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Abstract

The MRI image is obtained in the spatial domain from the given Fourier coefficients in the

frequency domain. It is costly to obtain the high resolution image because it requires higher

frequency Fourier data while the lower frequency Fourier data is less costly and effective if

the image is smooth. However, the Gibbs ringing, if existent, prevails with the lower fre-

quency Fourier data. We propose an efficient and accurate local reconstruction method with

the lower frequency Fourier data that yields sharp image profile near the local edge. The

proposed method utilizes only the small number of image data in the local area. Thus the

method is efficient. Furthermore the method is accurate because it minimizes the global

effects on the reconstruction near the weak edges shown in many other global methods for

which all the image data is used for the reconstruction. To utilize the Fourier method locally

based on the local non-periodic data, the proposed method is based on the Fourier continu-

ation method. This work is an extension of our previous 1D Fourier domain decomposition

method to 2D Fourier data. The proposed method first divides the MRI image in the spatial

domain into many subdomains and applies the Fourier continuation method for the smooth

periodic extension of the subdomain of interest. Then the proposed method reconstructs the

local image based on L2 minimization regularized by the L1 norm of edge sparsity to sharpen

the image near edges. Our numerical results suggest that the proposed method should be

utilized in dimension-by-dimension manner instead of in a global manner for both the quality

of the reconstruction and computational efficiency. The numerical results show that the pro-

posed method is effective when the local reconstruction is sought and that the solution is

free of Gibbs oscillations.
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Introduction

Magnetic resonance imaging (MRI) is a commonly used medical imaging technique. MRI

image reconstruction is based on the inverse Fourier transform of a frequency-limited

acquired Fourier spectrum of the object. In this work, we are interested in the 2D Fourier

reconstruction of given MRI data. Before we continue to the 2D MRI image reconstruction,

we should start from the basic 1D Fourier reconstruction. For the 1D Fourier reconstruction,

we consider the problem of how to reconstruct a piecewise smooth function f ðxÞ : O! R,

O = [−1,1] on a uniform grid xj ¼ � 1þ jDx; j ¼ 0; 1; � � � ; 2N;Dx ¼ 1

N when its Fourier coeffi-

cients (also known as k-space data in MRI), ff̂ kg, are given. The Fourier coefficients of f(x) are

defined by

f̂ k ¼
1

2

Z 1

� 1

f ðxÞe� pikxdx; k ¼ � N; � � � ;N ð1Þ

and the Fourier partial sum fN(x), which is the image space reconstruction commonly obtained

in MRI, is

fNðxÞ ¼
XN

k¼� N

f̂ ke
pikx: ð2Þ

Since the function that we want to find, f(x), is a piecewise smooth function, the approximation

by Eq (2) may yield the Gibbs phenomenon.

When the patient’s MRI image is obtained, usually we want to reconstruct the image so as

to reveal the detailed structure of a particular region with the given Fourier coefficients. How-

ever, most reconstruction methods, such as the Fourier reconstruction and filtered Fourier

reconstruction, are carried out in a global manner [1, 2], so they are computationally expen-

sive. And since global methods provide the reconstruction in one piece, so the quality of the

reconstruction near different edges is not equal ([3] shows this limitation). In this work, we

propose a local method that focuses on and yields the local reconstruction of the subdomain

such that an accurate and non-oscillatory sharp image reconstruction is achieved in that sub-

domain. If we patch all these local reconstructions together to constitute the whole image, the

result will be more accurate than the one obtained by the global method while the subdomain

that we are interested in is much enhanced.

As an example, we proposed a local method [3] based on the L1 regularization method pro-

posed in [4]. The method by [4], known as the sparse polynomial annihilation (PA) method,

is an L1 regularization method based on sparsity of edges for the Fourier reconstruction, for

obtaining the sharp image profiles near edges. By using the edge sparsity in the L1 regulariza-

tion term, this approach can reduce the Gibbs oscillations near edges and provide a sharp

reconstruction. However, as other reconstruction methods, this approach is a global method,

which intrinsically puts more weight on strong edges (jumps with large magnitudes) than on

weak edges (jumps with small magnitudes). This can sharpen the reconstruction near strong

edges, but the reconstruction near weak edges often becomes similar to or even worse than the

original Fourier reconstruction. Thus, if the area we are interested in is near weak edges, this

approach may not be effective. If the L1 regularization can be done locally, the reconstruction

near weak edges can be improved. Such local operation could be done by our previous 1D

method of domain decomposition Fourier L2 and L1 minimization based on the Fourier con-

tinuation [3]. The key element of our local method is to split the given domain into multiple

subdomains first and then carry out the L1 minimization individually in each subdomain. If

necessary, we patch all the reconstruction in each subdomain together.

2D local Fourier image reconstruction
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original_MRI_high_resolution.mat is the original

618x617 MRI image. 3) reconstruction_MRI_2.

mat is the stitched MRI image data with 2 extra

points added into each boundaries of each sub-

domain. 4) reconstruction_MRI_5.mat is the

stitched MRI image data with 5 extra points added

into each boundaries of each sub-domain.
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In this paper, we extend our previous 1D domain decomposition Fourier reconstruction

method to 2D image reconstruction. We propose the following 2D methods, 1) the global 2D

Fourier continuation sparse PA method and 2) the dimension-by-dimension Fourier continu-

ation sparse PA method. The dimension-by-dimension is basically a 1D Fourier continuation

applied in x− and y−directions separately. By comparing numerically the global 2D Fourier

continuation sparse PA method with the dimension-by-dimension Fourier continuation

sparse PA method, we show that the dimension-by-dimension method should be used for

both accuracy and computational efficiency. In this paper, we also provide empirically the best

range of the control value of the L1 regularization, λ, to use. Our method is efficient and flexi-

ble in the sense that we can stitch all the local reconstructions from each subdomain to form

the accurate whole complete image and that the constituted one is more accurate than the

image by the global method. In this paper we provide detailed numerical results using the

Shepp-Logan phantom image and real MRI data.

This paper is composed of the following sections. First, a brief explanation of the 1D

domain decomposition Fourier continuation method based on the edge sparsity proposed in

[3] is given. Then the extension of the 1D method to the 2D Fourier reconstruction will be

introduced. Various numerical examples are given immediately after the 2D method. Finally, a

concluding remark will be provided.

