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Animals live in symbiosis with the microorganisms surrounding them. This symbiosis is 
necessary for animal health, as a symbiotic breakdown can lead to a disease state. The 
functional symbiosis between the host, and associated prokaryotes, eukaryotes, and 
viruses in the context of an environment is the holobiont. Deciphering these holobiont 
associations has proven to be both difficult and controversial. In particular, holobiont 
association with viruses has been of debate even though these interactions have been 
occurring since cellular life began. The controversy stems from the idea that all viruses 
are parasitic, yet their associations can also be beneficial. To determine viral involvement 
within the holobiont, it is necessary to identify and elucidate the function of viral popula-
tions in symbiosis with the host. Viral metagenome analyses identify the communities of 
eukaryotic and prokaryotic viruses that functionally associate within a holobiont. Similarly, 
analyses of the host in response to viral presence determine how these interactions are 
maintained. Combined analyses reveal how viruses interact within the holobiont and 
how viral symbiotic cooperation occurs. To understand how the holobiont serves as a 
functional unit, one must consider viruses as an integral part of disease, development, 
and evolution.

Keywords: holobiont, virome, symbiosis, viral metagenomics, host–microbe interactions, innate immunity, 
antiviral immunity, bacteriophage

iNtrODUctiON

All animals interact with a consortium of microbes at all times and have done so since the dawn of 
animal life (1). Animal life has evolved from and in intimate association with microorganisms, while 
these same microorganisms have evolved in part to the resources provided by their animal surround-
ings. This symbiosis allows for a sharing of resources, including metabolic products and genes. These 
interactions have been of intense research and speculation; however, an important player in these 
symbiotic interactions is often overlooked, the effects of viruses. None of these interactions occur in 
the absence of viruses, so to inquire about symbioses requires discussion of viruses.

Viruses are seemingly universal in the biosphere (2). Their numbers are so staggering that when 
speaking of large numbers, one should use the term “viral” rather than “astronomical.” There are an 
estimated 1031 viruses on the planet, which may be an underestimation due to our inability to prop-
erly enumerate RNA viruses and viral elements that persist in cells and genomes (3). Further, viral 
genomes are worldwide reservoirs of genetic diversity (4). Considering viral abundances, diversity, 
and ubiquitous presence (5), understanding symbioses is lacking without taking into account the 
effects of viruses on host and associated microbe metabolism, and genetic flow between organisms.
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Viruses infect all animals, from Poriferans to Cnidarians to 
Bilaterans to Chordates. There is ever-increasing evidence that 
viral infections have occurred during all of cellular life, as the 
presence of viral elements are often found in genomes through-
out evolution (6). Host–viral infections or associations are not 
adequately quantified, but in most host-associated systems it 
seems that the number of viruses is equivalent to or slightly less 
than the number of bacteria associating with a eukaryotic host (2, 
7). In most cases, the enumerable viral populations are the free 
DNA prokaryotic viruses, which are likely involved with the regu-
lation of the host-associated bacteria. In host-associated systems, 
it seems that Lotka–Volterra “kill-the-winner” predator–prey 
dynamics of the prokaryotic virus and bacteria are atypical. Many 
prokaryotic viruses found in these systems display temperate 
lifestyles in which the virus becomes latent and integrates into a 
host chromosome or exists as an episomal element, as indicated 
by the large abundance of integrase genes in viral genomes (8, 9). 
Additionally, the presence of latent viruses may allow for bacte-
rial dominance of a niche in the presence of related strains (10). 
Experimental evidence in non-host-associated systems supports 
this idea, as increasing concentrations of bacteria favor prokary-
otic virus temperate lifestyles (11). While most viral research 
focuses on lytic/virulent infections, it is useful to explore both the 
temperate dynamics of prokaryotic viruses and latent eukaryotic 
viral infection, and their role in symbiosis.

