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Abstract

Motivation: Electron tomography (ET) has become an indispensable tool for structural biology studies. In ET, the tilt
series alignment and the projection parameter calibration are the key steps toward high-resolution ultrastructure
analysis. Usually, fiducial markers are embedded in the sample to aid the alignment. Despite the advances in devel-
oping algorithms to find correspondence of fiducial markers from different tilted micrographs, the error rate of the
existing methods is still high such that manual correction has to be conducted. In addition, existing algorithms do
not work well when the number of fiducial markers is high.

Results: In this article, we try to completely solve the fiducial marker correspondence problem. We propose to divide
the workflow of fiducial marker correspondence into two stages: (i) initial transformation determination, and (ii) local
correspondence refinement. In the first stage, we model the transform estimation as a correspondence pair inquiry
and verification problem. The local geometric constraints and invariant features are used to reduce the complexity
of the problem. In the second stage, we encode the geometric distribution of the fiducial markers by a weighted
Gaussian mixture model and introduce drift parameters to correct the effects of beam-induced motion and sample
deformation. Comprehensive experiments on real-world datasets demonstrate the robustness, efficiency and effect-
iveness of the proposed algorithm. Especially, the proposed two-stage algorithm is able to produce an accurate
tracking within an average of 6100 ms per image, even for micrographs with hundreds of fiducial markers, which
makes the real-time ET data processing possible.

Availability and implementation: The code is available at https://github.com/icthrm/auto-tilt-pair. Additionally, the
detailed original figures demonstrated in the experiments can be accessed at https://rb.gy/6adtk4.

Contact: xin.gao@kaust.edu.sa or guojunsdu@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Electron tomography (ET) is a powerful and indispensable tool to
solve the three-dimensional (3D) ultrastructure (Frank, 2006), by
reconstructing from a series of micrographs (tilt series) taken with
different tilt angles. The development of ET has bridged the reso-
lution gap between cellular imaging and high-resolution ultrastruc-
ture analysis (Rigort et al., 2010; Wan and Briggs, 2016). Especially,
the recent application of ET in subtomogram averaging has
advanced the limits of in situ ultrastructure analysis, which may lead
to the next revolution in structural biology (Himes and Zhang,
2018).

The reconstruction of a high-quality ultrastructure relies on the
consistency between the 3D projection model and the real-world
projections. Before reconstruction, an accurate tilt series alignment
is required. Usually, gold beads are used as fiducial markers to assist
the alignment (Brandt and Ziese, 2006; Casta~no-Dı́ez et al., 2007;
Kremer et al., 1996; Lawrence, 1992). So far, fiducial marker-based
alignment is still the most widely used alignment method in high-
resolution ET (Mastronarde and Held, 2017).

Finding the correspondence of the fiducial markers on different
tilted micrographs is the first and most important step in tilt series
alignment. After many years of effort, several automated methods
have been proposed: RAPTOR (Amat et al., 2008) uses the Markov
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random field (MRF) to encode the positions of fiducial markers and
utilizes the Loopy belief propagation theory to establish the corres-
pondence. The defect of this method is the high computational cost
in building the probabilistic model and the high failure rate. Later,
Han et al. (2015) utilizes a random sampling method to determine
the correspondence. Though the run time has been significantly
reduced compared with RAPTOR, the method still faces an increas-
ing computational cost when the number of fiducial markers
increases. IMOD makes an automatization for its alignment work-
flow by first detecting the fiducial markers from the low tilt micro-
graph and then propagating the correspondence with a nearest
neighbor search (Mastronarde and Held, 2017). Nevertheless, a pre-
alignment of the tilt series is necessary and the method is not applic-
able when a significant transformation happens. With the proof of
the error bound in a fiducial marker tracking model, a Gaussian
mixture model (GMM) based fast-tracking method is proposed
(Han et al., 2018). In the fast-tracking model, the correspondence is
determined by minimizing the Bayesian probability in fiducial mark-
er assignment. However, the method is not robust to the undesired
outliers and relatively large transformation. Therefore, a robust, ac-
curate and automatic fiducial marker correspondence is still one of
the scientific challenges in the field (Jensen, 2019).

Recently, non-linear alignment and reconstruction have been fur-
ther proposed in ET (Fernandez et al., 2018; Lawrence et al., 2006).
According to the most recent research, sample deformation and
beam-induced motion have been underestimated (Fernandez et al.,
2018; Zheng et al., 2017). Fernandez et al. (2019)’s work has clearly
demonstrated the warping during sample tilt and how the deform-
ation correction benefits the reconstruction. However, there are
only very few works that take the effect of non-uniform distortion
into consideration in fiducial marker tracking.

In this article, we propose to divide the determination of fiducial
marker correspondence into two stages: (i) initial transformation de-
termination and (ii) local correspondence refinement. A novel two-
stage algorithm by considering the local geometric constraint is pro-
posed to ensure the efficient fiducial marker tracking while keeping
robustness and accuracy. In the first stage, we model the initial
transformation estimation as a correspondence pair inquiry and
verification problem. The local invariant features are used for the
fast comparison of the geometric similarity between different fidu-
cial marker positions on different micrographs. Within each similar-
ity inquiry, we limit the range of local feature extraction and
propose a multiple-check technique of the extracted features for fast
consistency verification. In the second stage, we encode the geomet-
ric distribution of the fiducial markers by a weighted Gaussian mix-
ture model and solve the correspondence of distributions by an
expectation-maximization algorithm, where the parameters about
non-uniform drift are introduced to correct the potential distortion.
The obvious outliers are pre-excluded based on the solved initial
transformation.

With the two-stage algorithm, our aim is to completely solve the
fiducial marker correspondence and tracking problem in ET. The
utilization of local geometric constraints further reduces the compu-
tational complexity and the introduction of drift parameters ensures
the accuracy in fiducial marker correspondence determination.
Comprehensive experiments on real-world datasets demonstrate the
robustness, efficiency and effectiveness of the proposed algorithm.
Especially, the proposed algorithm is able to produce an accurate
tracking within an average of 6 100 ms per image, even for micro-
graphs with hundreds of fiducial markers, which is more than 40�
faster than the state-of-the-art methods, while achieving �99% de-
tection accuracy.

