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Abstract

Background

Consensus on whether physical condition affects the risk of gravity-induced loss of conscious-

ness (G-LOC) has not been reached, and most previous studies about the issue did not

include well-experienced aviators. We compared the physical conditions of well-experienced

young aviators according to the occurrence of G-LOC during human centrifuge training.

Methods

Among 361 young male aviators on active flight duty with experience in high performance

aircrafts for at least 2 years, 350 had full data available and were reviewed in this study. We

divided the aviators into the G-LOC group and the non-G-LOC group according to their

human centrifuge training results. We then compared their basic characteristics, body com-

position, physical fitness level, and pulmonary function.

Results

Twenty nine aviators (8.3%) who experienced G-LOC during human centrifuge training in

their first trials were classified into the G-LOC group. There was no difference in physical

condition of aviators between the two groups.

Conclusions

Young aviators with experience in G-LOC showed no difference in physical condition such

as muscle mass, strength, and general endurance from the aviators with no such experi-

ence. Although more studies are needed, physical condition does not seem to be a signifi-

cant determinant of G-LOC among the experienced aviators.
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Introduction
With increasing importance of flight missions to military operations, more high performance
aircrafts have been introduced to the military force. Aviators of high performance aircrafts are
frequently exposed to high gravitational force (G-force) that results from quick turns or move-
ments. High G-force can cause cerebral hypoxia and even loss of consciousness in humans by
disturbing blood supply to the brain [1–3]. G-force–induced loss of consciousness is simply
referred to as “G-LOC.” Aircraft accidents due to G-LOC occurred in the First World War [1]
but have only been formally reported and studied since the 1980s [4]. When an aviator experi-
ences G-LOC, he or she may experience a lack of purposeful movement for at least 30 seconds
even when the high G-force is removed immediately [5]. Therefore, even short-term G-LOC
can cause fatal aircraft accidents. To address those concerns, there have been many studies on
G-LOC, and much effort has been made to prevent it. Only the G-force applied on the z-axis
(head-to-foot direction) is counted and referred to as “G-force” throughout this paper.

An individual’s tolerance to G-force (G-tolerance) depends on factors such as the degree of
G-force and the duration of exposure. G-tolerance varies among individuals and can be
improved by measures such as anti-G suits, anti-G straining maneuvers (AGSM), positive pres-
sure breathing systems, and reclined seats [6,7]. Among them, AGSM is known to be the most
effective method [8,9]. AGSM is broadly divided into 2 stages: the first stage is muscle tensing,
and the second stage is the L-1 maneuver. Muscle tensing involves the muscles of the abdomen,
buttocks, and extremities. The L-1 maneuver consists of a Valsalva maneuver with a totally
closed glottis as well as breathing at intervals of 2.5–3 s [10,11]. Many studies have reported the
association between G-tolerance and physical conditioning such as weight training to enhance
the effect of AGSM [12–14] and the association between G-tolerance and respiration [15–17].
However, most of them did not find any effect on physical conditioning on G-tolerance or any
analytical errors in earlier studies that had assumed the effect of physical conditioning on G-
tolerance [3,18,19].

Because aviators are now exposed to increasing maximum acceleration levels with developing
high performance aircrafts, the importance of enhancing G-tolerance is being stressed again
[20,21]. However, controversy remains on whether physical condition affects G-tolerance [19].
Furthermore, only few studies have targeted well-experienced aviators on active flight duty.

The purpose of this study is to evaluate the association between G-LOC and physical condi-
tion parameters among young and well-experienced aviators. Targeting only young and well-
experienced aviators who are on their active flight duties in high performance aircrafts, we
investigated their basic parameters of physical conditions such as body composition, physical
fitness, and pulmonary function and then compared those parameters of the aviators who
underwent G-LOC during human centrifuge trainings with those who did not.