The functional association between a host, prokaryotic, 
eukaryotic, and viral entities within a particular environment is 
the holobiont. This functional association helps to define the phe-
notypic unit. Casual associations may not define the phenotype, 
so functional associations (and the genes used) help define the 
phenotype. This functional symbiosis is involved in animal devel-
opment (12), nervous system regulation (13, 14), immune system 
development and regulation (15, 16), and many other biological 
processes (17). When this functional association breaks down, a 
dysbiotic state occurs, leading to grave effects on animal health, 
ranging from coral bleaching (18), to stunted immune system 
development (19), to nervous and immunological disorders (20), 
to effects on human health (21). Further, the holobiont is not 
static; it is in a constant state of genetic flux. Viruses predomi-
nately affect this genetic flow and the acquisition of evolutionary 
traits (22, 23). Therefore, understanding the holobiont requires 
investigation of the effects viruses have on gene flow occurring 
within it. This is evaluated through viral metagenomics (viro-
mics), where culture-independent viral isolations from host 
systems are sequenced and the viral genomes are analyzed. Not 
only can host-associated viral populations be identified, but how 
these populations change under dysbiotic conditions (24, 25), 
the identification of new viruses (26, 27), and the effects these 
viruses have on cellular systems (28) can all be learned through 
viral metagenome (virome) analyses.

virAL sYMBiOses As PArAsitisM

Viruses act as parasites; they infect and either replicate within the 
host cell or integrate within the host genome. Viruses propagate 
by one of two different lifestyles, either lytic/virulent or temper-
ate/latent. The lytic/virulent lifestyle involves the infection, 

replication, and lysis of the cell, leading to the death of the cell and 
release of viral progeny. The temperate/latent lifestyle involves 
the integration of the virus into the genome in a proviral form, 
which can be activated at a later time to become a lytic/virulent 
replicative virus. Either one of these scenarios affects the host; 
replication leads to cellular damage, while integration leads to 
genomic damage. The host defense against parasitism limits cel-
lular or genomic damage (29). These viral parasitic lifestyles cause 
a molecular arms race, the virus seeking a new host to continue 
propagation, while the host immune system recognizes the virus 
to minimize damage (30).

There are many direct causes of pathogenesis by parasitic 
viruses, but there are many indirect causes as well. Proviral 
endogenous retroelements can have negative effects on the 
genome by inserting, deleting, or rearranging portions of the 
genome (31). The large number of freely associating viruses found 
interacting with host systems also presents a conundrum, that the 
presence of large amounts of viral material, be it nucleic acid or 
protein, makes it unlikely that they would not cause an immune 
response. Microbial-associated molecular patterns (MAMPs) on 
prokaryotic and eukaryotic viruses can cause immune system 
recognition that can lead to immune related pathogenesis. 
Further, lysis of cells, be it of a bacterial cell or of a eukaryotic 
cell, or apoptosis of a virally infected cell can cause activation of 
the immune system leading to pathogenesis (32). Cellular lysis is 
often considered in the aftermath of eukaryotic viral infection, 
but prokaryotic lysis of bacteria is commonly overlooked. Release 
of bacterial antigens, such as LPS, peptidoglycans, lipopeptides, 
lipoteichoic acid, flagellin, and bacterial DNA, can easily activate 
the immune system, and in extreme cases lead to sepsis (33). 
There are many direct and indirect causes of viral pathogenesis, 
but given the sheer numbers of viruses within a holobiont, and 
the limited pathogenesis that actually occurs, it seems more likely 
that viral pathogenesis is not as common as viral commensalism 
and mutualism.

virAL sYMBiOses As cOMMeNsALisM 
AND MUtUALisM

Most consider viruses to be parasites, where infection benefits the 
virus, but decreases the fitness of the host. Now consider other 
scenarios, such as commensals and mutualists. A virus can be 
commensal, the virus benefits while host fitness is unaffected. A 
virus can be mutualistic, in which both organisms benefit and 
fitness increases. Such viral associations may provide advantages 
that promote evolution and biodiversity (34, 35). Also consider 
that one virulent virus among a sea of non-virulent viruses does 
not equate to pathogenesis. Unless transmission and recovery 
rates are high, pathogenicity may be an evolutionarily poor strat-
egy for viral survival. More likely, pathogenesis is the exception 
and not the rule, with more instances being discovered of viruses 
having cooperative roles with the host (34, 36).