2 Materials and methods

2.1 Problem formulation
First, we would like to redefine the problem under the terminology
of point set registration:

Denoting the positions of fiducial markers from a micrograph as
the fixed ‘scene’ point set X ¼ fxngn¼1;...;N and the positions of

fiducial markers from another micrograph as the moving ‘model’
point set Y ¼ fymgm¼1;...;M, the problem of the correspondence de-
termination is to find a transform T ð�Þ so that there is a subset of
T ðYÞ with the maximum cardinality that aligns the points from a
subset of the fixed ‘scene’ set X under a selected measure of distance

or similarity.
Figure 1 gives a schematic illustration of the determination of fi-

ducial marker correspondence between two tilted micrographs.

2.2 Fast estimation of initial transformation
The fiducial marker correspondence upon micrographs with differ-
ent tilt angles approximately follows an affine relationship (Han

et al., 2018). For a single point p ¼ ½x; y�T , the affine transformation
is defined as

T ðp0; A; tÞ ¼ Apþ t; (1)

where A is a 2�2 affine matrix and t is a 2�1 translation vector.
Without considering the sample deformation, an affine transform-
ation is able to describe the correspondence of the fiducial markers
extracted from two different tilted micrographs (Fig. 1E). Given a

‘scene’ point set with N points and a ‘model’ point set with M
points, the time complexity is OðM3N3Þ for a baseline method
(Three pairs of corresponding points are needed for the estimation
of an affine transformation with six free parameters. A simple algo-
rithm to find three corresponding points is: (i) choose three points
from the ‘scene’ and ‘model’ point sets respectively; (ii) make a enu-

meration of the combination of these three points, estimate a pos-
sible transformation and finding if it could produce reasonable
mapping; (iii) repeat the previous steps until a transformation that
maximizes the congruent subset is found. It can be found that this
procedure has two loops for 3-point combination, which requires
A3

NA3
M operations in average, resulting in an OðM3N3Þ complexity.).

However, such complexity is prohibitively high considering the
practically large number of fiducial markers and the number of
micrographs.

Fig. 1. (A) The detected fiducial markers and correspondences between two micro-

graphs, where the left is with a high tilt angle and the right is with a low tilt angle.

(B) Superimposition of fiducial marker positions extracted from the micrographs.

(C) The geometric constraint within the blue rectangle. (D) The geometric constraint

within the red rectangle. (E) Superimposition of fiducial marker positions after an

affine transformation has been applied to the ‘model’ points
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2.2.1 Local constrained 4-point invariant feature

Here, we propose a novel strategy, which combines the 4-point af-
fine invariant feature (Aiger et al., 2008; Koenderink and van
Doorn, 1991) with local constraints and invariant area ratio, to re-
duce the parameter searching space.

4-point affine invariant feature: For a point set P ¼
fpa;pb; pc; pdg in which line lab ¼ pa þ aðpb � paÞ intersect with line

lcd ¼ pc þ bðpd � pcÞ at point pe, the ratios r1 ¼ jjpa�pe jj
jjpa�pb jj

and r2 ¼
jjpc�pe jj
jjpc�pd jj

are preserved under any affine transformation. The 4-point

set P along with the ratios r1 and r2 compose the 4-point invariant
feature (A brief proof is provided in Supplementary S1.1).

Figure 1C and D demonstrate an example of the 4-point invari-
ant feature, where Figure 1C shows the fiducial markers of the low
tilt micrograph within the blue rectangle of Figure 1B, and D shows
the correspondences of the high tilt micrograph within the red rect-
angle. By considering the intersections, point set fa; b; c; dg forms a
4-point invariant feature in Figure 1C and point set fa0; b0; c0; d0g
forms the congruent invariant feature in Figure 1D. These two 4-
point subsets could be fitted into each other within a suitable trans-
formation (Fig. 1E).

Local geometric constraint and numerical stability: The fast in-
quiry of a 4-point invariant feature is still a problem for large point
sets (Aiger et al., 2008). Various local geometric constraints have
been proposed to reduce the complexity, within which the nearest
neighbor constraint is the most popular one (Amat et al., 2008;
Hauer et al., 2013; Vilas et al., 2016). Though the nearest neighbor
constraint is able to prune the topology and reduce the complexity,
the nearest neighbor itself, however, can be easily corrupted by out-
liers and distance changes. Figure 1C and D shows such an example,
in which a 3-neighbors local linear embedding (LLE) system is built
for point a. Unfortunately, affected by the missed detection of g0, we
get points g, d and h as the 3-neighbors for point a in Figure 1C but
points d0; h0 and c0 as the 3-neighbors for its correspondence in
Figure 1D.

Here, we define lines lab and lcd as the diagonal of an invariant
feature P, and propose to extract the 4-point invariant feature

within the length of diagonal constraints instead of the nearest
neighbor geometry:

1. Build a nearest neighbor search tree (Bentley, 1975) to get the

set of the distance flkg between each point in a point set X with

its nearest neighbor.

2. Get the average lavg and standard deviation lsdv of flkg.
3. Define a diagonal length for a 4-point invariant feature to be no

more than lmax ¼ 3
ffiffiffi
2
p

lavg þ lsdv.

4. Get all the possible point pairs within the point set X , and only

select the point pairs with length no more than lmax to produce

the 4-point invariant feature.

By doing this, we have limited the extraction of 4-point invariant
feature within a local constrained area (if the distribution of fiducial
markers is approximately even, we will get all the 4-point invariant
features within about 10-neighbors).

We further exclude the 4-point invariant feature with too small
diagonal lengths: if the localization error for a fiducial marker is 5
pixels, a 4-point invariant feature with a diagonal length of 20 pixels
will suffer from 5=20 ¼ 25% inaccuracy in the invariant ratio, while
a 4-point invariant feature with a diagonal length of 200 pixels will
only suffer from 5/200¼2.5% inaccuracy. The minimum diagonal
length lmin is related to the numerical stability of a given coordinate
system, which depends on the nanoscale of fiducial markers and the
pixel size of the micrograph. Here, we call this local geometry con-
straint the min&max rule for the 4-point invariant feature.