Materials and Methods
This is a retrospective study. This study was ethically approved by the Aerospace Medical Cen-
ter–Republic of Korea Air Force Institutional Review Board (ASMC-ROKAF IRB).The first
ethical approval was obtained on April 4, 2013, and the data collection began on the next day,
April 5, 2013. All the data gathered were originally intended for routine medical checkups and
education program, not for the study. No further data were gathered or requested for this
study. We collected participant data from patient files and medical records retrospectively. The
informed consent was exempted from IRB because the following conditions were met: (1) it is
practically impossible to obtain the consent from the subjects in the study process, (2) there is
no ground to assume the refusal of consent, and (3) extremely low risks may be exposed to sub-
jects even if the agreement is exempted.
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Subject selection
Military aviators in the Republic of Korea Air Force (ROKAF) visit our institute every 1–2
years to undergo routine medical checkups and participate in an aerospace education program
as a part of human centrifuge training in order to qualify as military pilots. Regular human cen-
trifuge procedures are a mandatory part of military training to maintain the pilot’s license.
Data on male ROKAF aviators (age�40 years) on active flight duty who visited our institution
between January 2010 and December 2011 were collected. The aircraft type was limited to
those exposed to high G-forces, such as fighters, trainers, and attackers (F-4, F-5, F-15K, KF-
16, KA-1, KT-1, and T-50). Aviators with<2 years of flight experience with their current air-
craft were excluded from the study. Three hundred and sixty-one aviators met the inclusion
criteria. Among them, 350 aviators with full available data were investigated.

Equipment
All human centrifuge training was conducted in a 6.1-m (20 ft) radius centrifuge (G-LAB,
ETC, Southampton, PA, USA) at the Aerospace Medical Center, ROKAF. The centrifuge was
configured with an upright (13° seat back angle) seat. All subjects were studied during +Gz
exposures of rapid onset (6G/s) commencing from +1.2G (idle level) to +9G, which was main-
tained for 15 seconds, and terminated with a decelerating rate of -3 G/s reaching 1 G. Pneu-
matic anti-G suit was applied and the AGSM was performed. Positive pressure breathing
systems were not used. During the process, head-up display (HUD) videotapes were recorded
and monitored by a specialist in training.

Subject grouping
We divided the aviators into the G-LOC group and the non-G-LOC group according to their
results of human centrifuge training during their aerospace education program.When the subjects
released the stick or the specialist identified G-LOC on the HUD, the subjects were classified into
the G-LOC group. If subjects showed myoclonic or seizure-like activity, involuntary discontinuity
of AGSM, or similar signs, the centrifuge was stopped and the subjects were classified into the
G-LOC group. A simple loss of peripheral vision without any other symptoms was not regarded as
G-LOC. Those subjects who did not experience G-LOC were classified into the non-G-LOC group.
Only G-LOC occurring in the first human centrifuge trial during the education program was
counted, and the results of any re-trials to pass the aerospace education program were not counted.

Investigated variables
We compared the subjects’ basic characteristics, body composition, physical fitness level (car-
diopulmonary endurance, muscle power, and body flexibility), and results of the pulmonary
function test (PFT). All of these were measured in one day, but not on the same day as the cen-
trifuge training. The body composition test could be affected by dehydration due to the physi-
cal fitness test, while the cardiopulmonary endurance test could be affected by the increased
heartbeat due to the strength test. Therefore, body composition was measured first, followed by
the PFT, general endurance, muscle power, and body flexibility.

Basic characteristics and body composition. The bioimpedance spectroscopy (BIS) tech-
nique (InBody 720; Biospace Co., Ltd., Seoul, Korea) was used to assess the body composition.
The test was performed after fasting for a minimum of 4 hours, no exercise for a minimum of
12 hours, abstinence from alcohol for a minimum of 48 hours, and abstinence from diuretics
for a minimum of 7 days to minimize the bias. Finally, the subjects voided 30 minutes before
the test. Each subject’s height was measured first while they stood on the electrodes embedded
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in the scale platform of the analyzers wearing only a light gown. The subject then grasped the
handles and ensured that all of their fingers contacted the finger electrodes. During the mea-
surement, the subjects kept their limbs slightly abducted and were not allowed to talk.

After these procedures, each subject’s height, age, and gender were recorded, and the follow-
ing body compositions were analyzed: body mass index (BMI), basic metabolic rate (BMR),
percent body fat, waist-hip ratio, skeletal muscle mass (SMM), muscle mass of the upper
extremities, muscle mass of the lower extremities, and muscle mass of the trunk.

Physical fitness. The InBody u-Town (Biospace Co., Ltd.) was used for the physical fitness
assessment. The measured variables were as follows: grip strength test, back strength test, leg
strength test (knee extension strength in a 60° flexed position), sit-and-reach test, cardiopulmo-
nary endurance (maximum oxygen consumption), whole body reaction time, sargent jump,
number of sit-ups in 30 seconds, and standing on 1 leg with eyes closed.

