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Introduction
Use of cardiac magnetic resonance (CMR) has 
increased dramatically due to its many advan-
tages.1–7 CMR is the gold standard for quantify-
ing heart chamber dimensions, volumes and 
ejection fraction due to its excellent temporal and 
spatial resolution. It provides soft tissue charac-
terisation, perfusion imaging for detecting 

ischemia, and flow measurements for quantifying 
shunt volumes or valve regurgitation fractions. 
CMR can obtain images in any plane and does 
not use ionizing radiation.

Although X-ray fluoroscopy is the primary modal-
ity in cardiac interventions due to its widespread 
availability and good visualization of versatile 
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Background: Cardiac magnetic resonance (CMR) provides excellent temporal and spatial 
resolution, tissue characterization, and flow measurements. This enables major advantages 
when guiding cardiac invasive procedures compared with X-ray fluoroscopy or ultrasound 
guidance. However, clinical implementation is limited due to limited availability of 
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systematic review of the available literature on past and present applications of interventional 
MR and its technology readiness level (TRL) was performed, also suggesting future 
applications.
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procedures. All search results were screened for relevance by language, title, and abstract. 
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widespread clinical translation. The papers were categorized by the type of procedure and the 
TRL was estimated.
Results: Of 466 papers, 117 papers met the inclusion criteria. TRL was most frequently 
estimated at level 5 meaning only applicable to in vivo animal studies. Diagnostic right heart 
catheterization and cavotricuspid isthmus ablation had the highest TRL of 8, meaning proven 
feasibility and efficacy in a series of humans.
Conclusion: This article shows that interventional CMR has a potential widespread application 
although clinical translation is at a modest level with TRL usually at 5. Future development 
should be directed toward availability of MR-compatible equipment and further improvement 
of the CMR techniques. This could lead to increased TRL of interventional CMR providing 
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catheters and interventional devices, which are 
commercially available,8 use of CMR to guide 
procedures pre-, intra-, and postprocedurally is 
increasing because of its many advantages.1–7 
However, clinical translation is hindered by the 
lack of technological advancements in MR com-
patible equipment.

The aim of this review is to investigate the clinical 
implementation of CMR in cardiac interventions 
by evaluating the technology readiness level 
(TRL). The TRL methodology was developed by 
National Aeronautics and Space Administration 
(NASA) to define several levels of ‘readiness’ for 
emerging technologies, and is still used by several 
organizations such as the US Department of 
Defense and the European Space Agency. In 
medical literature, it has been used for assessment 
of robotic gastro-intestinal endoscopy9,10 and of 
several devices designed to improve healthcare for 
elderly.11–13

Methods
An extensive literature search was performed 
using the PubMed database. The search included 
the following PubMed search and Mesh terms:

1.	 ‘Magnetic Resonance Imaging, Interven
tional’[Mesh] OR ‘interventional magnetic 
resonance imaging’[tiab]

2.	 ‘Cardiac Catheterization’[Mesh] OR ‘Cardiac 
Catheterization’[tiab] OR ‘Coronary Angi
ography’[Mesh] OR ‘Coronary Angi
ography’[tiab] OR ‘Percutaneous Coronary 
Intervention’[Mesh] OR ‘Percutaneous 
Coronary Intervention’[tiab]

3.	 ‘Cardiac Catheterization’[Mesh] OR ‘Cardiac 
Catheterization’[tiab] AND ‘Biopsy’[Mesh] 
OR ‘Image-Guided Biopsy’[Mesh] OR 
‘Myocardial biopsy’[tiab] OR ‘Endomy
ocardial biopsy’[tiab]

4.	 ‘Cardiac Electrophysiology’[Mesh] OR 
‘Cardiac Electrophysiology’[tiab] OR 
‘Pulmonary Vein Isolation’[tiab] OR 
‘Catheter Ablation’[tiab] OR ‘Catheter 
Ablation’[Mesh]

5.	 ‘Atrial Fibrillation’[Mesh] OR ‘Atrial Fibrill
ation’[tiab] OR ‘Arrhythmias, Cardiac’[Mesh] 
OR ‘cardiac arrhythmias’[tiab]

Inclusion criteria for the selected papers were: the 
paper had to be peer-reviewed, written in English 
language, published before June 2021 and concern 

interventional CMR rather than diagnostic CMR. 
The results of the initial search were screened by 
title and abstract for eligibility. After screening, the 
full text was read for eligibility. Finally, references 
were crosschecked for additional papers.

