statistical analysis
Efficacy analyses were performed in the full analysis set

(i.e. all randomized patients without critical Good Clinical
Practice violations). Safety analyses were performed in the
safety analysis set, consisting of all full analysis set patients
who took ≥1 dose of study drug. A stratified log-rank test
was used to analyze the superiority of finerenone versus
placebo in time-to-event analyses. Treatment effects of time-
to-event outcomes were expressed as hazard ratios (HRs) and
corresponding 95% confidence intervals (CIs) from a stratified
Cox proportional hazards model. Events were reported from
randomization up to the end-of-study visit. Patients without
an event were censored at the date of their last contact, with
complete information on all components of their respective
outcomes.

All eGFR and UACR measurements from a central labo-
ratory were considered for efficacy analyses, irrespective of
discontinuation of study treatment but excluding values after
the onset of ESKD. The ratio of UACR from baseline to month
4 and chronic eGFR slope (annualized change from month
4 to premature discontinuation or end-of-study visit) were
analyzed with an analysis of covariance (ANCOVA) model
with covariates of treatment group, stratification factors and
baseline value. Treatment differences in UACR and eGFR over
the course of the trial were analyzed with a mixed model using
separate unstructured covariance patterns for each treatment
group and adjusted for stratification factors, baseline value,
time and interaction of time with treatment and baseline
value, respectively. Additional details on the efficacy and safety
analyses have been published previously [10].

RESULTS
Patients
Overall, 7437 patients were randomized in FIGARO-DKD

[10]. Following the prospective exclusion of 85 patients
from all analyses due to critical violations of Good Clinical
Practice, 7352 were included in this analysis. The trial
concluded after a median follow-up of 3.4 years, with 7334
(99.8%) patients completing the study [10]. At baseline, 3414
(46.4%) had moderately increased albuminuria (UACR: 30
to <300 mg/g), and 3729 (50.7%) had severely increased
albuminuria (UACR ≥300 mg/g); 207 (2.8%) patients had
normal albuminuria (UACR <30 mg/g) and for two (<0.1%)
patients no UACR value was available.

Baseline characteristics in patients according to urine
albumin-to-creatinine ratio status at baseline
At baseline, mean eGFR levels reflected the trial in-

clusion criteria. Patients with moderately increased albu-
minuria had a lower mean eGFR compared with pa-
tients with severely increased albuminuria (55.7 versus
79.6 mL/min/1.73 m2), and the proportions of patients with
baseline eGFR <60 mL/min/1.73 m2 were 65.3% and 11.7%,
respectively (Supplementary data, Fig. S1 and Table 1).

Noteworthy differences in baseline characteristics between
the two subgroups were likely related to the differences in

mean eGFR and the recruitment cap for history of CV disease.
Patients with moderately increased albuminuria were older,
had lower blood pressure, longer mean duration of diabetes
andweremore likely to report a history of CVdisease (Table 1).
Patients with moderately increased albuminuria were also less
likely to be current smokers. Medication use at baseline was
broadly similar in both groups, although patients with severely
increased albuminuria reported lower use of statins, diuretics
and β-blockers, and higher use of metformin and SGLT-2is at
baseline (Table 1).

Effects of finerenone on kidney outcomes in the overall
population
As previously reported, there was a 13% relative risk