Figure 2A shows an example of the ‘min&max rule’, where we
set lmin ¼ lgb and lmax ¼ lhg for the convenience of demonstration.
Here, for the points selected in Figure 1C, we have calculated all the
possible point pairs flpipj

jpi; pj 2 Xg. Then, the point pairs with
jjlpipj

jj > lmax or jjlpipj
jj < lmin are discarded. Consequently, a

pruned virtual topology is built based on the remaining point pairs.
As shown in Figure 2A, about half of the point pairs that violate the
min&max rule have been pruned from the topology, being plotted
in dash lines. Furthermore, because of the min&max rule, there are

a

b

c

d
f

g

h

A B

C D

Fig. 2. Fast inquiry and verification for a certain 4-point invariant feature. Given the minimum and maximum limitation of 4-point feature’s diagonal, a pruned virtual top-

ology could be built on the ‘scene’ point set and the inquiry cost will be reduced when a 4-point feature of the ‘model’ point set comes. (A) A pruned virtual topology generated

from the point set shown in Figure 1C, with the setting of minimal diagonal length lmin ¼ lgb and maximal length lmax ¼ lhg. (B) A 4-point feature chosen from the point set

shown in Figure 1D, with the corresponding invariant ratio r1 and r2. (C) The inquiry of a consistent 4-point feature on the ‘scene’ point set. For each pair of points fi, jg, two

kinds of possible intersection (er1
and er2

) are calculated. A conflict of er1
and er2

indicates a possible candidate of the corresponding 4-point feature. (D) The area ratio con-

straint underlies the two corresponding 4-point features
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few connections between the points depicted in Figure 2A and the
other points outside the selected region, which limits the combin-
ation of the geometric features within a local area.

2.2.2 Fast inquiry and verification of invariant feature

We could extract a ‘query’ subset from the ‘model’ point set Y and
find its congruent subset in the ‘scene’ point set X . If we obtain an
affine transformation from the inquiry that covers enough points
after being applied to the ‘model’ point set, we may have found the
correct initial transformation.

Partial inquiry for a certain feature: For a 4-point invariant fea-
ture P 2 Y with invariant ratios r1 and r2, we try to check its corres-
pondence in X based on the supposed position of its intersection e.

If a point pair lij corresponds to one of P’s diagonals, it has

f
per1 ðijÞ

¼ pi þ r1ðpj � piÞ or per1 ðjiÞ
¼ pjþr1ðpi � pjÞ;

per2 ðijÞ
¼ pi þ r2ðpj � piÞ or per2 ðjiÞ

¼ pjþr2ðpi � pjÞ;
(2)

where er1ðijÞ; er1ðjiÞ represent the two types of intersection er1
defined

by r1, and er2ðijÞ; er2ðjiÞ represent the two types of intersection er2

defined by r2 (an illustration is shown in Fig. 2B). Consequently, to
find P’s corresponding 4-point feature in X , we may build a nearest
search tree of fer2

g and search er1
on the nearest search tree.

Figure 2C shows the detailed positions of the candidates er1
and

er2
on the virtual topology, and how a candidate er1

conflicts with a
candidate er2

(to make the figure clear, only the first type of er1
and

er2
is depicted). Once a conflict of the query is detected, the corre-

sponding subset will be selected as a candidate correspondence to
the inquiry subset.

It can be found that the partial inquiry procedure will take
OðN2Þ time complexity even without the constraint of local geom-
etry, which is much faster than the OðN3Þ complexity method used
by the 3-point combination in a baseline algorithm.

Fast consistency verification: Given a query subset as the 4-point
invariant feature, multiple candidate correspondences may exist in
the ‘scene’ point set. To retrieve the invariant feature that exactly
corresponds to the query, the affine transformation should be esti-
mated and tested on the entire point set, which is still time-
consuming. Here, we introduce another affine constraint, the con-
straint of the area ratio, to simplify the verification:

LemmaGiven a micrograph with tilt angle b1 and another one with tilt

angle b2, the area of the corresponding plane shapes on these two micro-

graphs have an approximate ratio of cos b1= cos b2.

The interested readers may refer to Supplementary S1.2 for the
proof of the lemma. Figure 2D shows how the area ratio constraint
is applied to the 4-point invariant feature. Here, it should be noted
that the area ratio constraint is rotation and translation invariant. A
relaxation parameter n is further defined. Given a candidate corres-
pondence P0 of the 4-point invariant subset P; P0 is accepted if and
only if ð1� nÞ cos b1

cos b2
6

SP
SP0
6 ð1þ nÞ cos b1

cos b2
.Time complexity of the al-

gorithm: Algorithm 1 summaries the proposed fast inquiry and veri-
fication algorithm, where the input is a 4-point invariant feature P
extracted from the moving ‘model’ point set Y, the pruned point
pairs ‘ extracted from the moving ‘scene’ point set X , the value of
the two tilt angles b1, b2 and two parameters d, n used to define the
inquiry accuracy. Er1

and Er2
are the point sets generated from ‘

with ratios r1 and r2, and H is the candidate 4-point subset that cor-
respond to P. KDð�Þ is the operation to build a k-d tree served for
the nearest neighbor search (Bentley, 1975) and distð�Þ is the oper-
ation to calculate the Euclidean distance between two points.

Because point pairs ‘ have been pruned by the min&max rule,
the cardinality K of ‘ should be � N2 (N is the cardinality of X ).
Then, the calculation of possible intersections has O(K) time com-
plexity, building the nearest search tree has OðK log ðKÞÞ time com-
plexity, and the query of the 4-point invariant subsets that
correspond to P takes OðK log ðKÞÞ time complexity (Oðlog ðKÞÞ for
each query and O(K) for the number of tries). Therefore, the total
complexity of the algorithm is OðKþK � log ðKÞÞ, which is far
smaller than OðN2 log ðNÞÞ.