The following subcategories were made: technical 
aspects, electrophysiology (EP) procedures, right-
sided cardiac catheterization and congenital pro-
cedures, coronary procedures, valvular 
procedures, and other procedures. The advance-
ment toward clinical translation was assessed by 
evaluating the TRL. For this review, the nine 
TRL levels used by the US Government 
Accountability Office (GAO)14 were modified as 
shown in Table 1. The subcategory technical 
aspects comprise papers describing technical 
developments without clinical applications and 
were therefore not assigned a TRL.

Results
The literature search returned 466 papers. After 
screening by language, title, and abstract 359 
papers were excluded. These were mostly papers 
regarding extra-cardiac procedures. After read-
ing the full text of the remaining papers for eligi-
bility, a further 21 papers were excluded, mostly 
because the topic was diagnostic CMR rather 
than interventional. After crosschecking the ref-
erences of these papers, 31 subsequent papers 
were included leading to a total of 117 papers. 
Figure 1 shows the PRISMA figure of the litera-
ture search. Figure 2 shows the division in sub-
categories, which are described in the subsections 
below. Table 2 lists the TRL levels of the various 
subcategories.

Technical aspects
Most papers in this category focused on develop-
ment of MR compatible equipment and dispos-
ables such as catheters, which is usually the 
limiting factor for procedures not achieving a 
higher TRL.

Catheters can be visualized in the MR image either 
by active or passive tracking. Some papers focused 
on passive tracking, a technique were instruments 
can be discerned due to their material characteris-
tics. Most contain some form of para- or ferromag-
netic materials. With optimized imaging protocols, 
these devices can be discerned from the surround-
ing anatomical structures.54–58 Other papers focus 
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on balloon angiographic catheters that can enhance 
visualization by inflating them with carbon dioxide 
or a gadolinium contrast-doped solution.58–60

Passive tracking has some limitations. The imag-
ing plane must be frequently manipulated to keep 
the device within the field of view and in plane.59 
Furthermore, the narrow imaging planes often 
allow only one device to be projected at a time, 
where many cardiac interventional procedures 
require more than one catheter or device at 
once.56,59,61

More recent papers report on active tracking, a 
technique which is based on coils or other detec-
tors incorporated into the catheter. These are 
electronically connected to the scanner and by 
using standard MR read-out techniques, the 
exact three-dimensional position of the coils can 
be determined. The catheter position can then be 
overlaid on the MR images. This method pro-
vides better visualization and easier localization of 
the instruments compared with passive tracking, 
but requires the tracked device to be modi-
fied.16,58,62–65 In contrast to most passive tracking 

Table 1.  TRL levels based on the US Government Accountability Office (GAO).14

TRL level based on US-GAO Description based on  
US-GAO

Modified TRL level description as 
applied in this review

TRL 1
Basic principles observed and reported

Published research identifying 
problem/possible technology

Proposed hypothesis of using 
interventional CMR

TRL 2
Technology concept and/or application 
formulated

Papers of analytic studies. Supporting 
analyses providing scientific
information and data to develop 
research proposals

Preprocedural CMR used to guide 
interventions

TRL 3
Analytical and experimental critical function and/
or characteristic proof of concept

Proof of concept in laboratory, 
publication of results

Ex vivo phantom studies

TRL 4
Component and/or breadboard validation in lab

Proof of concept and safety 
demonstrated in ex vivo animal bowel

Ex vivo animal studies

TRL 5
Component and/or breadboard validation in 
relevant environment

Evidence of device being equivalent 
to predicate device (FDA 510(k)) ready 
for
clinical trials

In vivo animal studies

TRL 6
(Sub)System model or prototype demonstration 
in relevant environment

Clinical trials conducted in small 
number of humans

Proven feasibility in single human 
case

TRL 7
System prototype demonstration in operational 
environment

Clinical safety and effectiveness 
trials in operational environment. 
Determination
of short-term adverse events and 
risks associated with the device. Final 
design
validated

Proven efficacy in single human case

TRL 8
System completed and qualified through test and 
demonstration

FDA 510(k) or equivalent approved Proven feasibility and efficacy in 
series of humans