1D domain decomposition Fourier continuation sparse PA method

1D Fourier continuation

We briefly explain two approaches of the Fourier continuation method in 1D. More detailed

explanations can be found in [5–11].

Global Fourier continuation method. Suppose that we have a non-periodic function

f : I0 ! R where I0 = [a, b]. Let L = b − a. The point values of f, f(xj), are given at xj = a + jΔx,
where Dx ¼ L

N and j = 0, � � �, N. With the global 1D Fourier continuation method, the non-

periodic function f(x) is extended to a periodic function g(z) over I2 = [a, b + d] (where d =

γΔx, γ is a positive integer) with periodicity of L + d. The positive value of γ is arbitrary and the

optimal value of γ is function dependent. Practically the value of γ is chosen empirically in con-

sideration of computational efficiency.

The periodic extension g(z) can be written as the following Fourier sum since g(z) is peri-

odic over I2

gðzÞ ¼
XM

k¼� M

ĝ ke
2pikz� aLþd; ð3Þ

whereM is a nonnegative integer. The unknown coefficients ĝ k can be obtained by matching

g(z) with f(x) at z = x = xj such that

gðzjÞ ¼
XM

k¼� M

ĝ ke
2pik

zj � a
Lþd ¼ f ðxjÞ ð4Þ

where zj = a + jΔx = xj, j = 0, 1, � � �, N. Let the element of the coefficient matrix A be defined by

Ajk ¼ e
2pik

zj � a
Lþd ; ð5Þ

and let ĝ ¼ ðĝ � M; � � � ; ĝMÞ
T

and f ¼ ðf ðx0Þ; � � � ; f ðxNÞÞ
T
. Then ĝ k in Eq (3) can be found by

solving the following linear system

Aĝ ¼ f:

2D local Fourier image reconstruction
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IfM = N/2, ĝ k are uniquely determined. IfM 6¼ N/2, the system can be solved by using the

pseudo inverse based on the singular value decomposition (SVD),

ĝ ¼ Aþf;

where A+ denotes the pseudo inverse of A. The matrix A easily becomes ill-posed with the

large values of N andM, which leads us to the method in the following section.

Fourier continuation method using the boundary values. The global Fourier continua-

tion method is simple, but since this method uses every f(xi) to find the extended periodic

function, the reconstruction is easily affected by round-off errors and the Runge phenomenon

still exists if f(x) is a Runge function. To minimize such issues, the local Fourier continuation

method [10, 11] has been used which utilizes f(xi) near the domain boundaries only. We briefly

explain this local Fourier continuation method below.

The extended periodic function g(z) over [a, b + d] is defined as

gðzjÞ ¼

( f ðzjÞ; zj ¼ xj 2 I0 ¼ ½a; b�; j ¼ 0; 1; � � � ;N

fmatchðzjÞ; zj ¼ aþ jDx 2 I1 ¼ ½b; bþ d�; j ¼ N þ 1; � � � ;N þ g
ð6Þ

where fmatch(z) is called the matching function. Here, g(z) is defined different from g(z) in

Eq (3). The local Fourier continuation method uses only local values near the boundaries to

find the matching function. Define the intervals Ileft = [b − δ, b] and Iright = [b + d, b + d + δ]

(where δ = βΔx, d = γΔx, β and γ are positive integers). With the values of f(x) over Ileft and

Iright, the matching function fmatch(z) over these intervals is defined by

fmatchðzjÞ ¼

f ðzjÞ; zj ¼ aþ jDx 2 Ileft ¼ ½b � d; b�; j ¼ N � b; � � � ;N

f ðzj � d � ðb � aÞÞ; zj ¼ aþ jDx 2 Iright ¼ ½bþ d; bþ d þ d�;

j ¼ N þ g; � � � ;N þ gþ b:

8
>>><

>>>:

ð7Þ

fmatch(z) is a periodic function defined over I3 = [b − δ, b + 2d + δ] with the periodicity of 2(d + δ).

By finding fmatch, the extended periodic function g(z) in Eq (6) is found.

To find fmatch(z) over the whole interval I3, we use following formula

fmatchðzÞ ¼
XK=2

k¼� K=2

f̂ mk e
2pikðz � bþ dÞ

2ðd þ dÞ ; ð8Þ

where f̂ mk are the unknown Fourier coefficients of fmatch(z). We find f̂ mk by matching the match-

ing function with the given function. That is,

fmatchðzÞ ¼
XK=2

k¼� K=2

f̂ mk e
2pikðz � bþ dÞ

2ðd þ dÞ ¼ pðzÞ; z 2 Ileft ð9Þ

and

fmatchðzÞ ¼
XK=2

k¼� K=2

f̂ mk e
2pikðz � bþ dÞ

2ðd þ dÞ ¼ qðzÞ; z 2 Iright ð10Þ

at Q distinct points in each interval. K is an integer that K< Q. Here p(z) and q(z) are found

by using (β + 1) grid points such that the degree of p(z) and q(z) is less than or equal to β. If the

degree is β, then p(z) and q(z) are the local interpolation of f(x) over Ileft and Iright, respectively.

If the degree is less than β, then p(z) and q(z) can be found by solving the over-determined

2D local Fourier image reconstruction
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system in the least-squares sense. To minimize round-off errors, people usually use the Gram

polynomial for p(z) and q(z) and construct the linear system [10]. By solving Eqs (9) and (10)

in the least-squares sense using SVD we find f̂ mk . Then using Eqs (8) and (6), we find the

matching function fmatch(zj), j = N, � � �, N + γ and obtain the desired extended function g(zj),
j = 1, � � �, N + γ.

Convex optimization: L1 regularization based on sparsity of edges

The following convex optimization problem using L1 regularization based on sparsity of edges

was proposed in [4], which yields sharp Fourier reconstruction near edges,

minfR jjFf
R
� f̂ jj

2
þ ljjEpfRjj

1
; l > 0; ð11Þ

where k�k2 and k�k1 denote the vector L2 and L1 norms, respectively. The first term is the fidel-

ity term. fR is the reconstruction we want to find and f̂ is the given Fourier coefficient vector.