2.2.3 Robust estimation of the affine transformation

Considering the effect of noise and the missed detection of fiducial
markers, multiple trials of congruent subset inquiry is necessary.
Here, we adopt a random sample consensus (RANSAC) procedure
(Fischler and Bolles, 1981) to robustly estimate the affine transform-
ation between the two point sets.

Based on the min&max rule, the sets of range limited point pairs
‘X and ‘Y are generated from X and Y, respectively. Then, the fol-
lowing operations are carried out:

1. Compose a random 4-point set P by the point pairs within Y,

and get its candidate congruent subsets H in X by the fast in-

quiry algorithm.

2. For each congruent subset PX within H, calculate the possible

transform T ð�; A; tÞ by the least square estimation. Apply the

transform to Y and count the number of points in T ðYÞ that are

close enough (congruent) to the points in X .

3. If the number of congruent points between T ðYÞ and X is larger

than the current maximal record cmax, save the current value as

cmax and update the termination condition I.

4. Repeat Steps 1 �4 until termination.

Algorithm 2 elaborates the details of the algorithm, where the al-
gorithm accepts the point sets X ; Y and the related tilt angles b1, b2

as input, the distance threshold d, the area ratio relaxation n as
parameters, and outputs the estimated transformation T ð�; A; tÞ.
The distance threshold d can be set according to the value of fiducial
marker diameter and the relaxation n can be estimated based on the
experiments of mechanical instability. Generally, d is set to k �D,
where D is the fiducial marker diameter and 0:5 < k < 0:8.
Because the fiducial markers are sparsely distributed on the speci-
men, the value of k is not essential to the system. In the algorithm,
we denote the operation to count the corresponding points between
X and Y under distance threshold d as ðX ;Y; dÞ. Because the trans-
formation of Y needs a sequence of matrix multiplication, a further
optimization is to randomize the verification of congruent points, by
fast verifying a constant number of random points first and then the
whole dataset. The maximum iteration is initialized and updated
according to I ¼ logð1� psÞ= logð1� pk

gÞ, where ps is the required
success probability, pg is the percentage of traceable fiducial markers
that appear in both X and Y, and k is set to 4 as the inquiry of 4-
point invariant subset.
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2.3 Local correspondence refinement
By considering the local geometric constraint, the optimized
randomized algorithm is able to produce a fast and robust estima-

tion of the initial transformation. However, the distortion caused by
sample deformation or beam-induced motion is non-negligible
(Fernandez et al., 2019; Lawrence et al., 2006; Zheng et al., 2017),

which may corrupt the affine relationship of two micrographs with-
in a local area and lead to spurious correspondence.

Here, we first correct the large deviation and outliers in Y by the
affine transformation T ð�; A; tÞ, and then feed the transformed

‘model’ point set and ‘scene’ point set to the algorithm for the se-
cond stage (for the concision of text, we still denote the corrected
point set T ðY; A; tÞ by Y in the following discussion.).

2.3.1 GMM interpolation for the scattered points

For the efficiency and accuracy, the data interpolation and trans-

formation refinement are carried out by the non-rigid coherent point
drift, based on the Gaussian mixture model (GMM) (Jian and
Vemuri, 2011; Myronenko and Song, 2010).

Given the fixed ‘scene’ point set X ¼ fxngn¼1;...;N and the moving
‘model’ point set Y ¼ fymgm¼1;...;M, the probability that a point x 2
X is corresponding to a point y 2 Y can be described by an isotropic
Gaussian function:

pðxjyÞ ¼ 1

2pr2
exp � jjx� yjj2

2r2

� �
; (3)

where r is a parameter to describe the instability of the system.
Similarly, the probability that the point x belongs to the point set Y

can be defined as pðxjYÞ ¼
PM

m¼1

PðmÞpðxjymÞ, where P(m) is the prior

of x under the condition of the mth point ym.
Considering a drift transform T ð�; vÞ applied to the model for

distortion correction, and assuming the point x either belongs to

outliers with w probability or sampled from the point set Y with a
uniform distribution, the GMM probability density function can be

defined as:

pðxjvmÞ ¼ w
1

N
þ ð1�wÞ

XM
m¼1

1

M
pðxjymÞ;

¼ w
1

N
þ ð1�wÞ

XM
m¼1

1

M

1

2pr2
e�
jjx�T ðym ;vm Þjj2

2r2 ;

(4)

where vm is the drift corresponding to the mth point ym. Our aim is to find

such a transformation T ð�; vÞ and parameter r applied to all the points y 2
Y so that the negative log-likelihood fromY toX is minimized:

EðT ð�Þ; r2Þ ¼ �
XN
n¼1

log
XMþ1

m¼1

PðmÞpðxjymÞ; (5)

where P(m) is the reweighted i.d.d prior and pðxjyMþ1Þ ¼ w
N presents

the probability of outliers.

2.3.2 Transform parameter optimization

A negative log-likelihood objective function could be effectively solved

by the expectation-maximization (E-M) optimization, where the algo-
rithm iterates between the E-step and the M-step until

convergence.With Jensen’s inequality (Jensen, 1906; Redner and
Walker, 1984), the negative log-likelihood defined in Eq. 5 is upper
bounded by the following function in each iteration:

Q ¼ �
XN
n¼1

XMþ1

m¼1

pðmjxnÞ log ðPnewðmÞpnewðxnjymÞÞ; (6)

where pðmjxnÞ ¼ PðmÞpðxnjymÞ=pðxnÞ is the probability that ym corre-

sponds to xn, the ‘old’ superscript indicates that a parameter is guessed
in the E-step and the ‘new’ superscript indicates that a parameter is opti-

mized from the negative log-likelihood function in the M-step.
E-step: By ignoring the constants independent of v and r, we re-

write Eq. 6 as:

Qðv; r2Þ ¼ 1

2r2

XN
n¼1

XM
m¼1

pðmjxnÞjjxn � T ðym; vmÞjj2 þNp log r2; (7)

where Np ¼
PN
n¼1

PM
m¼1

pðmjxnÞ6N (with N ¼ Np only if w¼0), and

pðmjxnÞ denotes the posterior probabilities of GMM components
calculated using the previous parameter values:

pðmjxnÞ ¼
exp � 1

2 jj
xn�T ðym ;vmÞ

r jj2
� �

PM
k¼1

exp � 1
2 jj

xn�T ðyk ;vmÞ
r jj2

� �
þ 2pr2 w

1�w
M
N

: (8)

M-step: Here we model the transform T ð�; vÞ to correct the local

distortion but not global affine transformation. For the convenience
of further discussion, here we introduce the following notations:

1. XN�2 ¼ ðx1 � � �xNÞT—matrix presentation of the point set X ;

2. YM�2 ¼ ðy1 � � � yMÞ
T—matrix presentation of the point set Y;

3. 1—the column vector of all ones;

4. 4. dðaÞ—the diagonal matrix formed from vector a;

5. P—the matrix that is composed by pmn ¼ pðmjxnÞ.

Based on the Tikhonov regularization framework (Chen and
Haykin, 2002), a non-rigid parameterization for T ð�; vÞ is adapted

to minimize the objective function Q:

T ðY ; vÞ ¼ Y þ vðYÞ; (9)

where vð�Þ is the expected drift. A regularization term k
2 /ðvÞ is added

to Equation 7 to enforce the smoothness and compensate for the

drift, and k is a trade-off parameter.
If we model the regularization function /ðvÞ ¼ jjLvjj2 within a

Kernel Hilbert Space (RKHS) (Chen and Haykin, 2002; Myronenko
and Song, 2010), the negative log-likelihood function in Equation 7
will be defined as:
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Qðv; r2Þ ¼ 1

2r2

XN
n¼1

XM
m¼1

pðmjxnÞjjxn � ðym þ vðymÞÞjj
2

þNp log r2 þ k
2
jjLvjj2:

(10)

To minimize Equation 10, we should find a function vð�Þ for all
the elements ym of Y under the Euler-Lagrange differential equation:

1

r2k

XN
n¼1

XM
m¼1

pðmjxnÞðxn � ðym þ vðymÞÞÞDym ¼ L̂LvðDymÞ; (11)

where L̂ is the adjoint operator to L. By rewriting the equation and
using an integral of a Green’s function gðx; yÞ ¼ e�

1
2jj

x�y
b jj

2

instead of
the self-adjoint operator, the solution vð�Þ of such a partial differen-
tial equation has the form of

vðzÞ ¼ 1

r2k

XN
n¼1

XM
m¼1

pðmjxnÞðxn � ðym þ vðymÞÞÞgðz; ymÞ

¼
XM
m¼1

wmgðz; ymÞ;
(12)

where wm ¼ 1
r2k

PN
n¼1

pðmjxnÞðxn � ðym þ vðymÞÞÞ. To further get the
values of vð�Þ, we could solve each wm first by evaluating Eq.12 at
ym:

ðGþ kr2dðP1Þ�1ÞW ¼ dðP1Þ�1PX� Y ; (13)

where W ¼ ðw1; . . . ;wMÞT , G is an M�M kernel matrix with ele-
ments gij ¼ gðyi; yjÞ, and dð�Þ�1 is the inverse diagonal operation.

Consequently, the transform T ¼ T ðY; WÞ ¼ Y þGW. By sub-

stituting T back into Q and solving the partial derivation, r2 is

updated according to the result of @Q
@r2 as

r2 ¼ 1

2Np
trðXTdðPT1ÞXÞ � 2trððPXÞTTÞ þ trðTTdðP1ÞTÞÞ:
�

(14)

The overall iterative optimization for the GMM-based drift cor-
rection is summarized in Algorithm 3. After the update of the posi-
tions by T ðY ;WÞ, we could recalculate the correspondence between
point sets Y and X under a given distance threshold d. With the ini-
tial transformation inherited from the first stage, Algorithm 3 is able
to quickly converge. At the same time, because the initial transform-
ation is very close to the global optimum, Algorithm 3 will converge
to the global optimum in a high probability.

3 Experiments and results

3.1 Datasets
Six real-world datasets are used to evaluate the proposed method.
The first dataset is a tilt series that has been used in the previous
studies, provided by the Institute of Biophysics, Chinese Academy of
Sciences (Han et al., 2018). The remaining five datasets are down-
loaded from the Caltech ETDB (Ortega et al., 2019).

The first dataset, Hemocyanin, is a tilt series of vitrified key-
hole limpet hemocyanin solution (Fig. 3A). It is a cryo-ET dataset
with about 100 �150 fiducial markers embedded in. The tilt ser-
ies were collected by FEI Titan Krios (300 kV) with a Gatan
US4000 camera. The total dose used during data collection was
around 8000 e/nm2. There are 95 images with the tilt ranging
from �70

�
to 70

�
at 1

� � 2
�

intervals (2K� 2K pixels with
0.4 nm/px).

The second and third datasets, Vibrio1-2 (Vibrio1 is down-
loaded from https://bit.ly/35HJoWS; Vibrio2 is downloaded from
https://bit.ly/3kGvl8l.), are two cryo-ET datasets of isolated
Vibrio cholerae cells (Fig. 3B and C). Vibrio1 and Vibrio2 have
about 150 �200 and 200 �250 fiducial markers embedded in
the specimens, respectively. Both of the tilt series were collected
by FEI Tecnai Polara (F30) (300 kV) with a Gatan K2 camera,
operated at 145eV=Å

2
dosage. There are 121 images with the

tilt ranging from �60
�

to 60
�

at 1
�

interval (4K� 4K pixels
with 0.4 nm/px).