TRL 9
System proven through successful mission 
operations

The device is being marketed. 
Postmarketing studies

Widespread clinical translation

CMR, cardiac magnetic resonance; GAO, Government Accountability Office; TRL, technology readiness level; FDA, Food and Drug Administration. 
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algorithms, in active tracking, the imaging plane 
can be automatically adjusted to the catheter. A 
major limitation is that the connection to external 
circuits via a long wire in a strong magnetic field 
makes it prone to induction of an electrical cur-
rent or heating.56,57,61,66,67

Nazarian et  al.55 found that active tracking 
requires fewer imaging planes compared with 
passive tracking. Also, the robustness of active 
tracking of micro coils may be further enhanced 
by using dephasing magnetic field gradient pulses 
applied orthogonal to the frequency encoding 
gradient pulse used in conventional MR 
tracking.62

Furthermore, several papers reported about the 
important safety issues involved with using 

instruments and devices under real-time MR 
guidance. One of the most important issues is 
heating of conductive objects.67,68 Inductive 
loops, formed by equipment leads, for example, 
can potentially cause unwanted tissue burns. 
Long structures such as guidewires or actively 
tracked catheters that use long conductive wires 
may also be inadvertently heated.66,69 
Temperatures up to 74°C have been observed in 
nitinol guidewires.59

However, several methods exist to minimize these 
issues, most importantly adjusting instrument 
design by decoupling possible resonant circuits, 
using alternative nonconductive components, for 
example, Kevlar or interrupting the metallic seg-
ments to reduce radiofrequency (RF)-induced 
heating.68,69 Because not all effects can be fully 

Figure 1.  Flowchart depicting the selection of papers.
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eliminated, the MR sequence can be optimized to 
cause less RF dissipation, for example, by using 
lower flip angles and more RF-efficient gradient 
echo spiral imaging.23,69–72

Electrophysiology
EP was one of the most advanced fields regarding 
implementation of interventional CMR, specifi-
cally the cavotricuspid isthmus ablation, which 
has a TRL of 8. Most other EP procedures have a 
TRL of 5. Of the 116 selected papers, 37 described 
studies on MR-guided catheter ablations, which is 
the most of all subcategories.15–22,55,64,73–99

Catheter ablation uses RF or cryothermal energy 
to disable the heart tissue, which is believed to 
cause arrhythmias. The disadvantage of current 
X-ray fluoroscopy-guided catheter ablation is the 
disappointing clinical success rate on the long-
term, due to either technical failure (e.g. failure to 
form durable transmural lesions) or pathophysi-
ological causes (e.g. incorrect selection of abla-
tion targets). Especially information on 
pre-existing scar and peri-procedural lesion visu-
alization are potential advantages of MR.

Real-time MR-guided catheter ablation in ani-
mals has been described as early as 2000.19 
Several groups describe MR-guided RF catheter 
ablation in the left ventricle,20–22 right ventri-
cle,18,19 left atrium,17 and right atrium.81 Cryo-
ablation was described as well.83,86 In addition, 
Grothoff et al.16 described active catheter tracking 
and left atrial access via transseptal puncture 
under MR guidance, which Raval et  al.100 had 

also described in a non-EP procedure. Aside from 
RF ablation in the left atrium, pacing and activa-
tion mapping were also performed in the coro-
nary sinus. These are all crucial elements for 
future real-time MR guidance of atrial fibrillation 
(AF) ablation, during which pacing and activa-
tion mapping are frequently used. Authors 
describe that preprocedural anatomic imaging 
might be needed in the case of active tracking for 
adequate visualization of surrounding struc-
tures.16 Furthermore, left atrial electrograms did 
not allow recording of very low amplitude signals. 
These were filtered out by the signal filtering that 
was used to prevent artifacts from the surround-
ing environment. This was a limitation for His-
electrograms, which must be able to detect very 
low amplitude signals and distinguish them from 
artifacts.16 Nevertheless, the prospect of real-time 
MR-guided left atrial ablation is promising.