There are many instances where an organism cannot exist 
without beneficial viruses. Polydnavirus integration into para-
sitoid wasp genomes counters the effects of the caterpillar host 
immune system where the wasp has laid its eggs (37). Without 
this polydnavirus presence, the caterpillar immune system would 
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eliminate the wasp eggs, but when the polydnavirus endogenous 
viral element becomes active upon egg deposition, the host 
immune response to the eggs is negated. Similarly, endogenous 
retrovirus syncytin expression in the placenta of mammals 
allows for the development of the placental syncytium (38). This 
syncytial fusion creates a barrier for the placenta, which in part 
keeps the fetus from being rejected by the mother’s immune sys-
tem. Viruses can also modulate the immune system and restore 
dysbiotic conditions. Kernbauer et al. have shown that an enteric 
murine norovirus can restore normal mucosal immunity and 
intestinal morphology in germ-free mice, essentially replacing the 
immune stimulatory effects of gut microbiota (39). Viruses can 
also protect against or impede further infection or pathogenesis, 
such as Hepatitis G virus slowing the progress of HIV infection 
(40), and latent herpesviruses protecting against bacterial infec-
tions (41). It is becoming evident that viruses have the potential 
to be something more than parasites in a holobiont, which revises 
conceptions of how viruses impact host interactions.

i AM ONe WitH tHe virUses,  
tHe virUses Are WitH Me

Viruses can also integrate into cellular genomes and act as genetic 
elements associating with genomes. The amount of DNA of viral 
origin within the human genome is similar to that of human 
coding domains (42). One major discovery in viromes is the 
persistence of viral genetic elements, either latently integrated 
into host genomes or surviving as chromosomal episomes. Host-
associated viral populations seem to be dominated by temperate 
prokaryotic viruses or latent eukaryotic viruses. This is attributed 
to a large abundance of integrase sequences in prokaryotic 
viromes (8) and a large abundance of transposase sequences in 
eukaryotic viromes (43).

Integrated viral DNA in the host genome are endogenous viral 
elements (EVEs), which have the potential to drive evolutionary 
processes, such as speciation, resulting in the emergence of new 
traits (44–46). In addition to these evolutionary transitions, EVE 
integration can affect gene expression through their long terminal 
repeats (LTRs). These LTRs are repetitive viral DNA sequences 
that flank integrated EVEs, serving as promoters to both viral and 
host genes. These LTRs can affect stem cells (47), development 
(48), and immunity (49, 50). There are many individual genes 
affected by EVEs, though their major impact on evolution-
ary traits may be on gene regulatory networks, or the cellular 
regulators that impact RNA and protein expression (51, 52). The 
effects of EVEs and transposable elements in all these biological 
processes are being recognized as vitally important (53).

Genomically integrated viral elements are reminders 
that viruses affect everything in biology, but what about free 
viruses that associate with hosts? Viromics allow researchers 
to analyze the viral populations and effects these viruses have 
on the holobiont. These studies have been conducted in many 
host systems, from the base of animal life in the Cnidarian 
phylum (54) to mammals (55). Often, the viruses found freely 
associating are prokaryotic viruses, which regulate the number 
and strains of bacteria in a holobiont (56). These viruses are 

likely selected by the host to maintain bacterial populations 
(26). Further, viromics show the sphere of viral involvement in 
gene flow and gene shuffling in an ever-changing environment, 
often from within bacterial cells and sometimes from within 
eukaryotic cells.