The fourth to sixth datasets, Nitrosop1-3 (Nitrosop1 is down-
loaded from https://bit.ly/3pCgsHL; Nitrosop2 is downloaded from
https://bit.ly/36L2zyq; Nitrosop3 is downloaded from https://bit.ly/
3kF1QUb.), are three cryo-ET datasets of isolated Nitrosopumilus
maritimus cells (Fig. 3D–F). Nitrosop1 has about 250 �300 fiducial
markers embedded in the specimen, while both Nitrosop2 and
Nitrosop3 have about 400 �500 fiducial markers. The Nitrosop1-3
were collected by FEI Tecnai Polara (F30) (300 kV) with a Gatan K2
camera. The Nitrosop1 was operated at 150eV=Å

2
dosage with –

10 lm defocus; the Nitrosop2 and Nitrosop3 were operated at
180eV=Å

2
dosage. There are 121 images for Nitrosop1 with the tilt

ranging from �60
�

to 60
�

at 1
�

interval (4K� 4K pixels with
0.64 nm/px), and 111 images for both Nitrosop2 and Nitrosop3
with the tilt angles ranging from �55

�
to 55

�
at 1

�
interval (4K� 4K

pixels with 0.49 nm/px).
As our focus is on the determination of fiducial marker corres-

pondence, all the fiducial markers on the micrographs have been
detected in advance. Here, we used the sampling and classification
algorithm proposed in markerauto (Han et al., 2015) to automatic-
ally and exhaustively detect the fiducial markers. Nevertheless, other
sophisticated techniques can also be used to provide precise fiducial
marker positions.

Fig. 3. Illustration of the test datasets. (A) Hemocyanin, (B) Vibrio1, (C) Vibrio2,

(D) Nitrosop1, (E) Nitrosop2 and (F) Nitrosop3. Limited by the space, only the

small thumbnails of the 0
�

micrographs are shown here. Please refer to

Supplementary S2.1 for detailed information
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3.2 Results
3.2.1 Robustness of the algorithm under various conditions

The robustness is very important for a fully automatic fiducial mark-
er correspondence method. Here, we first test the robustness of the
proposed method on the datasets with different micrograph pairs.

For each dataset, the tracking of fiducial markers on the micro-
graphs with tilt angle intervals increasing from 1

�
to 45

�
is carried

out by the two-stage algorithm. Figure 4 demonstrates a snapshot of
the tracking results, in which the experimental results on micro-
graphs with tilt angles of 0

�
and 1

�
; 0

�
and 45

�
are selected for illus-

tration. It should be noted that, from the dataset Hemocyanin to
Nitrosop3, the number of fiducial markers has increased from one
hundred to more than five hundred. Nevertheless, for all the datasets
with various tilt angle intervals, our algorithm successfully finds the
correct correspondence.

Particularly, the proposed method could handle the conditions
with numerous fiducial markers and a mass of outliers well. Figure 5
illustrates the superimposed fiducial marker positions of the
Nitrosop2 and Nitrosop3 datasets that are extracted from the
micrographs with 0

�
and 45

�
tilt angles (labeled by blue ‘circle’ and

red ‘dot’, respectively). The two-stage algorithm accepts the raw fi-
ducial marker positions shown in Figure 5A and C as input and out-
puts the transformed fiducial marker positions as shown in
Figure 5B and D. There are 394 and 366 detected fiducial markers
on the 0

�
tilted micrographs of the Nitrosop2 and Nitrosop3 data-

sets, and 513 and 452 detected fiducial markers on the 45
�

tilted
micrographs of the Nitrosop2 and Nitrosop3 datasets, respectively.
As shown in Figure 5A and C, the fiducial markers from the 0

�
and

45
�

tilted micrographs are difficult to be directly corresponded to-
gether. Especially, for the micrographs with high tilt angles, the
blurring and blocking of fiducial markers cause a mass of missed de-
tection. In Figure 5B and D, we use the green ellipses to indicate the
missed detection of fiducial markers caused by the increasing dark
shadows and use the red ellipses to indicate the introducing of out-
liers with the extension of the field of view. In total, there are more
than one hundred fiducial markers appearing as outliers and ham-
pering the estimation of transformation. However, after the execu-
tion of the algorithm, the proposed method has generated high-
quality fiducial marker correspondence.

The proposed method is then compared with the state-of-the-art
methods, including the probabilistic graphical model for robust
point set registration (Qu et al., 2017), the GMM-based fast fiducial
marker tracking model (Han et al., 2018) and the affine transform-
based naive sampling method (Han et al., 2015), which are referred
to as ‘VBPSM model’, ‘GMM model’ and ‘naive sampling’, respect-
ively [Because RAPTOR (Amat et al., 2008) needs a pre-alignment
of the tilt series and cannot be applied on micrographs with large tilt
intervals (for example, intervals > 15

�
), we compare with the

VBPSM model instead of RAPTOR, which uses a similar probabilis-
tic graphical model as RAPTOR does. IMOD’s another fiducial
marker correspondence solution, beadtrack script, is based on near-
est neighbor search, which cannot solve the problem with large devi-
ation or tilt angles. Thus, it is also not compared here.]. Figure 6
demonstrates the comparative results of these methods on the tilted
micrographs with 0

�
and 45

�
tilt angles. To finish the task, the two-

stage algorithm, the GMM model and the VBPSM model cost hun-
dreds of milliseconds to several minutes for each dataset, whereas
the naive sampling method costs tens of minutes.

As shown in the 1st column of Figure 6, the distributions of fidu-
cial marker positions on the 0

�
and 45

�
tilted micrographs cannot be

easily aligned. The Hemocyanin dataset has a relatively small num-
ber of fiducial markers and fewer outliers. Consequently, the corre-
spondences are successfully determined by all the methods, though
the VBPSM model has failed in several local areas. With the increase
of the fiducial marker number and outliers, the VBPSM model and
GMM model performed poorly on the Vibrio1 and Nitrosop1 data-
sets. Though the methods tried to maximize the correlation of the
underlying geometric information depicted by the fiducial markers,
the numerous outliers resulted in a trap of local optimum. On the
contrary, the naive sampling and the two-stage algorithm produced
reasonable results. However, as pointed out by the arrows in
Figure 6, the results of naive sampling suffer from a severe non-uni-
form deviation, whereas the two-stage algorithm produces a tight
fitting.