Several human clinical studies have been per-
formed, showing the feasibility of MR-guided 
catheter ablations for strictly anatomically defined 
ablations. Due to the benefits of interventional 
CMR for tissue characterization and lesion visu-
alization, a future benefit is foreseen for substrate-
guided ablations. Nazarian et  al.,55 in 2008, 
described the first MR-guided placement of cath-
eters and recording of intracardiac electrograms 
in the right atrium, right ventricle, and bundle of 
His in humans (N = 2) using prototype passively 
tracked catheters. In 2013, Sommer et  al.99 
described a series of five patients who underwent 
atrial flutter ablation, AV-nodal re-entry tachy-
cardia ablation, or an electrophysiological study 
under X-ray fluoroscopy guidance. Afterwards, 

Figure 2.  Flowchart depicting the various subcategories.
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patients underwent a real-time MR-guided pro-
cedure where catheters were placed in the right 
atrium and the right ventricle using passive cath-
eter tracking. Intracardiac electrograms were 

successfully recorded and simple programmed 
stimulation maneuvers were performed. In this 
case, commercially available MR-compatible 
catheters were used (Vision™, Imricor Medical 

Table 2.  Cardiac procedures divided into subcategories with their respective TRLs.

Procedure TRL level References

Electrophysiology

  Right atrial flutter ablation TRL 8 Grotthoff et al.15

  Left atrium ablation TRL 5 Grotthoff et al.,16 Schmidt et al.17

  Right ventricle ablation TRL 5 Dukkipati et al.,18 Lardo et al.19

  Left ventricle ablation TRL 5 Toupin et al.,20 Mukherjee et al.,21 Krahn 
et al.22

  AV-node ablation TRL 5 Schmidt et al.17

Congenital procedures

  Diagnostic right and left heart catheterization TRL 8 Veeram Reddy et al.,23 Ratnayaka 
et al.,24 Pushparajah et al.,25 Knight 
et al.,26 Velasco Forte et al.,27 
Meierhofer et al.28

 � Ventricular septal defect closure, treatment of 
pulmonary artery stenosis and aortic coarctation

TRL 6 Grant et al.4

  Atrial septal defect closure TRL 5 Ratnayaka et al.,29 Rickers et al.30

  Cavopulmonary shunt TRL 5 Ratnayaka et al.31

Valvular procedures

  Transcatheter aortic valve replacement TRL 5 Kuehne et al.,32 Horvath et al.,33 
McVeigh et al.,34 Miller et al.,35 Miller 
et al.,36 Horvath et al.,37 Horvath et al.38

  Pulmonary valve stenosis balloon dilatation TRL 6 Tzifa et al.39

Coronary procedures

  Diagnostic catheterization TRL 5 Green et al.,40 Zhang et al.,41 Qiu et al.,42 
Spuentrup et al.,43 Serfaty et al.,44 Heidt 
et al.45

  Percutaneous coronary intervention TRL 5 Spuentrup et al.43

Other procedures

  Endomyocardial biopsy TRL 5 Behm et al.,46 Rogers et al.,47 
Unterberg-Buchwald et al.48

  Intramyocardial injections TRL 5 Carlsson and Saeed,49 Krombach et al.,50 
Tomkowiak et al.,51 van Es et al.52

  Pericardiocentesis TRL 5 Halabi et al.53

TRL, technology readiness level.
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Systems, Burnsville, MN, USA). Grothoff et al.15 
described the first real-time MR-guided cavotri-
cuspid isthmus ablations in a series of patients 
(N = 10). Complete conduction block was 
achieved in one patient. This was partly due to 
the study protocol limiting the procedure time in 
the MR-room to 90 min. Nevertheless, in the 
other nine patients, only limited additional abla-
tion pulses were required under X-ray fluoros-
copy guidance to gain complete isthmus block. In 
2016, the same group described the first cavotri-
cuspid isthmus ablations in humans using active 
catheter tracking in combination with passive 
tracking, which enhanced catheter navigation.64 
Complete bidirectional block was achieved in 
50% of cases (three out of six patients). In a fol-
low-up study94 of 30 patients, MR-guided cavo-
tricuspid isthmus ablation was achieved in 93% 
compared with 100% in the control group. One 
recurrence of AF (3%) occurred in the control 
group. This validation proving feasibility, safety, 
and efficacy of cavotricuspid isthmus ablation in 
humans warrants a TRL of 8, which is among the 
highest score of all categories that are mentioned 
in this review.

Right heart catheterization and congenital 
cardiology
Along with cavotricuspid isthmus ablation, diag-
nostic right heart catheterization too is well 
advanced regarding implementation of interven-
tional CMR, also achieving a TRL of 8. Most 
other congenital procedures had a TRL of 5.