The grip strength test was performed for 3 seconds with the subject’s mid-phalanx of 2–5 fin-
gers facing the handle. The better of the 2 results was chosen for each hand. Maximum oxygen
consumption was measured for cardiopulmonary endurance. Each subject was seated on a bicycle
with his knees in a 10° flexed position when fully extended. After the resting heartbeat was
checked for 1 minute, the subject pedaled at 50–60 revolutions per minute (RPM) for 6 minutes,
and their heart rate was checked again. In the back strength test, the subject stood with their
knees extended, feet approximately 15 cm apart, and trunk leaning approximately 30° forward.
The subject pulled the handle with his back strength. The test was performed twice, and the better
result was chosen. In the whole body reaction test, the subject stood on an electrical mat with his
feet apart about his shoulder width and his knees slightly flexed. The subject then removed his
feet from the mat immediately after the auditory signal rang. The time gap between the auditory
signal and the foot removal was then measured. The test was performed 5 times, and the mean
value was chosen. The standing position on one leg with eyes closed was used for the balancing
test. The subject stood on one foot on an electrical mat with his hands on his waist. The duration
until the other foot contacted the mat or the standing foot moved was measured. The test was per-
formed on both legs, and the mean value was chosen. The sargent jump was used for the quick-
ness test. The subject was not allowed to flex his knees after jumping. The duration from jumping
to landing was measured twice, and the better result was chosen. Muscle strength or mass tends
to increase according to weight and height. Hence, we additionally divided muscle strength and
muscle mass by each subject’s weight and height, and included these values in the analysis.

Pulmonary function test. In the PFT, we measured forced vital capacity (FVC), forced
expired volume in 1 s (FEV1), forced expired volume in half a second (FEV0.5), and peak expi-
ratory flow. We also calculated FEV1 divided by FVC (FEV1/FVC) and FEV0.5 divided by FVC
(FEV0.5/FVC) and included those values in the analysis.

The demographics of the aviators in our study are shown as Table 1.

Statistical analysis
The significances of the differences between means were determined using the independent t-
test. The significances of the differences between frequencies were determined using the chi-
square test, while Fisher’s exact test was used in cases in which the frequency number was<5.
Associations between subject variables and occurrence of G-LOC were analyzed by the binary
logistic regression analysis. To eliminate confounders among the variables, the variables with
p values of<0.05 by univariate analysis were included in the multivariate analysis. Significance
was accepted for p values< 0.05. Post-hoc power analysis showed that a sample size of 321
and 29 subjects in the respective groups would provide 98.4% power to detect a difference in
means assuming an effect size of 0.80 and a 2-sided α of 0.05. Power analysis for the chi-square
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test showed that a total sample size of 350 would provide 99.9% power to detect a difference
assuming an effect size of 0.30, α of 0.05, and degree of freedom of one.

Results
Of the 350 aviators, 29 (8.3%) experienced G-LOC during their first human centrifuge training
trial. There was no difference in physical conditions between G-LOC and non-G-LOC groups
(Table 2).The binary logistic regression analysis also did not show any significant association
between the physical conditions and the occurrence of G-LOC (Table 3). Therefore, multivariate

Table 1. Demographics of aviators.

Characteristics Total (N = 350)