The edge operator Ep is the sparse polynomial annihilation transform and the superscript p
denotes the order of the derivative of the interpolation [12, 13]. The polynomial annihilation

(PA) is basically higher order derivative of the interpolation. Thus EpfR has large values at the

discontinuities but vanishes in the smooth regions of the function. In such a way, EpfR repre-

sents sparsity. The constant λ> 0 is a free parameter whose optimal value is chosen empirically

[4]. In [4] it was shown that the L1 regularization with the sparse PA method yields a better

reconstruction than the filtering or TV regularization.

1D domain decomposition Fourier continuation sparse PA method

In [3] the domain decomposition sparse PA method was proposed, with which the given

domain is split into multiple subdomains and the sparse PA method is applied separately in

each individual domain. To make the minimization of Eq (11) done locally, we used the Fou-

rier continuation method.

Remark 1Here we should note that our domain decomposition Fourier continuation method
is not limited to the sparse PA method. The L1 regularization term in Eq (11) can be replaced
with other terms such as TV norm.

For the domain decomposition Fourier continuation method, we split the domain into

multiple subdomains f½x0; xj1 �; ½xj1 ; xj2 �; � � � ; ½xjk� 1
; xjk �; ½xjk ; x2N �g, 0< j1 < j2 < � � �< jk< 2N

and carry out the minimization for each subdomain separately. For example, suppose that we

reconstruct the function on the subdomain ½xj1 ; xj2 �. The function is not necessarily periodic in

this subdomain. To deal with this non-periodic function with the Fourier method, we use the

Fourier continuation method. However, as shown in [3], the direct application of the Fourier

continuation method to the subdomain ½xj1 ; xj2 � causes some oscillations near the domain

boundaries when trying to stitch the all the reconstructions from each subdomain. To avoid

such oscillations and apply the Fourier continuation successfully, we first extend the subdo-

main so that the extended domain contains ½xj1 ; xj2 �. The easiest way to find this extension is to

add a fixed number of extra grid points to both boundaries. A more sophisticated way is pre-

sented in our previous work [3] based on the TV analysis. Let nm be a fixed integer that deter-

mines how many extra grid points are added at each boundary. Thus the extension becomes

½xj1 � nm ; xj2þnm � :¼ ½a; b�, which contains K0 = (j2 + nm) − (j1 − nm) + 1 uniform grid points.

Thus we have the non-periodic data fN(x)(obtained from all Fourier coefficients via Eq 2) on

K0 uniform grid points over [a, b].

2D local Fourier image reconstruction
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Then we use the following convex optimization method in this subdomain using L1 regular-

ization based on the sparsity of edges

minfR jjFf
R
� f̂ cjj2 þ ljjEpf

R
jj1; l > 0: ð12Þ

F is a transform matrix explained below. f̂ c is a Fourier coefficient vector which needs to be

found before solving Eq (12). This f̂ c is not the one defined by Eq (1), but is obtained from

fN(x) over [a, b]. For the extended subdomain, [a, b] we apply the Fourier continuation

method to fN(x) over [a, b] [3] and obtain the extended periodic function fex(x) over the

extended interval [a, b + d], where d = γΔx. γ is a fixed integer that determines the number of

points on the extended interval as defined in the previous section. Let K = K0 + γ. With the

fex(x) over the extended interval [a, b + d], the corresponding Fourier coefficients, f̂ ck, can be

found by using the discrete Fourier transform [14],

f̂ ck ¼
1

K~ck

Xj2þnmþg

j¼j1 � nm

fexðxjÞ exp ð� pikxjÞ; ð13Þ

where

~ck ¼
2; if K is even number and jkj ¼ K=2

1; otherwise
:

(

Let f̂ c ¼ ðf̂ c
� K=2

; � � � ; f̂ cK=2
Þ
T

and F be the transform matrix whose elements are

Fkj ¼ exp ð� ikpxjÞ=K~ck from Eq (13).

The optimization problem Eq (12) is solved using the Matlab CVX package [15]. fR

is the reconstruction we get over the extended interval [a, b + d]. The reconstruction by

Eq (12) is over the domain [a, b + d]. We only take the reconstruction over the interval

½xj1 ; xj2 � � ½a; b� � ½a; bþ d�.

2D domain decomposition Fourier continuation method

Suppose that we have a periodic function f0 : J0 ! R over J0 = [a0, b0]2. Let L0 = b0 − a0. Fur-

ther suppose that the values of f0 are given at a set of uniform grid points, (xi, yj), xi = a0 + iΔ
and yj = a0 + jΔ, where D ¼

L0

N and i = 0, � � �, N, j = 0, � � �, N. We consider the problem of how

to reconstruct the 2D image on n × n uniform grid points over J = [a, b] × [c, e]� J0, where

a ¼ xi1 ; b ¼ xi2 ; i2 ¼ i1 þ n; i1 2 f0; � � � ;N � ng;

c ¼ yj1 ; e ¼ yj2 ; j2 ¼ j1 þ n; j1 2 f0; � � � ;N � ng:

In practice, the subdomain size is determined by the size of the region where the local Gibbs

oscillations are dominant. For example, for the top right in Fig 1, we can see clearly the promi-

nent oscillations near (40, 70) in the horizontal direction over about 10 pixels. So the subdo-

main size will be at least 10 × 10. If there are multiple regions with prominent oscillations but

different spatial sizes, then we choose the largest size among them as the subdomain size. Since

the function f0 over the subdomain J is non-periodic in general and the Fourier coefficients

computed based on the function values within J are Gibbs-contaminated, we apply the Fourier

continuation method to J. Before we use the Fourier continuation method to reduce the Gibbs

oscillations near the boundaries of J we first need the function values on a larger subdomain

than J as in the 1D case. Here we choose the same number of extra grid points to add to all

2D local Fourier image reconstruction
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Fig 1. Reconstruction of Shepp-Logan phantom image, fN, by the global method. First row: (a) The exact Shepp-Logan phantom

image on 85 × 85 grid. (b) The Shepp-Logan phantom image, fN, (the Gibbs oscillations are clearly visible). The sample region 1 (left

rectangle) and the sample region 2 (right rectangle). The sample regions in the rectangles with the solid line are J (with size 21 × 21) and

the regions in the rectangles with dashed line are J1, which are J with 2 extra grid points added to each boundary. Second row: (c) The

image with double resolution of the sample region 1 with 2 extra grid points by using zero-padding(for comparison purposes). (d) The

reconstruction of the sample region 1 with the global 2D Fourier continuation sparse PA method. (e) The corresponding image of the

169 × 169 exact Shepp-Logan phantom image (ground truth). (f) The difference between the reconstruction and the ground truth.