reduction for the eGFR ≥40% kidney composite endpoint
in the overall population; however, this was not statistically
significant (HR: 0.87; 95% CI: 0.76–1.01; P = .069) [10].
A sustained ≥40% decrease in eGFR from baseline was
reported in 338 patients treated with finerenone and 385
patients treated with placebo (HR: 0.87; 95% CI: 0.75–1.00)
(Fig. 1A). The risk of the eGFR ≥57% kidney composite
endpoint was reduced with finerenone compared with placebo
[108 (2.9%) versus 139 (3.8%) patients; HR: 0.77; 95% CI:
0.60–0.99; P = .041]. In the finerenone group, 90 (2.4%)
patients experienced a sustained ≥57% decrease in eGFR
from baseline compared with 116 (3.2%) in the placebo group
(HR: 0.76; 95% CI: 0.58–1.00; P = .053) (Fig. 1B). There
was a 36% relative risk reduction in ESKD with finerenone
versus placebo, occurring in 32 (0.9%) patients treated with
finerenone, compared with 49 (1.3%) patients treated with
placebo (HR: 0.64; 95% CI: 0.41–0.995; P = .046; Fig. 1C).
Based on an absolute between-group difference of 0.6% (95%
CI: 0–1.1) after 42 months, the number of patients who
needed to be treated with finerenone to prevent one ESKD
event was 175. The cumulative incidences for kidney failure
and sustained decrease in eGFR to <15 mL/min/1.73 m2 are
shown in the Supplementary data, Fig. S2. Incidence of the
eGFR ≥57% kidney composite endpoint by key subgroups is
shown in the Supplementary data, Fig. S3. The treatment effect
of finerenone appeared consistent in patients with or without a
history of CV disease (Pinteraction = 0.37), by baseline glycated
hemoglobin (Pinteraction = 0.56 for ≤7.5% versus >7.5%) and
by baseline systolic blood pressure (Pinteraction = 0.14 for above
versus below median).

Finerenone reduced UACR compared with placebo, an
effect that was maintained throughout the trial (Fig. 2A). A
32% greater reduction in the ratio of UACR from baseline to
month 4 was seen with finerenone versus placebo (ratio of
least-squares mean change from baseline 0.68; 95% CI: 0.65–
0.70; P< .0001) [10]. Overall, patients treated with finerenone
had a significantly shorter time to albuminuria regression
(from severely increased tomoderately increased albuminuria,
or from moderately increased to normal albuminuria, each
accompanied by a UACR reduction of ≥30% from baseline)
over time than placebo recipients (HR: 1.82; 95%CI: 1.69–1.96;
P < .0001; Fig. 2B).

In the overall population, placebo-corrected change
in eGFR from baseline to month 4 with finerenone was
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Table 1. Baseline characteristics by albuminuria at baseline

UACR at baselinea

Moderately increased albuminuria
(UACR: 30 to <300 mg/g) (baseline
eGFR IQR 42–67 mL/min/1.73 m2)

Severely increased albuminuria
(UACR ≥300 mg/g) (baseline eGFR

IQR 68–92 mL/min/1.73 m2)
Characteristic (n = 3414) (n = 3729)

Age, years, mean ± SD 67.7 ± 8.6 60.6 ± 9.7
Sex, n (%)

Male
Female

2430 (71.2)
984 (28.8)

2548 (68.3)
1181 (31.7)

Race, n (%)
White 2532 (74.2) 2591 (69.5)
Black/African 128 (3.7) 125 (3.4)
Asian 633 (18.5) 783 (21.0)
Otherb 121 (3.5) 230 (6.2)

SBP, mmHg, mean ± SD 134.6 ± 14.4 137.1 ± 13.5
DBP, mmHg, mean ± SD 74.8 ± 9.7 78.7 ± 9.0
BMI, kg/m2, mean ± SD 31.2 ± 5.9 31.6 ± 6.1
Duration of diabetes, years, mean ± SD 15.5 ± 9.0 13.5 ± 7.9
HbA1c, %, mean ± SD 7.6 ± 1.3 7.9 ± 1.4
Serum potassium, mEq/L, mean ± SD 4.35 ± 0.42 4.31 ± 0.43
eGFR, mL/min/1.73 m2, mean ± SD 55.7 ± 18.8 79.6 ± 17.3
eGFR, mL/min/1.73 m2, n (%)

≥60 1183 (34.7) 3292 (88.3)
45 to <60 1126 (33.0) 336 (9.0)
25 to <45 1081 (31.7) 98 (2.6)
<25 24 (0.7) 2 (<0.1)