In children with congenital heart disease, cardiac 
catheterization is often required for diagnosis, 
treatment, and follow-up. Therefore, MR-guided 
catheterization is beneficial.24,101–103 Its excellent 
resolution enables the sometimes complex con-
genital anatomy to be well visualized, while also 
enabling measurements of pulmonary artery pres-
sure and left atrial or wedge pressure. MR phase-
contrast enables calculation of the pulmonary 
vascular resistance, although arrhythmias and 
turbulent flow are major constraints.104,105

Several research groups assessed the feasibility of 
MR-guided right heart catheterization in phan-
toms, animals, and patients.23–26,60,102,104–108 In 
2003, Razavi et  al.102 was among the first to 
describe diagnostic right heart catheterization 
under real-time MR guidance. Pulmonary artery 
pressure, wedge pressure, pulmonary artery and 

aortic or left atrial oxygen saturations were meas-
ured. Pulmonary vascular resistance was calcu-
lated using the Fick method and using MR flow 
measurements. Catheters were visualized by pas-
sive tracking and enhanced by attaching a CO2-
filled balloon to the tip. In 2015, the group of 
Pushparajah et  al.25 described a cohort of 149 
patients with congenital heart disease who under-
went 167 catheterizations for pulmonary vascular 
resistance assessment (including the procedures 
from the 2003 publication)102 using either only 
MR guidance or a combination of MR and X-ray 
fluoroscopy guidance, firmly establishing its feasi-
bility. While this group used conventional guide-
wires under X-ray fluoroscopy when necessary, 
Veeram Reddy et al.23 demonstrated the use of an 
MR-conditional guidewire for right and left heart 
catheterization successfully in 24 out of 25 cases. 
Meierhofer et al.28 also describe successful use of 
MR-conditional guidewires for right and left 
heart catheterization and pressure measurement 
in great vessels in 23 out of 25 cases of patients 
with congenital heart disease.

Feasibility of MR-guided transcatheter closure of 
atrial and ventricular septal defects (ASD/VSD) 
was described in several animal studies, achieving 
a TRL of 5.29,30,104,107,109,110

Rickers et  al.30 showed the first feasibility of 
MR-guided closure of ASD in seven swines. The 
shunt was visualized using MR angiography after 
administration of gadolinium-gadopentetate 
dimeglumine using T1-weighted gradient echo 
sequences, and the size of the defect was meas-
ured using orthogonal short- and long-axis 
images. An Amplatzer Septal Occluder device to 
close the ASD was then attached to a custom-
designed nitinol delivery cable and loaded into 
the delivery sheath to facilitate deployment. 
Postmortem examination showed good correla-
tion of the ASD size when an antenna guide wire 
crossing the ASD had been used, allowing for a 
smaller field-of-view without aliasing artifacts. 
MR-guided VSD-closure was described in ani-
mals by Ratnayaka et  al.29 Furthermore, Raval 
et  al.100 described transseptal puncture under 
real-time MR guidance using a custom-made 
actively tracked needle. The feasibility of trans-
septal puncture can be useful in a wide variety of 
procedures.

Finally, Ratnayaka et  al.31 described one of the 
most complicated MR-guided interventions. In 
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15 swines, a transcatheter cavopulmonary anasto-
mosis and a shunt were created using novel, pur-
pose-built devices after commercially available 
endografts were tested but provided suboptimal 
distal anastomosis. While the advantages of per-
forming this procedure via a transcatheter route 
are further enhanced when done under MR guid-
ance, they have not yet translated to human stud-
ies or clinical practice (TRL 5).

Valvular procedures
Feasibility of MR-guided valvular procedures has 
been tested in animal studies mostly since 2004,111 
especially in the aortic valve position, and thereby 
achieving a TRL of 5.