Third row: (g) The image with double resolution of the sample region 2 with 2 extra grid points by using zero-padding(for comparison

purposes). (h) The reconstruction of the sample region 2 with the global 2D Fourier continuation sparse PA method. (i) The

corresponding image of the 169 × 169 exact Shepp-Logan phantom image (ground truth). (j) The difference between the reconstruction

and the ground truth.

https://doi.org/10.1371/journal.pone.0197963.g001

2D local Fourier image reconstruction
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four boundaries, nm. Then we have the new subdomain J1 = [a1, b1] × [c1, e1], where

a1 ¼ xi1 � nm ; b1 ¼ xi2þnm ;

c1 ¼ yj1 � nm ; e1 ¼ yj2þnm :

Thus over this new subdomain J1 we have a new non-periodic function f : J1 ! R, that

f(xi, yj) = f0(xi, yj), where i = i1 − nm, i1 − nm + 1, � � �, i2 + nm and j = j1 − nm, j1 − nm + 1, � � �, j2 +

nm. Then we can apply the following two 2D Fourier continuation sparse PA methods to the

function f on (n + 2nm) × (n + 2nm) uniform grid points over J1.

Global 2D Fourier continuation sparse PA method

Now we have a non-periodic function f : J1 ! R over J1 = [a1, b1] × [c1, e1]. Let L = b1 − a1 =

e1 − c1. And the values of f are given at a set of uniform grid points, (xi, yj), where i = i1 − nm,

i1 − nm + 1, � � �, i2 + nm and j = j1 − nm, j1 − nm + 1, � � �, j2 + nm. With the global Fourier continu-

ation method, f(x, y) is extended to a periodic function g(z(1), z(2)) defined over J2 = [a1, b1 + d]

× [c1, e1 + d] (where d = γΔ, γ is a positive integer), with periodicity of L + d on x and y direc-

tions. The periodic extension g(z(1), z(2)) can be obtained as below

gðzð1Þ; zð2ÞÞ ¼
XM

k¼� M

XM

l¼� M

ĝðk; lÞe 2pi
Lþdðkðz

ð1Þ� aÞþlðzð2Þ� aÞÞ; ð14Þ

whereM = (n + 2nm + γ)/2. The unknown coefficients ĝðk; lÞ are determined by matching

g(z(1), z(2)) with f(x, y) at z(1) = x = xi, z(2) = y = yj such that

gðzð1Þi ; z
ð2Þ

j Þ ¼
XM

k¼� M

XM

l¼� M

ĝðk; lÞe 2pi
Lþdðkðxi � aÞþlðyj � aÞÞ ¼ f ðxi; yjÞ ð15Þ

where i = i1 − nm, i1 − nm + 1, � � �, i2 + nm and j = j1 − nm, j1 − nm + 1, � � �, j2 + nm. The reconstruc-

tion of f(x,y) within J1 based on {f(xi, yj)} is given by g(z(1), z(2)) for z(1) 2 [a1, b1] and z(2) 2 [c1, e1].

Then we seek fR ¼ ff Rðxi; yjÞ : i ¼ i1 � nm; i1 � nm þ 1=2; i1 � nm þ 1; � � � ; i2 þ nm þ g;
j ¼ j1 � nm; j1 � nm þ 1=2; j1 � nm þ 1; � � � ; j2 þ nm þ gg (a higher number of grid points is

used here) by solving the convex optimization problem

minfR jjFf
R
� f̂ jj

2
þ lxjjE

p
xf
R
jj

1
þ lyjjE

p
yf
R
jj

1
; lx; ly > 0: ð16Þ

Here f̂ is zero padding of ĝðk; lÞ, that

f̂ ðk; lÞ ¼
ĝðk; lÞ; if jkj; jlj � M;

0; if M < jkj; jlj � M þ g=2:

(

F is the analogous 2D Fourier transform matrix of (5). Epx corresponds to Ep in (12) in the x direc-

tion for each fixed yj, j = 0, � � �,N, and Epy is similarly calculated for the y direction. Finally we

obtain the 2D Fourier reconstruction image, f(xi, yj) = fR(xi, yj), i = i1, i1 + 1/2, i1 + 1� � �, i2, j = j1,

j1 + 1/2, j1 + 1, � � �, j2 over the smaller domain J.

Dimension-by-dimension Fourier continuation sparse PA method

The global approach in the previous subsection is computationally slow. Thus we propose to use

the dimension-by-dimension approach. That is, we apply the 1D Fourier continuation method

using subdomain boundary values for each fixed xi, i = i1 − nm, � � �, i2 + nm in y-direction and

2D local Fourier image reconstruction
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vice versa. The non-periodic function f(xi, y) on {(xi, yj)jj = j1 − nm, j1 − nm + 1, � � �, j2 + nm} is

extended to a periodic function gR(xi, z) on a high resolution grid set {(xi, zI)jI = j1 − nm, j1 − nm
+ 1/2, j1 − nm + 1, � � �, j2 + nm + γ−1/2, j2 + nm + γ, γ is a positive integer}, where if I = j1 − nm +

1/2 then we have zI ¼ zj1 � nm þ
D

2
. Then the corresponding Fourier coefficients, ĝ Ri ðkÞ, to

fgRðxi; yjÞg
j2þnmþg� 1

j¼j1 � nm
can be found using the discrete Fourier transform

ĝ Ri ðkÞ ¼
1

nþ 2nm þ g

Xj2þnmþg� 1

j¼j1 � nm

gRðxi; yjÞ exp ð�
2pi
Lþ d

kyjÞ; ð17Þ

where k = −M, � � �,M,M = (n + 2nm + γ)/2. Then we use the convex optimization method using