UACR, mg/g, median (IQR) 113 (65–187) 730 (459–1304)
History of CV disease, n (%) 1837 (53.8) 1367 (36.7)
Current smoker, n (%) 431 (12.6) 837 (22.4)
Medication use at baseline, n (%)
RAS inhibitors 3409 (99.9) 3725 (99.9)
Beta blockers 1802 (52.8) 1618 (43.4)
Diuretics 1825 (53.5) 1562 (41.9)
Statins 2561 (75.0) 2465 (66.1)
Potassium supplements 120 (3.5) 90 (2.4)
Potassium-lowering agents 28 (0.8) 18 (0.5)
Glucose-lowering therapies 3318 (97.2) 3676 (98.6)
Insulin 1791 (52.2) 2102 (56.4)
Metformin 2104 (61.6) 2835 (76.0)
SGLT-2i 244 (7.1) 358 (9.6)
GLP-1RA 263 (7.7) 272 (7.3)

a207 patients with UACR <30 mg/g and 2 patients with missing UACR were excluded from this analysis.
bOther = Native American, Native Hawaiian Islander, not reported and multiple.
BMI, bodymass index; CV, cardiovascular; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; GLP-1RA, glucagon-like peptide-1 receptor agonist; HbA1c, glycated
hemoglobin; IQR, interquartile range; RAS, renin–angiotensin system; SBP, systolic blood pressure; SD, standard deviation; SGLT-2i, sodium-glucose co-transporter-2 inhibitor; UACR,
urine albumin-to-creatinine ratio.

–2.24 mL/min/1.73 m2 (least-squares mean difference
–3.46 versus –1.22 mL/min/1.73 m2 for finerenone and
placebo, respectively; P < .0001; Supplementary data, Fig.
S4). However, placebo-corrected change in chronic eGFR
slope from month 4 to permanent discontinuation or the end
of study with finerenone was 1.13 mL/min/1.73 m2 (least-
squares mean difference –2.37 versus –3.50 mL/min/1.73 m2

for finerenone and placebo, respectively; P < .0001).

Effect of finerenone on kidney and cardiovascular
outcomes in patients according to urine
albumin-to-creatinine ratio status at baseline
Kidney outcomes by urine albumin-to-creatinine ratio

at baseline. A greater improvement in the incidence rate of

the eGFR≥40%kidney composite endpointwas observedwith
finerenone versus placebo in patients with severely increased
albuminuria at baseline than in those with moderately in-
creased albuminuria at baseline (HR: 0.74; 95% CI: 0.62–0.90
andHR: 1.16; 95% CI: 0.91–1.47, respectively; Pinteraction = .02)
(Fig. 3). Similarly, the treatment effect of finerenone versus
placebo for the eGFR ≥57% kidney composite endpoint
appearedmore pronounced in patients with severely increased
albuminuria at baseline than in those with moderately in-
creased albuminuria at baseline (HR: 0.69; 95% CI: 0.51–0.93
andHR: 1.05; 95% CI: 0.65–1.71, respectively; Pinteraction = .37)
(Fig. 3). This trendwas consistent across the components of the
composite kidney endpoints (Supplementary data, Fig. S5).

Evaluation of the chronic eGFR slope by UACR subgroups
showed a slower decline among patients in the placebo
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Hazard ratio 0.87 (95% CI 0.75–1.00)
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FIGURE 1: Kidney outcomes in the overall population. CI, confidence interval; eGFR, estimated glomerular filtration rate.

group with moderately increased albuminuria compared with
severely increased albuminuria (–2.1mL/min/1.73m2 per year
and –4.8 mL/min/1.73 m2 per year, respectively). Nonetheless,
finerenone slowed chronic eGFR decline compared with
placebo in both subgroups (difference in least-squares means

0.70; 95% CI: 0.14–1.26; P = .01 and 1.54; 95% CI: 0.60–2.48;
P= .0008, respectively) (Fig. 4A andB). Change inUACR from
baseline to month 4 by UACR subgroup showed a consistent
reduction with finerenone versus placebo in both albuminuria
subgroups (Fig. 4C and D).
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FIGURE 3: Kidney and CV composite endpoints by albuminuria at baseline. CI, confidence interval; CV, cardiovascular; eGFR, estimated
glomerular filtration rate; UACR, urine albumin-to-creatinine ratio.
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Chronic eGFR slope by treatment arm
(UACR 30 – < 300 mg/g)

Chronic eGFR slope by treatment arm
(UACR ≥ 300 mg/g)