Real-time MR guidance of transcatheter aortic 
valve implantation has several possible advan-
tages over X-ray fluoroscopy guidance and angi-
ography. It allows precise positioning, and 
immediate assessment of the function of the pros-
thesis using flow measurements.112,113 After the 
initial proof of concept in 2004, several other in 
vivo animal studies have been performed.32–38 It 
has been shown that the commercially available 
Medtronic CoreValve® prosthesis can be used 
under real-time MR guidance, with small modifi-
cations made to the delivery device, of which the 
metal braiding had to be removed due to severe 
susceptibility artifacts.35,112,113

However, clinical implementation has been lim-
ited by several aspects, being the costs and time 
required to implement an interventional CMR 
catheterization suite, and safety aspects such as 
MR-incompatible implants in patients. The only 
valvular procedures performed under real-time 
MR guidance in humans and thereby achieving a 
TRL of 6, were described by Tzifa et al.39 After 
first performing 20 balloon dilatations in five 
swines using a nonmetallic guidewire and passive 
catheter tracking, balloon dilatation of pulmonary 
valve stenosis was performed in two humans. 
Although both procedures took approximately 
3 h, both patients had significant reduction of the 
gradient over the pulmonary valve and no compli-
cations were reported.

Coronary artery catheterization and 
interventions
Coronary artery catheterization and intervention 
under real-time MR guidance has been performed 

in a limited number of animal studies,40–45 achiev-
ing a TRL of 5. Spuentrup et al.43 described suc-
cessful engagement of both coronary artery ostia 
in seven pigs using passive tracking. Stent place-
ment was successful in 10 of 11 coronary arteries. 
Limitations of this study included the incorpora-
tion of nondiseased coronary arteries and, with a 
passive tracking approach, the guidewire tips 
could not be visualized in distal parts of coronary 
arteries.

A comparison between X-ray fluoroscopy and 
real-time MR guidance was made by Green et al.40 
A stenosis was surgically created in the proximal 
left circumflex coronary artery in nine swines. 
Conventional X-ray fluoroscopy-guided coronary 
catheterization was performed 3 weeks after sur-
gery to objectify the stenosis. On the MR-scanner, 
the same femoral arterial sheath was used for left 
coronary artery catheterization, using an actively 
tracked guidewire and the same angiographic 
catheter, which led to successful intubation of the 
left coronary artery in eight out of nine cases. This 
showed an excellent correlation with an intra-class 
correlation coefficient of 0.955.

MR-guided coronary interventions have hardly 
made any progress since 2008 due to the small 
size of the coronary arteries and the lack of 
MR-compatible materials with sufficient stiffness, 
guiding stability, and MR visibility. In the most 
recent animal study performed by Heidt et al.,45 
the authors still had to rely on custom-designed 
catheters.

Other procedures
Several other cardiac catheterization procedures 
requiring intracardiac or pericardial access were 
described, predominantly in animal studies and 
therefore achieving a TRL of 5.

Few groups46–48 investigated the use of MR guid-
ance for endomyocardial biopsies, as the diagnos-
tic yield of these biopsies is often dependent on 
the distribution of disease. The largest study 
investigating the use of real-time MR guidance 
for endomyocardial biopsies was performed by 
Rogers et  al.47 In five swines, late gadolinium 
enhancement MRI was performed 3 weeks after 
inducing myocardial infarction by obstructing an 
obtuse marginal branch. X-ray fluoroscopy and 
real-time MR-guided biopsies were taken, and 
the diagnostic yield of the MR-guided biopsies 
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(63 of 77 biopsies, 82%) was significantly better 
than that of the X-ray fluoroscopy-guided biop-
sies (49 of 87 biopsies, 56%). This suggests MR 
guidance of endomyocardial biopsies can improve 
the diagnostic yield compared with X-ray fluoros-
copy guidance.

In animal studies, intramuscular injection of bone 
marrow stem cells into myocardial infarct border 
zones has shown functional myocardial recovery, 
but convincing feasibility has not been shown in 
humans. Hatt et al.114 suggested this might partly 
be due to the delivery method and target location. 
Intramyocardial injections have been performed 
successfully under real-time MR guidance in ani-
mals by several authors.50–52 However, the limited 
clinical application of stem cell therapy in 
ischemic heart disease limits the requirement of 
interventional CMR for this purpose.

Halabi et  al.53 described real-time MR-guided 
pericardiocentesis in 12 swines with either no 
effusion, small (50 ml), moderate (100 ml) or 
large effusion (150 ml) using commercially avail-
able passive access titanium needles (CMR 
Puncture Needle, 18G × 15 cm, Philips Invivo, 
Schwerin, Germany) via a subxiphoid access 
route. It was successful in all cases.

Feasibility of pericardiocentesis in an MR- 
environment is essential, since cardiac tampon-
ade is a known complication of various cardiac 
procedures. Damaging delays may be prevented 
when pericardiocentesis can be performed in the 
same environment.