Basic characteristics

Age (years) 30.7±4.6

Height (cm) 175.1±5.3

Body weight (kg) 74.2±7.8

Body mass index (kg/m2) 24.2±2.2

Flight year (year) 6.8±4.3

Body composition

Basic metabolic rate (kcal/day) 1650.6±121.3

Percent body fat (%) 19.7±4.8

Waist-hip ratio 0.86±0.03

Skeletal muscle mass (kg) 33.6±3.4

Muscle mass of right arm (kg) 3.3±0.4

Muscle mass of left arm (kg) 3.2±0.4

Muscle mass of right leg (kg) 9.4±1.0

Muscle mass of left leg (kg) 9.3±1.0

Muscle mass of trunk (kg) 26.0±2.4

Physical fitness

Grip strength, left (kg) 41.3±5.2

Grip strength, right (kg) 43.5±5.0

Back strength (kg) 110.6±17.4

Left knee extensor strength (kg) 57.8±16.6

Right knee extensor strength (kg) 59.2±16.2

Sit and reach (cm) 7.1±8.2

whole body reaction time (sec) 0.36±0.05

Maximum oxygen consumption (ml/kg/min) 49.8±9.9

Sargent jump (cm) 40.8±5.6

Sit-up (times/30sec) 27.4±4.5

Standing on one leg with eyes closed (sec) 43.4±42.7

Pulmonary function test

FVC (L) 4.9±0.7

FEV0.5 (L) 3.2±0.4

FEV0.5/FVC (%)a 65.8±7.2

FEV1 (L) 4.2±0.6

FEV1/FVC (%)b 86.8±5.8

Peak expiratory flow (L/sec) 9.5±1.7

aCalculated from FVC and FEV0.5
bCalculated from FVC and FEV1

doi:10.1371/journal.pone.0147921.t001
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analysis was not performed. Muscle strength and mass, which were divided by the subject’s
weight and height, also showed no statistically significant difference between the groups.

Discussion
We examined the association between G-LOC and physical condition parameters such as phys-
ical fitness level, body composition, and pulmonary function by investigating a relatively large
number of young and well-experienced aviators during their active flight duties in high

Table 2. Differences between G-LOC group and non-G-LOC group.

Characteristics G-LOC group (n = 29) Non-G-LOC group (n = 321) P-value

Basic characteristics

Age (years) 30.9±4.6 30.7±4.6 0.759

Height (cm) 175.6±5.4 175.0±5.3 0.572

Body weight (kg) 74.1±8.1 74.3±7.8 0.904

Body mass index (kg/m2) 24.0±2.0 24.2±2.2 0.554

Flight year (year) 6.5±4.4 6.9±4.3 0.690

Body composition

Basic metabolic rate (kcal/day) 1659.8±130.9 1649.7±120.6 0.669

Percent body fat (%) 19.0±4.6 19.8±4.9 0.433

Waist-hip ratio 0.86±0.03 0.86±0.03 0.406

Skeletal muscle mass (kg) 33.9±3.6 33.6±3.4 0.675

Muscle mass of right arm (kg) 3.3±0.4 3.3±0.4 0.799

Muscle mass of left arm (kg) 3.2±0.4 3.2±0.4 0.967

Muscle mass of right leg (kg) 9.5±1.1 9.3±1.0 0.470

Muscle mass of left leg (kg) 9.4±1.1 9.3±1.0 0.530

Muscle mass of trunk (kg) 26.1±2.6 26.0±2.3 0.826

Physical fitness

Grip strength, left (kg) 41.9±5.0 41.3±5.2 0.535

Grip strength, right (kg) 44.7±4.8 43.4±5.1 0.192

Back strength (kg) 114.3±15.3 110.3±17.5 0.238

Left knee extensor strength (kg) 60.7±18.5 57.5±16.4 0.322

Right knee extensor strength (kg) 61.7±19.9 58.9±15.8 0.389

Sit and reach (cm) 8.7±8.3 6.9±8.2 0.254

whole body reaction time (sec) 0.37±0.05 0.36±0.05 0.439

Maximum oxygen consumption (ml/kg/min) 52.3±9.3 49.5±9.9 0.151

Sargent jump (cm) 40.8±6.5 40.8±5.5 0.985

Sit-up (times/30sec) 36.8±3.0 27.4±4.6 0.497

Standing on one leg with eyes closed (sec) 46.0±43.5 43.2±42.7 0.740

Pulmonary function test

FVC (L) 5.0±0.6 4.9±0.7 0.258

FEV0.5 (L) 3.3±0.5 3.2±0.4 0.083

FEV0.5/FVC (%)a 66.6±8.4 65.7±7.0 0.519

FEV1 (L) 4.4±0.5 4.2±0.6 0.115

FEV1/FVC (%)b 84.4±6.5 86.8±5.8 0.576

Peak expiratory flow (L/sec) 9.9±2.0 9.5±1.6 0.188

a Calculated from FVC and FEV0.5
b Calculated from FVC and FEV1

doi:10.1371/journal.pone.0147921.t002
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Table 3. Results of binary logistic regression for variables associated with the G-LOC.