Change in UACR at month 4 by treatment arm
(UACR 30 – < 300 mg/g)

Change in UACR at month 4 by treatment arm
(UACR ≥ 300 mg/g)

A B

C D

Difference of LS means
0.70 (95% CI 0.14–1.26)

P = 0.01

Difference of LS means
1.54 (95% CI 0.60–2.48)

P = 0.0008
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FIGURE 4: Kidney markers by albuminuria at baseline. (A) Chronic eGFR slope by treatment arm (UACR: 30 to <300 mg/g); (B) chronic eGFR
slope by treatment arm (UACR ≥300 mg/g); (C) change in UACR at month 4 by treatment arm (UACR: 30 to <300 mg/g); and (D) change in
UACR at month 4 by treatment arm (UACR ≥300 mg/g). Chronic slope is the annualized change from month 4 to premature discontinuation
(PD) or the end-of-study (EOS) visit.
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FIGURE 5: Time to progressiona from moderately to severely increased albuminuria in patients with UACR 30 to <300 mg/g at baseline.
aProgression was defined as a UACR level of ≥300 mg/g that was accompanied by a ≥30% increase in UACR from baseline.

Time to progression to severely increased albuminuria in
patients with moderately increased albuminuria at baseline
was prolonged in patients treated with finerenone compared
with placebo (HR: 0.59; 95% CI: 0.53–0.66; P < .0001, Fig. 5).
Furthermore, time to albuminuria regression was shorter for

the finerenone group than the placebo group, in both those
patients with moderately increased albuminuria at baseline
(HR: 2.18; 95% CI: 1.92–2.47; P < .0001) and those with
severely increased albuminuria at baseline (HR: 1.72; 95% CI:
1.56–1.90; P < .0001).
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Table 2. Treatment-emergent AEs by albuminuria at baseline

Patients with treatment-emergent AEs, n (%)

Moderately increased albuminuria (UACR: 30 to
<300 mg/g) (baseline eGFR IQR

42–67 mL/min/1.73 m2) (n = 3406)

Severely increased albuminuria
(UACR ≥300 mg/g) (baseline eGFR IQR
68–92 mL/min/1.73 m2) (n = 3727)

Finerenone
(n = 1724) Placebo (n = 1682)

Finerenone
(n = 1850) Placebo (n = 1877)

Any AE 1507 (87.4) 1483 (88.2) 1532 (82.8) 1562 (83.2)
Related to study drug 327 (19.0) 241 (14.3) 210 (11.4) 161 (8.6)
Leading to discontinuation 133 (7.7) 104 (6.2) 69 (3.7) 72 (3.8)

Any SAE 607 (35.2) 616 (36.6) 516 (27.9) 571 (30.4)
Related to study drug 23 (1.3) 20 (1.2) 10 (0.5) 7 (0.4)
Leading to discontinuation 48 (2.8) 44 (2.6) 20 (1.1) 30 (1.6)

AE leading to death 46 (2.7) 49 (2.9) 31 (1.7) 48 (2.6)
Any hyperkalemia 234 (13.6) 108 (6.4) 148 (8.0) 83 (4.4)
Related to study drug 142 (8.2) 64 (3.8) 89 (4.8) 48 (2.6)
Leading to hospitalization 14 (0.8) 2 (0.1) 6 (0.3) 0
Leading to permanent discontinuation 32 (1.9) 9 (0.5) 12 (0.6) 4 (0.2)
Leading to death 0 0 0 0

Acute kidney injury 59 (3.4) 70 (4.2) 30 (1.6) 26 (1.4)

AE, adverse event; eGFR, estimated glomerular filtration rate; IQR, interquartile range; SAE, serious adverse event; UACR, urine albumin-to-creatinine ratio.

Cardiovascular outcomes by urine albumin-to-creatinine
ratio at baseline. The effects of finerenone on the CV
composite outcome were consistent regardless of UACR at
baseline (moderately increased albuminuria: HR: 0.87; 95%
CI: 0.73–1.04; severely increased albuminuria: HR: 0.90; 95%
CI: 0.75–1.08; Pinteraction = .60; Fig. 3). The incidence rate
of hospitalization for HF was also consistently lower with
finerenone compared with placebo in patients withmoderately
increased albuminuria (HR: 0.73; 95% CI: 0.52–1.03) and
severely increased albuminuria at baseline (HR: 0.72; 95% CI:
0.51–1.02; Pinteraction = .90).