3.2.2 Efficiency and effectiveness of the algorithm

When the tilt angle and the field of the view increase, an affine trans-
formation is not able to accurately describe the potential corres-
pondence related to two tilted micrographs. With the introducing of
local drift refinement, the two-stage algorithm can easily solve the
problem.

Figure 7 shows the non-uniform drift of the fiducial markers
solved from Figure 5A and B, in which the drift is estimated based
on the initial affine transformation solved in the first stage. There
are two drift directions shown in Figure 7, the drift upward (marked
by blue) on the left and the drift downward (marked by red) on the
right, which may be caused by a considerable global deformation of
the sample. Furthermore, by analyzing the drift direction pointed

Fig. 4. A snapshot of the fiducial marker correspondence determined by the two-

stage algorithm on micrographs with different tilt angle intervals (for the demon-

strated micrograph pairs, the left is with 0
�

tilt angle and the right is with 1
�

or 45
�

tilt angle, respectively). Please refer to Supplementary S2.2 for detailed information

Fig. 5. Superimposition of fiducial marker positions from the 0
�

and 45
�

tilted

micrograph before (the left) and after (the right) applying transformation produced

by the two-stage algorithm. (A) and (B) fiducial marker positions extracted from the

Nitrosop2 dataset. (C) and (D) fiducial marker positions extracted from the

Nitrosop3 dataset
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out by the black arrows in Figure 7, an additional local non-uniform
deformation can be noticed. The fiducial markers embedded nearby
or on the close depths may have a similar drift, as shown in the right
top of Figure 7. Generally, most of the fiducial markers are laid on
the surface of the specimen, thus, the deviations of the fiducial
markers on two micrographs will grow in a gradient way. If there
are two neighbor fiducial markers with very close x–y distance but

with quite different z distance (different heights) in the space, they
may result in a very different drift magnitude, even though both
markers appear next to each other in the projection image, which
could be observed in Figure 7. However, with a correct partition of
the fiducial markers and local drift correction, the two-stage algo-
rithm can efficiently discover the underlying local drift.

In practice, for the tilt series alignment, we may track several
neighbors of the micrographs and then compose the fiducial marker
correspondences into the fiducial marker tracks. Here, for all the
datasets, we matched the fiducial marker positions within 2-neigh-
bors micrographs, i.e. the nth and ðnþ 1Þth, and nth and ðnþ 2Þth
micrographs, by the GMM model, the naive sampling and the pro-
posed algorithm. Within each matching operation, the ratio of the
matched fiducial marker pairs to the total number of potential cor-
respondence was calculated. We also tested RAPTOR on the data-
sets, based on the prealigned tilt series produced in IMOD.
However, limited by the runtime and execution error, RAPTOR
failed to run on the Nitrosop2 and Nitrosop3 datasets. All of the
methods were run on a Fedora 25 system with 128 Gb memory and
two E5-2667v4 (3.2 GHz) CPU.

Considering that the deformation usually happens in high tilt
angles, we calculated the average detection ratio of micrograph pairs
with tilt angle P 30

�
or 6� 30

�
. Table 1 summaries the averaged

detection ratio for each method and dataset. As shown in Table 1,
all the methods perform quite well on the Hemocyanin dataset,
which has a relatively small field of view (2K� 2K) and contains
about one hundred fiducial markers only. However, for the other
datasets which contain larger numbers of fiducial markers, the two-
stage algorithm performs much better than the other methods. For
the datasets of Nitrosop2 and Nitrosop3, the accuracy was
increased from �94% of the GMM model and the naive sampling
method to �99% of the two-stage algorithm. Here, the gain of ac-
curacy mainly comes from the model flexibility introduced by the

Fig. 6. Performance comparison between different fiducial marker tracking methods. The 1st column illustrates the superimposition of the raw fiducial marker positions, where

the blue ‘circle’ and red ‘dot’ denote the fiducial markers extracted from the 0
�

and 45
�

tilted micrographs, respectively. The 2nd, 3rd, 4th and 5th columns illustrate the trans-

formed fiducial marker positions of the 0
�

tilted micrograph solved by the VBPSM model, the GMM model, naive sampling and the two-stage algorithm, respectively. Due to

space limitation, only the experimental results of the Hemocyanin, Vibrio1 and Nitrosop1 datasets are shown here. Please refer to Supplementary Figure S14 for the results of

the other datasets

Fig. 7. Demonstration of the non-uniform drift of the fiducial markers. The pre-

sented drift vectors are estimated from the 0
�

and 45
�

tilted micrographs of

Nitrosop2 (Fig. 5A and B). Here, the drifts with different directions are marked by

different colors. Please refer to Supplementary Figure S15 for the other datasets
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second stage of the algorithm. The experimental results demonstrate
the effectiveness of the two-stage algorithm in fiducial marker cor-
respondence for micrographs with wide field and numerous fiducial
markers.

The efficiency is also a critical factor when a new algorithm is
applied to the real-world datasets. For each matching operation, the
runtime of different methods against the number of fiducial markers
is recorded. Figure 8 illustrates the corresponding runtime for each
dataset, where the x-axis represents the average number of fiducial
marker positions for each matching operation, and the y-axis repre-
sents the runtime (ms) in the log scale (integrated within IMOD,
RAPTOR’s per image runtime is not available). Table 2 summaries
the total runtime for each dataset with different methods.

As shown in Figure 8A, all of the fiducial marker tracking meth-
ods have acceptable execution efficiency when there are not too
many fiducial markers. However, with the increasing of the fiducial
marker number, the runtime of RAPTOR and the naive sampling
surge dramatically. As shown in Figure 8E and F, for a dataset with
about five hundreds fiducial markers, the execution time of the naive
sampling method has increased to �8 min per matching, reaching 21
and 12.6 h for the entire tilt series of Nitrosop2 and Nitrosop3, re-
spectively. The GMM model has a relatively low cost compared to
the naive sampling. Nevertheless, it still costs more than 15 and
10 min for the entire tilt series of Nitrosop2 and Nitrosop3,

respectively. On the contrary, the average runtime of the two-stage
algorithm has been controlled within 100 ms per micrograph match-
ing for almost all the datasets. Specifically, the two-stage algorithm

only costs 21.1 s and 17.3 s for the Nitrosop2 and Nitrosop3 data-
sets, which is 40� faster than the GMM-based fast-tracking method

and 1000� faster than the native sampling method.