L1 regularization based on the sparsity of edges

mingiR
jjFgiR � ĝi jj2 þ ljjEpgiRjj1; l > 0; ð18Þ

to find the reconstruction of the function, giR ¼ ðgRðxi; yj1� nmÞ; g
Rðxi; yj1 � nmþ1=2Þ;

gRðxi; yj1 � nmþ1Þ � � � ; gRðxi; yj2þnmþgÞÞ
T
, where i = i1 − nm, � � �, i2 + nm, on

½xi1 � nm ; xi2þnm � � ½yj1 � nm ; yj2þnmþg�. E
p is the sparse PA transform matrix as (12). F is the

transform matrix whose elements are

Fkj ¼
1

2ðnþ 2nm þ gÞ
exp ð�

2pi
Lþ d

kyjÞ;

where k = −M, � � �,M, j = j1 − nm, j1 − nm + 1/2, j1 − nm + 1, � � �, j2 + nm + γ−1/2, j2 + nm + γ.

We update the values of f on (n + 2nm) × (2n + 4nm) grid points over J1 with these recon-

struction data by letting

f ðxi; yjÞ ¼ g
Rðxi; yjÞ

where i = i1 − nm, i1 − nm + 1/2, i1 − nm + 1, � � �, i2 + nm, j = j1 − nm, j1 − nm + 1, � � �, j2 + nm.

We repeat the same procedure for x-direction and update the values of f over J1 again. We

have f(x, y) on (2n + 4nm) × (2n + 4nm) uniform grid points, (xi, yj), where i = i1 − nm, i1 − nm +

1/2, i1 − nm + 1, � � �, i2 + nm, j = j1 − nm, j1 − nm + 1/2, j1 − nm + 1, � � �, j2 + nm. Finally we obtain

the 2D Fourier reconstruction, f(xi, yj), i = i1, i1 + 1/2, i1 + 1, � � �, i2, j = j1, j1 + 1/2, j1 + 1, � � �, j2
over the smaller domain J.

Numerical results

In this section, we provide various numerical examples.

Example 1: Shepp-Logan phantom

With this example, we apply both the global 2D Fourier continuation sparse PA method and

the dimension-by-dimension Fourier continuation sparse PA method for the reconstruction

of the Shepp-Logan phantom image. This reconstructed Shepp-Logan phantom image is

found by the following steps. First we use the Shepp-Logan phantom image on the 801 × 801

grid to find its 2D Fourier coefficients, f̂ kxky , kx, ky = −400, � � �, 400. We use these Fourier coeffi-

cients as the exact Fourier coefficients of the Shepp-Logan phantom. Using only a partial

number of Fourier coefficients, e.g. kx, ky = −N, � � �, N, N = 42 in this work, we reconstruct

the Shepp-Logan phantom via DFT, fN, with which the 2D Fourier continuation method is

applied. This experiment mimics an MRI-like acquisition with limited spatial resolution. We

compare the results obtained by both the global and dimension-by-dimension methods.

2D local Fourier image reconstruction
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Global method. In Fig 1, Fig 1(a) is the illustration of the Shepp-Logan image on 85 × 85

grids. In Fig 1(b) we choose two sample regions of the reconstructed Shepp-Logan, fN sample

region 1 and sample region 2 in the left and right boxes respectively. We apply the global 2D

Fourier continuation sparse PA method on these regions. Here we choose λ = 0.01 for both

regions. The best value of λ, λ = 0.01 was chosen based on the experiments. The regions in

those rectangles with the solid border, J, are the ones where we want to find the reconstruction

and the regions in the rectangles with the dashed border, J1, are the extended regions with the

fixed number of extra grid points to each boundary for the Fourier continuation.

The Fig 1(c) and 1(g) are obtained by the following procedure. First we have the 85 × 85

Fourier coefficients that were used to generate the top right subfigure, then apply zero-padding

to these Fourier coefficients to generate a new set of 169 × 169 Fourier coefficients. By applying

the inverse Fourier transform of these new Fourier coefficients, we create a 169 × 169 image.

Finally we take the corresponding regions of the sample regions 1 and 2 in top right. These

“double resolution” images have the same matrix size as the reconstruction.

We can see that for both sample regions, J, we eliminated Gibbs oscillations shown in the

figures on Fig 1(c) and 1(g) by using the global 2D Fourier continuation sparse PA method.

For both sample regions, the reconstructions (d) and (h) have distinct oscillations (red

arrows) near the boundaries of the region J1. Since we only consider the smaller region J, these

oscillations can be ignored. We can also see that the reconstructions (d) and (h) are blurry

near the edges. As we will see in the following section, the reconstruction near edges is too

smooth compared to the results by using the dimension-by-dimension method even though

the Gibbs oscillations are much reduced.

We also show that the RMSE (root mean squared error) for sample regions 1 and 2, J, are

1.423 and 4.2011 separately.

It took about 250 seconds for the reconstruction with the global approach to be completed

with Intel Core i7–3610QM and 2.30GHz.

Dimension-by-dimension method. In Figs 2 and 3: we choose the same sample regions as

in Fig 1 and apply the dimension-by-dimension Fourier continuation sparse PA method to these

two regions. From top to bottom row is the sample region with 2, 5 and 10 extra grid points

added to each boundary. We choose λ = 0.02 for both regions. The value of λ = 0.02 is also cho-

sen by experiments. The images in the first column are the reconstruction of the sample region 1

or 2 of Shepp-Logan phantom image by applying the 1D Fourier continuation sparse PA method

in y-direction. In these images, we eliminated the Gibbs oscillations along the vertical direction.