Safety
The incidences of any treatment-emergent adverse events

(TEAEs) were generally balanced between treatment arms and
similar between patients withmoderately or severely increased
albuminuria at baseline (Table 2). It is important to note for in-
terpretation of the safety outcomes that the eGFR interquartile
range in the moderately increased albuminuria group was 42–
67 mL/min/1.73 m2, compared with 68–92 mL/min/1.73 m2

in patients with severely increased albuminuria. Consequently,
hyperkalemia-related TEAEs were observed more frequently
in patients with moderately increased albuminuria at baseline
in both treatment arms. Nevertheless, incidence of hyper-
kalemia was approximately twice as frequent with finerenone
than with placebo in both albuminuria subgroups (moderately
increased albuminuria, 13.6% and 6.4%; severely increased
albuminuria, 8.0% and 4.4%, respectively). Discontinuations
due to hyperkalemia were low in all groups (<2.0% across
treatment arms and UACR subgroups). Acute kidney injury
adverse events were balanced between treatment groupswithin
each albuminuria subgroup.

DISCUSSION
In the primary analysis of FIGARO-DKD, no significant
between-group difference was observed for the first composite

kidney endpoint, including a ≥40% decrease in eGFR from
baseline [10]. However, a reduction in risk with finerenone
treatment was observed for the kidney composite endpoint
including a sustained ≥57% decrease in eGFR. A greater
risk reduction in these composite kidney endpoints was
observed with finerenone in patients with severely increased
albuminuria than in patients with moderately increased albu-
minuria at baseline. Nevertheless, a reduction in chronic eGFR
slope was observed with finerenone compared with placebo
in both UACR subgroups, as well as a lower likelihood of
albuminuria progression in patients withmoderately increased
albuminuria, indicating that both subgroups of patients are
likely to receive kidney benefits from finerenone in the long
term. CV outcomes including hospitalization for heart failure
were consistently improved with finerenone irrespective of
baseline albuminuria.

The results for the eGFR ≥57% kidney composite endpoint
are important because it is an established and widely used
surrogate endpoint for kidney failure in studies of CKD; in
addition, the eGFR ≥57% kidney composite endpoint has
higher specificity with kidney failure than the sustained≥40%
decrease in eGFR frombaseline for the evaluation of drugs that
lead to an initial and transitory eGFR decline [12, 13]. In a
comparable HF analysis from the EMPEROR-Preserved trial
of empagliflozin in patients with heart failure and preserved
ejection fraction, eGFR mean slope change per year was –1.25
and –2.62 mL/min/1.73 m2 with empagliflozin and placebo,
respectively (difference 1.36; 95% CI: 1.06–0.66; P < .001).
However, the incidence rate of the composite kidney outcome
(including a sustained ≥40% decrease in eGFR) was similar
between treatment arms (3.6% and 3.7% of patients treated
with empagliflozin andplacebo, respectively;HR: 0.95; 95%CI:
0.73–1.24) [14]. Reduction in ESKD is a particularly clinically
meaningful outcome because of the considerable associated
mortality andmorbidity as well as the negative impact of ESKD
on patients’ quality of life and the healthcare cost burdens
associated with its management [15–17]. Analysis of UACR
over time showed that finerenone lowered the ratio of UACR
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from baseline by 32% versus placebo at month 4, an effect that
persisted throughout the trial and translated into a shortened
time to albuminuria regression with finerenone.