tHe eterNAL strUGGLe OF  
HOst–virAL iNterActiONs

Many viruses can persist in host cells and influence the host 
without symptoms of disease. Chronic systemic viruses continu-
ously stimulate the immune system (57), driving the emergence 
of many viral recognition systems over evolutionary time (58). 
These recognition systems give a host integrity to coexist with 
viruses while minimizing pathogenesis and protecting genomic 
information. Antisense RNA encoded by genomic transpos-
able elements allows for specific regulation of viral amplification 
products (59). This evolved into use of antisense RNAs with 
Argonaute nucleases. Piwi-interacting RNAs utilize transposon 
derived small RNAs to defend against integration events by 
binding to complementary RNAs and cleaving the complex with 
a bound Argonaute nuclease. This system seems to be restricted 
to the germ-line and protects genomic integrity. Similarly, the 
RNAi system processes RNAs by binding to small RNA frag-
ments and cleaving these complexes with an RNase III nuclease, 
Dicer (60). While controversial, it appears that chordates may not 
have retained RNAi antiviral function. However, there are many 
immune functions additionally used in both chordates and non-
chordates to regulate viral presence (Figure 1). These systems rely 
on host pattern-recognition receptors (PRRs) evolved to recog-
nize MAMPs. These PRRs include the Toll-like receptors (TLRs), 
retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), 
cGAS-STING pathway, NOD-like receptors (NLRs), C-type 
lectin receptors (CLRs), and absent-in-melanoma-like receptors 
(ALRs). TLRs recognize viruses endosomally once viral nucleic 
acids are released (61), cytoplasmic RLRs recognize viral genomic 
RNA or double-stranded RNA intermediates (62), cGAS-STING 
senses retroviral and double-stranded DNA (63), NLRs recognize 
viral DNA genomes (64), ALRs can also recognize viral genomic 
DNA (65), while CLRs recognize carbohydrates (66). In the 
biological arms race that caused the development of the adap-
tive immune system capable of tracking evolutionary changes in 
pathogens, antiviral cytokines such as interferons (IFNs) became 
prominent signals alerting the host of viral infection and inhibit 
viral propagation (67). With IFNs came recombination events 
to generate antibodies and major histocompatability complexes 
in vertebrates to increase the recognition possibilities that came 
with increased pathogen complexity. Although viral recognition 
research is often focused on the adaptive immune system in mam-
mals, the overwhelming majority of animals has multiple pathways 
to recognize, regulate, and maintain viral associations and may 
not necessarily use canonical adaptive systems to structure the 
holobiont. Continuing research will involve the 95% of Metazoans 
that do not possess such an adaptive immune system to recognize 
viruses, yet are able to adapt to ever-changing viral populations 
through mechanisms, such as trained innate immunity (68).
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FiGUre 1 | Evolutionarily conserved antiviral innate immune systems. Toll-like receptors (TLRs) recognize endosomal viral nucleic acids, NOD-like receptors (NLRs) 
form an inflammasome and recognize viral DNA, absent-in-melanoma-like receptors (ALRs) recognize viral DNA, retinoic acid-inducible gene I (RIG-I) and RNAi 
(Dicer) pathways recognize viral RNA, while C-type lectins (CLRs) recognize viral carbohydrates. Some pathways can lead to the direct elimination of viral entities, 
while others lead to transcriptional activation resulting in cytokine and antimicrobial peptide secretion.
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HAiL Hydra: tHe iMPOrtANce OF A 
siMPLe MODeL sYsteM tO evALUAte 
HOLOBiONt iNterActiONs

Holobiont studies are complex. If one considers the sheer number 
of associated prokaryotes, eukaryotes, viruses, and all of their 
respective genomes, the number of potential interactions is 
overwhelming. Therefore, if one can use a model system with a 
limited number of microbial partners to deconstruct the holo-
biont and if this can be studied in an ancient animal phylum for 
conserved holobiont interactions, it could simplify these studies 
while retaining informative and predictive capabilities. The use 
of a basal metazoan allows research on mechanisms of holobiont 
assembly, holobiont effects on microbiota and host health, and 
metabolic interactions between the host and microbiota. This 
helps to elucidate symbiosis in healthy states and dysbiosis in 
disease states.

There are many useful systems that meet the above criteria 
to investigate the holobiont, including ascidians (69), anemo-
nes (70), and sponges (71). The basal model organism Hydra 
is another useful system. Hydra are freshwater Cnidarians 
practical for developmental, neural, aging, and stem cell studies 

(72). Importantly, the findings made using Hydra translate well 
into host–microbe interaction studies due to its diploblastic 
morphology (73), conserved mucosal immunity (74), and 
limited number of microbial partners (75). Additionally, Hydra 
are clonal, have a well-annotated genome (76), can be made 
transgenic (77), germ-free (78), and due to its limited number 
of microbial interactions, Hydra can be used in symbiosis stud-
ies (79). Hydra display distinct microbial colonization patterns 
dependent on host factors (78), which are primarily driven by 
antimicrobial peptide selection at the epithelium (80). Hydra 
have many evolutionarily conserved receptor pathways to 
regulate microbial interactions, including a TLR pathway (81) 
and a large repertoire of NLRs (82). Further, Hydra utilize many 
uniquely identified classes of antimicrobial peptides to regulate 
its microbial interactions (81, 83, 84). Finally, 57% of the Hydra 
genome are transposable elements, one of the largest percentages 
found in an animal genome (76). These factors make Hydra a 
useful system to deconstruct and reconstruct an organismal 
holobiont (Figure 2).