The images in the second column are the reconstructed images of the images in the first column

by applying the 1D Fourier continuation sparse PA method in x-direction. These images are the

reconstructions of the sample region 1 or 2 by applying the dimension-by-dimension Fourier

continuation sparse PA method. The images in the third column are the corresponding images

to the 169 × 169 exact Shepp-Logan phantom image (ground truth). The images in the forth col-

umn are the difference between the reconstructions in the second column and the ground truth

in the third column. In the subfigures (d), (h) and (l) in Figs 2 and 3, we observe that the recon-

structions near both weak and strong edges are Gibbs-free and sharp. Similar as the global

method, the reconstructed images may have oscillations near the subdomain boundaries of the

extended domain J1. Since we only consider the region J, these oscillations can be ignored. We

also observe that the reconstructed images (b), (f) and (j) are much sharper than the recon-

structed images (d), (h) and (l) in Fig 1 by the global method near the edges.

We can measure the steepness by visual inspection of the slice image for fixed x or y. In Fig

4, we show the slice image for x = 12 and y = 21 for the sample region 1. From this figure, we

can observe that the reconstructed image by the dimension-by-dimension method are much

sharper than the reconstructed image by the global method.

2D local Fourier image reconstruction
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By comparing the RMSE in Figs 2 and 3 we observe that if we have 5 or 10 extra points, the

RMSE is smaller than the one with 2 extra point. So the reconstruction for 5 or 10 extra points

is less noisy in the smooth regions than when we have 2 extra points. By comparing the RMSE

in Figs 1 and 2 for sample region 1, we observe that the RMSE for the difference by the dimen-

sion-by-dimension method is much smaller than the RMSE for the difference by the global

method. Similar conclusion can be found by comparing the RMSE in Figs 1 and 3 for sample

region 2. So the reconstruction by the dimension-by-dimension method is more accurate than

the global method.

In Fig 5 we observe that the average TV norms for the reconstructions with 2, 5 and 10

extra points added to each boundary are much smaller than the average TV norm for the

Fig 2. The reconstruction of the sample region 1 (size is 21 × 21) of Shepp-Logan phantom image, fN, by the dimension-by-

dimension method. First column: Reconstruction of the sample region 1 with extra points with the 1D Fourier continuation

sparse PA method in y-direction. Second column: Reconstruction of the image in the first column with the 1D Fourier

continuation sparse PA method in x-direction. Third column: The corresponding image of the 169 × 169 exact Shepp-Logan

phantom image (ground truth). Forth column: The difference between the reconstructions in the second column and the

ground truth in the third column. First row: Sample region 1 with two extra grid points added to each boundary. Second row:

Sample region 1 with five extra grid points added to each boundary. Third row: Sample region 1 with ten extra grid points

added to each boundary.

https://doi.org/10.1371/journal.pone.0197963.g002
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original image in both x and y-directions. This means the Gibbs oscillations in both x and y-
directions are much reduced. Fig 5 also shows that the average TV norms for the reconstruc-

tion with 5 and 10 extra points added to each boundary are smaller than the average TV norm

for the reconstruction with 2 extra points added to each boundary. Thus if we have 5 or 10

extra points, the reconstruction is less oscillatory than when we have 2 extra points.

Furthermore, in Figs 2 and 3 it took about 15 seconds to complete the reconstruction in

subfigure (b) (which have 2 extra grid points to each boundary), about 18 seconds to complete

the reconstruction in subfigure (f) (which have 5 extra grid points to each boundary) and

about 24 seconds to complete the reconstruction in subfigure (j) (which have 10 extra grid

points to each boundary).

Fig 3. The reconstruction of the sample region 2 (size is 21 × 21) of Shepp-Logan phantom image, fN, by the dimension-by-

dimension method. First column: The reconstruction of the sample region 2 with extra points with the 1D Fourier

continuation sparse PA method in y-direction. Second column: The reconstruction of the image in the first column with the

1D Fourier continuation sparse PA method in x-direction. Third column: The corresponding image of the 169 × 169 exact

Shepp-Logan phantom image (ground truth). Forth column: The difference between the reconstruction in the second column

and the ground truth in the third column. First row: Sample region 2 with two extra grid points added to each boundary.

Second row: Sample region 2 with five extra grid points added to each boundary. Third row: Sample region 2 with ten extra

grid points added to each boundary.

https://doi.org/10.1371/journal.pone.0197963.g003
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By comparing the RMSE or the average TV norms, we cannot tell which one is better, the

reconstructions for 5 extra points or 10 extra points. Thus we choose the one (5 extra points)

for computational efficiency.

In Figs 6 and 7 we split the Shepp-Logan phantom image in the top right in Fig 6 into 4 × 4

subdomains, use the dimension-by-dimension Fourier continuation sparse PA method on

Fig 4. Slice image for fixed x or y. Left: The slice image for x = 12 of the reconstruction for sample region 1 with 2 extra points. Right: The slice image

for x = 12 of the reconstruction for sample region 1 with 2 extra points. Red color indicates the reconstruction by the global method. Blue color

indicates the reconstruction by the dimension-by-dimension method.

https://doi.org/10.1371/journal.pone.0197963.g004

Fig 5. Average TV norm. The average TV norm in x and y-direction of data in region J of the sample region 1 in Figs 2a and 3b.

https://doi.org/10.1371/journal.pone.0197963.g005
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each subdomain and finally stitch all the reconstructions from each subdomain together. By

comparing the right image in Fig 6 and left column in Fig 7, we can see that the proposed

method eliminates the Gibbs oscillations. By comparing the RMSE, we find that the recon-

structions with 5 or 10 extra points are a little better than the reconstruction with 2 extra

points.

From Fig 8 we observe that the log10 errors for 5 or 10 extra points are smaller and the

reconstruction is less oscillatory in the smooth region than the case with 2 extra points. Thus

when we have 5 or 10 extra points the reconstruction is sharper near the edges and less noisy

in the smooth regions than we have 2 extra points.

Fig 9 shows the spectrum of two Fourier coefficients of the Shepp-Logan phantom,

the exact Fourier coefficients and the Fourier coefficients of the reconstruction phantom.

The exact Fourier coefficients (red) are found by applying the 2D Fast Fourier transform

on the 801 × 801 Shepp-Logan phantom. Here we only take the data (kx, ky) where

kx; ky ¼ � 84; � � � ; 84. The Fourier coefficients of the reconstruction (blue) are found by

applying the 2D Fast Fourier transform on the stitched reconstruction on 169 × 169 grid

obtained by the dimension-by-dimension method. The left figure shows the Fourier spectrum

with fixed ky = 0 for kx = −84, � � �, 84. The right figure shows the Fourier spectrum with fixed

kx = 0 for ky = −84, � � �, 84. In Fig 9 we observe that the alteration of the Fourier coefficients

after the reconstruction is not significant compared to the exact Fourier coefficients. The dif-

ferences are primarily localized at edges.