Discussion
A detailed systematic review of the available lit-
erature on interventional CMR for cardiac proce-
dures was performed and TRL of these procedures 
was assessed. Although several limitations still 
need to be overcome to further advance and 
improve clinical translation, interventional car-
diac MRI is a highly promising technique. 
Particularly in diagnostic right heart catheteriza-
tion and cavotricuspid isthmus ablation, the tech-
nique has advanced toward clinical translation 
over the past 10 years, reaching a TRL of 8. Other 
procedures have mostly been done in animal 
studies, achieving a TRL of 5.

To date, technical aspects like catheter tracking 
and heating of instruments are still major 

limitations. Passive tracking often only shows part 
of the device, is time-consuming and is problem-
atic when multiple devices need to be visualized at 
the same time. Active tracking provides more con-
venient visualization, but requires substantial 
device modification and is prone to heating. The 
lack of an MR-compatible defibrillator and the 
need to acquire new technical expertise are other 
factors preventing widespread clinical translation 
of MR-guided procedures. Nevertheless, the pos-
sibility of adding the strong diagnostic features of 
CMR (e.g. high spatial and temporal resolution, 
excellent anatomic visualization, tissue characteri-
zation, and flow measurements) to interventional 
procedures is very valuable, with the advantage of 
not exposing patient and staff to ionizing radia-
tion. Furthermore, Campbell-Washburn et  al.115 
have described how low-field-strength MRI (0.55 
T) reduces heating, which allowed conventional 
metallic guidewires to be used in right heart cath-
eterization in seven cases, while efficient spiral 
image acquisitions enabled good image quality. 
Diagnostic right heart catheterization is especially 
beneficial in children with congenital heart dis-
ease, who often have to undergo multiple assess-
ments of pulmonary artery pressures and 
pulmonary vascular resistance and benefit most 
from avoiding ionizing radiation. This is a particu-
lar area that might benefit from low-field-strength 
interventional CMR.

In EP, clinical translation of interventional CMR 
has been achieved in right-sided procedures. 
Real-time MR-guided cavotricuspid isthmus 
ablation in atrial flutter has been described in a 
series of 30 patients94 and was shown to be equally 
effective as X-ray fluoroscopy guidance. Left-
sided ablation is still limited by the lack of an 
MR-compatible needle available for transseptal 
puncture. Lesion visualization in the left atrium is 
also impeded by the difficulty of imaging the thin 
atrial wall with the currently available resolution, 
although this also applies to the right atrium 
where substantial progress had been made. 
Nevertheless, this area would particularly benefit 
from tissue characterization, as it could give 
immediate feedback on the efficacy of the proce-
dure because of the ability to ensure ablation 
lesions are interconnected and transmural, lead-
ing to a higher success rate of AF ablation and 
less re-do procedures. Conventional T1 and T2 
mapping, especially when using contrast enhance-
ment for T1-weighted imaging, are also useful to 
determine reversibility of RF-lesions.22
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Another area that could benefit from interven-
tional CMR is endomyocardial biopsy, since 
diagnostic yield is affected by disease distribution. 
Small animal studies have already shown a supe-
rior diagnostic yield for MR-guided interventions 
compared with X-ray fluoroscopy-guided inter-
ventions.47,48 However, to date, MR-compatibility 
of bioptomes is a limiting factor.

Valvular and coronary procedures have mostly 
been performed in animal studies, and clinical 
translation in these areas appears not imminent 
for a longer period.

Conclusion
Our results show that diagnostic right heart cath-
eterization and cavotricuspid isthmus ablation 
have the highest TRL in interventional CMR, 
achieving a TRL of 8. These procedures are clini-
cally feasible and have several advantages over 
conventional X-ray fluoroscopy guidance. Other 
procedures, like left-sided RF-ablation and endo-
myocardial biopsy might benefit greatly from the 
features of interventional CMR (e.g. tissue char-
acterization and lesion visualization), but have so 
far been performed almost exclusively in animal 
studies, therefore achieving a TRL of 5. Further 
clinical translation of such procedures is depend-
ent on the development of MR-compatible instru-
ments, but we believe that once this is achieved, 
interventional CMR will greatly contribute to 
improving success rates of left-sided ablation and 
diagnostic yield of endomyocardial biopsies.
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