Understanding the complete Hydra-associated virome has 
commenced. The Hydra DNA virome consists primarily of 
prokaryotic viruses in the Caudovirales order, the majority of 
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FiGUre 2 | The Hydra Holobiont. Hydra are an ideal system to deconstruct 
and reconstruct an organismal holobiont consisting of associated eukaryotes 
(green), prokaryotes (blue), and viruses (orange) at an exposed epithelium.
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yet, extrinsically exist beyond the genome and the holobiont. 
This duality exists because both the host and the microbiome 
are under their own selective pressures, each are selecting for 
the environment that benefits them, establishing or propagating 
a phenotype, and allowing for co-existence to continue. It is 
neither eukaryo-centric, prokaryo-centric, nor viro-centric, each 
member has a role to play within the holobiont. Therefore, the 
holobiont is a coordination of integrated functions by all mem-
bers to suit adaptation to an environment.

Viruses are genetic parasites constantly sampling their envi-
ronments. Functional aspects of their genomes can be selected 
by their prokaryotic and eukaryotic hosts, and in this way, viruses 
are symbionts to these hosts. Viruses can also transfer DNA in 
the form of lateral gene transfer, which can be important for 
adaptations to new environments (94). For example, prophages 
can promote genetic transfer between prokaryotic viruses and 
eukaryotes. Wolbachia prophage WO in arthropods contains a 
eukaryotic association module, which among other genes, con-
tains a spider toxin gene that can form pores in both prokaryotic 
and eukaryotic membranes to facilitate viral escape (95). There 
are many more instances of viral drivers of adaptation (96), which 
makes viral dynamics in the holobiont fluid. Free viruses can be 
acquired from the environment through horizontal transmis-
sion, while viral elements can be vertically transmitted through 
genomically integrated viral elements and episomes. Such 
horizontal and vertical transmissions allow for a fully functional 
range of symbioses, from obligate (both need each other to 
survive) to facultative (both benefit from the association, but it 
is not absolute).

Viruses are remarkable symbionts. Viral elements exist intra-
genomically, intra-cellularly, extra-cellularly, and environmen-
tally. They persist in all of these realms, and yet, are vital to the 
holobiont. As mentioned earlier, viromics teaches us that viruses 
are involved in gene flow and shuffling in a changing environment, 
and that the elements in the holobiont are in a constant ecological 
flux. In all cases, viruses provide balance to the holobiont, keeping 
the host and associating prokaryotes and eukaryotes functioning 
together as a unit.
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the eukaryotic viruses are of the Herpesviridae family, the diver-
sity of the viruses increases upon environmental heat stress, and 
each species of Hydra associates with a specific community 
of viruses (25). Further, these Hydra-associated viruses affect 
Hydra-microbiome metabolism (25, 85). Studies on the RNA 
virome, germ-free eukaryotic virome, and prokaryotic virome 
of Hydra-associated bacteria are ongoing to create a comprehen-
sive Hydra virome [J. Grasis, in preparation; (86)]. Combining 
the virome with in vivo viral infection transcriptomes and the 
ability to induce inflammatory conditions makes Hydra a use-
ful system to structure viral–holobiont interactions related to 
animal health conditions. The Hydra model system may shed 
light on novel aspects of holobiont formation, maintenance, 
and dysbiosis, while integrating viral involvement within the 
holobiont.

virUses BriNG BALANce tO tHe 
HOLOBiONt

There has been much discussion about the holobiont recently, 
particularly as it relates to selective units of animal host and 
microbiome (87–93). Much of the focus has been placed on 
host–bacterial associations, but what of the viruses? They are 
intrinsically part of the genome and part of the holobiont, and 
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