Examle 2: MRI images

For this example, we provide the MRI image reconstructions with both the global and dimen-

sion-by-dimension approaches as in Example 1.

Global method. In Fig 10 we choose two sample regions of the MRI image and apply

the global 2D Fourier continuation sparse PA method to these regions. Here we choose

λ = 0.00002 for both regions. The chosen value of λ is obtained by experiments. This value is

much smaller than the one used for the Shepp-Logan phantom image with the global FC

Fig 6. Figures for comparison. Left: The exact Shepp-Logan phantom image on 169 × 169 grid. Right: The Shepp-Logan phantom image, the Fourier

partial sum, fN withN = 42 (Gibbs oscillations are clearly seen).

https://doi.org/10.1371/journal.pone.0197963.g006
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Fig 7. Reconstruction and net absolute error. Top left: Stitched reconstruction constituted of 16 reconstructions

from the 4 × 4 subdomains (4 subdomains in x-direction and 4 in y-direction, each subdomain with size 22 × 22) by

the dimension-by-dimension Fourier continuation sparse PA method. For each subdomain, we have two extra grid

points added to each boundary. Top right: Net absolute error image between the left image in Fig 6a and the

reconstruction on the top left. Middle left: Stitched reconstruction constituted of 16 reconstructions from the 4 × 4

subdomains by the dimension-by-dimension Fourier continuation sparse PA method. For each subdomain, we have

five extra grid points added to each boundary. Middle right: Net absolute error image between the left image in Fig 6a

and the reconstruction on the Middle left. Bottom left: Stitched reconstruction constituted of 16 reconstructions from

the 4 × 4 subdomains by the dimension-by-dimension Fourier continuation sparse PA method. For each subdomain,

we have ten extra grid points added to each boundary. Bottom right: Net absolute error image between the left image

in Fig 6a and the reconstruction on the bottom left.

https://doi.org/10.1371/journal.pone.0197963.g007
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Fig 8. log10(error) for fixed x or y. Errors between the reconstructed image with 2, 5 and 10 extra points added to each

boundary and the exact Shepp-Logan phantom image. Top: with the fixed x = 40 pixel. Right: with the fixed y = 60

pixel.

https://doi.org/10.1371/journal.pone.0197963.g008
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method. We observe that for both sample regions, J, the reconstructions on the right are blurry

near the jumps and that there are oscillations in the smooth part as well. It took about 370 sec-

onds to complete the reconstruction for the right image.

Dimension-by-dimension method. For the dimension-by-dimension method, we first

show, in Table 1, the range of λ that provides the best reconstruction results for the given value

of nm, the number of extra grid points added to each boundary. The best reconstruction is the

reconstruction that yields a sharp reconstruction near jumps while the errors in the smooth

region are small. This experiment suggests the range of λ values that can be used when the

Fourier continuation method is applied. The lambda values are similar for both the Shepp-

Logan phantom image and MRI image when the dimension-by-dimension approach is used.

And we already show that the lambda values are very different for the Shepp-Logan phantom

image and MRI image while we use the global method. This implies that the dimension-by-

dimension approach is much more consistent than the global method in terms of choosing the

optimal value of λ.

In Figs 11 and 12 we chose two different sample regions, respectively, and applied the

dimension-by-dimension Fourier continuation sparse PA method to these regions. For the

MRI image, we use the conclusion from the Shepp-Logan example that the reconstructions

with 5 or 10 extra points are similar, so we choose the one with 5 extra points for computa-

tional efficiency.

The regions in those rectangles with the solid border, J, are the ones where we want to find

reconstruction. The images in the left column are the zoomed images of the extended sample

regions of the MRI image, which, from top to bottom, are: (1) zoomed images of the extended

sample region with 2 (2 is obtained by n/10) extra grid points added to each boundary, (2)

zoomed images of the extended sample region with 5 (5 is obtained by n/4) extra grid points

added to each boundary. The images in the middle column are the reconstructed images of the

images in the left column with the dimension-by-dimension Fourier continuation sparse PA

method on the region, J. Here we choose the value of λ according to Table 1. That is λ = 0.0175

for sample with 2 extra grid points and λ = 0.015 for sample with 5 extra grid points. The

images in the right column are the zoomed images of the images in the solid rectangle in

Fig 9. The spectrum of the coefficients. Red line are the exact Fourier coefficients and blue line are the Fourier coefficients after stitching all local

reconstructions using the dimension-by-dimension method. Left: with the fixed ky = 0. Right: with the fixed kx = 0.

https://doi.org/10.1371/journal.pone.0197963.g009
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Fig 10. Reconstruction of the low resolution MRI image by the global method. Top left: High resolution MRI

image (for comparison purposes). Top right: Low resolution MRI image. The sample regions in the rectangles with the

solid line are J and the regions in the rectangles with the dashed line are J1, which are J with 2 extra grid points added to

each boundary. The size of J is 21 × 21. Middle left: Zoomed image of the sample region 1. Middle middle: Same

zoomed sample region 1 of high resolution. Middle right: Reconstruction with the global 2D Fourier continuation

sparse PA method of the sample region 1. Bottom left: Zoomed image of the sample region 2. Bottom middle: Same

zoomed sample region 2 of high resolution. Bottom right: Reconstruction with the global 2D Fourier continuation

sparse PA method of the sample region 2.

https://doi.org/10.1371/journal.pone.0197963.g010

Table 1. The best choice of λ for nm, the number of extra grid points added to each boundary. The value of n is the

number of points on x-direction of J).

nm λ

n/10 0.0175 – 0.02

n/4 0.015 – 0.0175

n/2 0.0125 – 0.015

https://doi.org/10.1371/journal.pone.0197963.t001
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the middle column. From these images we observe that if we have 5 extra grid points the

reconstruction is sharper near the edges and less noisy in the smooth regions than when we

have 2 extra grid points. For these extended sample regions, the reconstructed images may

have oscillations near the boundaries of the extended region J1. Since we only need the images

in the original region J, these oscillations can be ignored. We also observe that the recon-

structed images on the right column in Figs 11 and 12 are much better than the reconstruc-

tions on the right column in Fig 10 near both the smooth regions and the edges.