In patients with CKD and T2D, the effect of finerenone
on kidney outcomes appeared to be more pronounced for
severely increased albuminuria than for moderately increased
albuminuria at baseline. Despite this, finerenone slowed the
rate of chronic eGFR decline versus placebo in patients in
both UACR subgroups; however, because the rate of eGFR
decline was slower in patients with moderately increased
albuminuria, longer follow-up periods may be required to
observe a reduction in risk of kidney failure and sustained
eGFR decline outcomes in these patients. In patients with
moderately increased albuminuria, finerenone also slowed
the rate of albuminuria progression, supporting the idea that
finerenone can be expected to improve kidney outcomes over
the long term in these patients. Previous research has shown
that changes in albuminuria are associated with subsequent
risk of outcomes such as ESKD and sustained ≥57% decrease
in eGFR across a range of cohorts [4, 18–20]. The kidney
benefits finerenone in patients with higher levels of albumin-
uria may indicate more glomerular inflammation and injury
in these patients. Overactivation of the mineralocorticoid
receptor and aldosterone upregulation may be contributors
to this underlying kidney damage [21], and finerenone is
hypothesized to reduce inflammation andfibrosis in the kidney
via mineralocorticoid receptor blockade [22]. Preclinical data
have demonstrated that finerenone reduces proinflammatory
markers and profibrotic markers in the kidney and the heart
[23] and prevents kidney glomerular and tubular damage [24].
The treatment benefit with finerenone on the eGFR ≥57%
kidney composite endpoint being independent of baseline
glycemic control or blood pressure might also suggest a
complementary mechanism to SGLT-2is and RAS inhibitors,
which are recommended for patients with T2D and CKD, and
act primarily via glycemic and/or hemodynamic mechanisms
[25, 26].

Finerenone had a similar magnitude of effect on CV
outcomes in patients with moderately and severely increased
albuminuria at baseline; these included hospitalization for HF,
which was the main driver of the finerenone benefit for the CV
composite primary endpoint in the FIGARO-DKD primary
analysis. These findings highlight the CV benefits in patients
with both early- and late-stage CKD and support the need for
albuminuria screening in patientswithT2D to identify patients
with CKD at earlier stages to reduce their CV risk.

Treatment-emergent adverse events were generally well
balanced between patients in the finerenone and placebo
treatment arms. The incidences of TEAEs leading to dis-
continuation of the study and serious TEAEs were higher
in patients with moderately increased albuminuria com-
pared with patients with severely increased albuminuria at
baseline, likely reflective of the lower mean eGFR of the
former subgroup. Although total hyperkalemia events were
increased with finerenone versus placebo, the incidence of
clinically meaningful events was low in both treatment arms,
with few hospitalizations or study drug discontinuations
due to hyperkalemia, and no hyperkalemia-related deaths.

More hyperkalemia-related TEAEs occurred with moderately
increased than severely increased albuminuria; however, this
observation is consistent with expectations because decreasing
eGFR is an established risk factor for hyperkalemia [27]. In
addition to the fact that only short-term data on UACR are
available with steroidal MRAs, unlike the long-term follow-
up in FIGARO-DKD [28, 29], finerenone also appears to
have good tolerability in comparison with the steroidal MRAs
based on their respective hyperkalemia profiles. In the phase II
ARTS-HF study, finerenone treatment led to less hyperkalemia
than spironolactone over 4 weeks in patients with chronic
HF with reduced ejection fraction and moderate CKD [30].
Finerenone also does not appear to be associated with any
sexual side effects, unlike spironolactone [22].

With this analysis, special consideration had to be given for
the inclusion criteria of FIGARO-DKD, which meant that pa-
tients with moderately increased albuminuria had lower eGFR
values than those patients with severely increased albuminuria
(Supplementary data, Fig. S1) [10]. Although most analyses
were prespecified, confirmatory testing was only applied to
the CV and eGFR ≥40% kidney composite endpoints, due
to the hierarchical testing strategy, which stopped at the first
nonsignificant result. Therefore, the analyses described here
are mostly exploratory and hypothesis-generating in nature.

Overall, the results of this analysis suggest that finerenone
offers an important advance in treatment for patients with
CKD and T2D with either moderately or severely increased
albuminuria to protect against kidney disease progression
and CV events. The findings also emphasize the need for
albuminuria screening in patients with T2D because early
initiation of treatment can reduce the risk of CV events
and progression of albuminuria in patients with moderately
increased albuminuria.

SUPPLEMENTARY DATA
Supplementary data are available at ndt online.
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