3.2.3 Case study within the tilt series alignment workflow

Finally, we integrated the two-stage algorithm into the fully auto-
matic alignment scheme (Han et al., 2015) to further verify its appli-

cation in an end-to-end workflow.
In the alignment scheme proposed by Han et al. (2015), the fidu-

cial markers are firstly detected and refined. Then, with the refined
fiducial marker positions, a fiducial marker correspondence algo-

rithm is executed to guarantee the consistent matching of the fidu-
cial marker positions from neighboring micrographs. When the
required fiducial marker correspondences are obtained, a set of fidu-

cial marker tracks will be generated and the projection parameters
are able to be optimized with the configured tracks, to finally deter-
mine the geometric transformation of the micrographs in tilt series

alignment. Here, the original marker correspondence algorithm will
be replaced by our new two-stage algorithm, and the affine projec-

tion model is used in projection parameter optimization.

Table 1. The correspondence accuracy of the methods on high

tilted micrographs

RAPTOR Naive

sampling

GMM

model

Two-stage

algorithm

Hemocyanin 92.1% 97.5% 98.2% 99.2%

Vibrio1 84.3% 93.3% 95.4% 98.6%

Vibrio2 81.8% 94.3% 94.5% 99.1%

Nitrosop1 78.7% 93.1% 95.2% 98.7%

Nitrosop2 — 91.9% 94.6% 98.9%

Nitrosop3 — 92.6% 94.8% 99.2%

Fig. 8. Runtime of the proposed two-stage algorithm (in yellow), the GMM-based fast tracking (in red) and the naive sampling (in blue) on (A) Hemocyanin, (B) Vibrio1, (C)

Vibrio2, (D) Nitrosop1, (E) Nitrosop2 and (F) Nitrosop3. The x-axis represents the average number of fiducial markers and the y-axis represents the runtime (ms) in the log

scale

Table 2. The total runtime of fiducial marker tracking for each tilt

series

RAPTOR naive

sampling

GMM

model

two-stage

algorithm

Hemocyanin 14.5 min 6.4 min 58.1 s 2.6 s

Vibrio1 2.40 h 24.5 min 1.6 min 5.0 s

Vibrio2 2.51 h 1.01 h 3.0 min 5.8 s

Nitrosop1 3.36 h 2.16 h 4.5 min 10.0 s

Nitrosop2 — 21.01 h 15.2 min 21.1 s

Nitrosop3 — 12.60 h 11.4 min 17.3 s
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Here, we demonstrate the alignment results of the Nitrosop2
and Nitrosop3 datasets as the case study. In the tilt series alignment,

only the tracks with enough length are used for projection parameter
estimation. For the Nitrosop2 dataset, the two-stage algorithm pro-

duced 338 fiducial marker tracks that cover at least 70% of the en-
tire tilt series, with an average track length of 105.9 (Fig. 9A). After
the optimization of projection parameters, these fiducial marker

tracks resulted in a mean alignment residual of 0.69 pixels (Fig. 9B).
For the Nitrosop3 dataset, the two-stage algorithm produced 302 fi-
ducial marker tracks that cover at least 70% of the entire tilt series,

with an average track length of 105.3 (Fig. 9C). After the optimiza-
tion of projection parameters, these fiducial marker tracks resulted

in a mean alignment residual of 0.47 pixels (Fig. 9D). Here, the dif-
ference in residual error between the two datasets may be caused by
the serious sample deformation in the Nitrosop2 dataset (Fig. 7),

which can be solved by a higher-order projection model (Fernandez
et al., 2018; Lawrence et al., 2006). However, judging from the

horizontal fiducial marker tracks after the correction of in-plane ro-
tation and translation (Fig. 9B and D), the orthogonal projection is
still able to produce a successful alignment, based on the fiducial

marker tracks produced by the two-stage algorithm.

4 Conclusion and discussion

In this article, we proposed a novel two-stage algorithm for the fidu-

cial marker correspondence in electron tomography. The aim of this
work is to completely solve the fiducial marker tracking problem in
a robust and ultrafast way. The algorithm combines both the robust-

ness of the combinatorial search and the inherent flexibility of the
probabilistic model, to further improve the accuracy of fiducial

marker correspondence. Generally, the two-stage algorithm can

solve the fiducial marker correspondence with arbitrary initial posi-
tions of the micrographs within just a few seconds.

Currently, there are more than ten thousand of the tilt series
within the ETDB (Ortega et al., 2019), and the database keeps

exploding with the wide application of the ET technique, which
raises the emergency demand for a well-designed, high-performance
fully automatic software. The improved fiducial marker correspond-

ence accuracy could be used to generate more complete fiducial
marker tracks in a more efficient way. With the aid of a large num-

ber of well-tracked fiducial markers, a detailed study in projection
model selection and validation is possible, especially on the datasets
with a serious sample deformation. Cooperation with the world-

famous groups (Fernandez et al., 2018; Lawrence et al., 2006) is
expected to make follow-up research about robust large-scale bun-

dle adjustment with non-linear projection model, which may further
improve the accuracy of tilt series alignment. The related code of
our method is also shared online, interested readers may utilize the

code to build their own efficient and automatized software.
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Fig. 9. Illustration of tilt series alignment with the two-stage algorithm used for fiducial marker tracking. (A) Overlay of raw fiducial marker tracks (x–y coordinates) extracted

from the Nitrosop2 dataset. (B) Overlay of the aligned fiducial marker tracks of the Nitrosop2 dataset. (C) Overlay of raw fiducial marker tracks extracted from the Nitrosop3

dataset. (D) Overlay of the aligned fiducial marker tracks of the Nitrosop3 dataset
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