By comparing the reconstructions in Figs 10, 11 and 12, we find that the reconstructions

with the dimension-by-dimension Fourier continuation sparse PA method are much better

Fig 11. Reconstruction of the sample region 1 of the low resolution MRI image by the dimension-by-dimension

method. Top left: Low resolution MRI image with sample region 1. Top right: Same zoomed sample region 1 of high

resolution MRI image (for comparison purposes). The size of sample region 1 is 21 × 21. Middle left: Zoomed images

of the sample region 1 with 2 extra grid points of the low resolution MRI image. Middle middle: Reconstructed images

with the dimension-by-dimension Fourier continuation sparse PA method of middle left. Middle right: Zoomed

images of the region in the rectangles with the solid line in the middle middle. Bottom left: Zoomed images of the

sample region 1 with 5 extra grid points of the low resolution MRI image. Bottom middle: Reconstructed images with

the dimension-by-dimension Fourier continuation sparse PA method of bottom left. Bottom right: Zoomed images of

the region in the rectangles with the solid line in the bottom middle.

https://doi.org/10.1371/journal.pone.0197963.g011
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than the reconstructions obtained by the global 2D Fourier continuation sparse PA method.

Furthermore the dimension-by-dimension Fourier continuation sparse PA method needs

about 10 times less computing time than the global 2D Fourier continuation sparse PA

method. Thus it is suggested that the dimension-by-dimension approach be used for both

accuracy and computational efficiency.

In Fig 13 we split the given MRI image to 8 × 8 subdomains, use the dimension-by-dimen-

sion Fourier continuation sparse PA method on each subdomain and finally stitch the recon-

structed subdomains together. In Fig 13 we show two reconstruction images: (1) 2 extra grid

Fig 12. Reconstruction of the sample region 2 of the low resolution MRI image by the dimension-by-dimension

method. Top left: Low resolution MRI image with sample region 2. Top right: Same zoomed sample region 2 of high

resolution MRI image (for comparison purposes). The size of sample region 2 is 21 × 21. Middle left: Zoomed images

of the sample region 2 with 2 extra grid points of the low resolution MRI image. Middle middle: Reconstructed images

with the dimension-by-dimension Fourier continuation sparse PA method of middle left. Middle right: Zoomed

images of the region in the rectangles with the solid line in the middle middle. Bottom left: Zoomed images of the

sample region 2 with 5 extra grid points of the low resolution MRI image. Bottom middle: Reconstructed images with

the dimension-by-dimension Fourier continuation sparse PA method of bottom left. Bottom right: Zoomed images of

the region in the rectangles with the solid line in the bottom middle.

https://doi.org/10.1371/journal.pone.0197963.g012
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points (2 is obtained by n/10,n is the number of points on x direction of subdomain) added to

each boundary with λ = 0.0175, (2) 5 extra grid points (5 is obtained by n/4) added to each

boundary with λ = 0.015. By comparing the regions in the rectangle in Fig 13, we can see that

in all the two reconstructions the Gibbs oscillations are eliminated. From these images we

observe that if we have 5 extra grid points the reconstruction is sharper near the edges and less

noisy in the smooth regions than the case with 2 extra grid points.

Fig 13. Stitched reconstruction over the whole domain. Top: Given low resolution MRI image (for comparison purposes). Bottom left:

Stitching the reconstructed images with the dimension-by-dimension Fourier continuation sparse PA method of 8 × 8 subdomains (8

subdomains in x-direction and 8 in y-direction, each subdomain with size 21 × 21). For each subdomain, we have 2 extra grid points added to

each boundary with λ = 0.0175. Bottom right: Stitching the reconstructed images with the dimension-by-dimension Fourier continuation

sparse PA method of 8 × 8 subdomains. For each subdomain, we have 5 extra grid points added to each boundary, and λ = 0.015.

https://doi.org/10.1371/journal.pone.0197963.g013
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Conclusion

In this paper, we extend our 1D domain decomposition Fourier reconstruction method [3] to

2D Fourier image reconstruction. We propose the global 2D Fourier continuation sparse PA

method and the dimension-by-dimension Fourier continuation sparse PA method. The global

2D Fourier continuation sparse PA method first divides the 2D image into multiple subdo-

mains and applies the global 2D Fourier continuation to find the 2D periodic extension of the

subdomain we are interested in. By finding new Fourier coefficients based on the periodic

extension we apply the 2D sparse PA method to obtain the reconstruction. The dimension-by-

dimension Fourier continuation sparse PA method first divides the 2D image into multiple

subdomains and we apply the method in x- and y-directions separately. Finding new Fourier

coefficients based on the periodic extension and applying the 1D sparse PA method on these

coefficients yield the reconstruction. By splitting the 2D image into multiple subdomains, we

obtain sharper reconstruction near both strong and weak edges.

The numerical results in this paper show that the dimension-by-dimension method yields

more accurate reconstruction and more efficient than the global method. The dimension-by-

dimension Fourier continuation sparse PA method for 2D Fourier image reconstruction can

be extended to three-dimensional problems by repeating the same procedure in z-direction

after applying the method in both x and y-directions.

For our future research we will consider an efficient way to reduce the computational com-

plexity of the proposed method. In this paper we found a range of λ by experiments. We will

consider a more systematic way of finding such values. We will also investigate the stability of

the global method further and try to devise an efficient 2D global method.

Supporting Information

S1 File. Raw MRI data with high resolution in mat format.

(MAT)

S2 File. Raw MRI data with low resolution in mat format.

(MAT)

S3 File. Reconstructed MRI data with two extra points added to the right and left trun-

cated domain boundaries for the Fourier continuation in mat format.

(MAT)

S4 File. Reconstructed MRI data with five extra points added to the right and left trun-

cated domain boundaries for the Fourier continuation in mat format.

(MAT)
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