Characteristics B(slope)a p-value OR (95% CI)

Basic characteristics

Age (years) 0.013 0.758 1.013 (0.933–1.100)

Height (Ht) (cm) 0.021 0.571 1.021 (0.950–1.097)

Body weight (BW) (kg) -0.003 0.904 0.997 (0.950–1.047

Body mass index (kg/m2) -0.054 0.553 0.947 (0.791–1.134)

Flight year (year) -0.019 0.689 0.982 (0.897–1.075)

Body composition

Basic metabolic rate (kcal/day) 0.001 0.668 1.001 (0.998–1.004)

Percent body fat (%) -0.032 0.432 0.968 (0.893–1.050)

Waist-hip ratio -6.172 0.405 0.002 (0.000–4188.184)

Skeletal muscle mass (kg) 0.024 0.674 1.024 (0.916–1.146)

Skeletal muscle mass (kg)/BW 5.323 0.432 205.026 (0.000–119201148.8)

Skeletal muscle mass (kg)/Ht 0.034 0.784 1.034 (0.813–1.316)

Muscle mass of right arm (kg) 0.123 0.798 1.130 (0.441–2.898)

Muscle mass of left arm (kg) 0.020 0.967 1.020 (0.391–2.660)

Muscle mass of both arms (kg) 0.037 0.881 1.037 (0.643–1.673)

Muscle mass of both arms (kg)/BW 9.477 0.733 13057.802 (0.000–5.504E+27)

Muscle mass of both arms (kg)/Ht -0.015 0.975 0.985 (0.377–2.573)

Muscle mass of right leg (kg) 0.145 0.468 1.156 (0.781–1.710)

Muscle mass of left leg (kg) 0.127 0.529 1.136 (0.764–1.687)

Muscle mass of both legs (kg) 0.068 0.497 1.071 (0.879–1.304)

Muscle mass of both legs (kg)/BW 9.753 0.337 17200.273 (0.000–7.483E+12)

Muscle mass of both legs (kg)/Ht 0.148 0.524 1.159 (0.736–1.827)

Muscle mass of trunk (kg) 0.018 0.825 1.018 (0.866–1.198)

Muscle mass of trunk (kg) 4.121 0.635 61.647 (0.000–1479512135)

Muscle mass of trunk (kg) -0.001 0.995 0.999 (0.705–1.416)

Physical fitness

Grip strength, left (kg) 0.023 0.534 1.023 (0.952–1.100)

Grip strength, right (kg) 0.050 0.193 1.051 (0.975–1.132)

Grip strength, both (kg) 0.020 0.307 1.021 (0.981–1.061)

Grip strength, both (kg)/BW 1.527 0.269 4.605 (0.306-69-232)

Grip strength, both (kg)/Ht 0.035 0.360 1.035 (0.961–1.115)

Back strength (kg) 0.014 0.238 1.014 (0.991–1.037)

Back strength (kg)/BW 1.108 0.163 3.029 (0.639–14.356)

Back strength (kg)/Ht 0.023 0.276 1.023 (0.982–1.066)

Knee extensor strength, left (kg) 0.011 0.323 1.011 (0.989–1.033)

Knee extensor strength, right (kg) 0.010 0.389 1.010 (0.988–1.032)

Knee extensor strength, both (kg) 0.005 0.342 1.005 (0.994–1.017)

Knee extensor strength, both (kg)/BW 0.451 0.274 1.569 (0.700–3.521)

Knee extensor strength, both (kg)/Ht 0.009 0.372 1.009 (0.989–1.029)

Sit and reach (cm) 0.028 0.254 1.028 (0.980–1.079)

whole body reaction time (sec) 2.969 0.439 19.470 (0.011–35593.580)

Maximum oxygen consumption (ml/kg/min) 0.032 0.155 1.033 (0.988–1.079)

Sargent jump (cm) -0.001 0.985 0.999 (0.934–1.070)

Sit-up (times/30sec) -0.029 0.496 0.971 (0.893–1.056)

Standing on one leg with eyes closed (sec) 0.001 0.739 1.001 (0.993–1.010)

Pulmonary function test

(Continued)
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performance aircrafts. However, there was no difference in physical conditions between the G-LOC
and non-G-LOC groups (Tables 2 and 3). This raises the question of Type II errors given we found
no differences in the groups, but the power analysis showed this study had over 90% power.

The InBody 720 is a well-known method of evaluating body composition [22–24]. We used
body composition to conduct a more precise and objective investigation on the association
between G-LOC and physical condition. To our knowledge, this is the first such study con-
ducted. The body composition of the G-LOC and non-G-LOC groups was not significantly dif-
ferent in our study. Aerobic exercise was traditionally believed to reduce G-tolerance, whereas
anaerobic exercise was believed to increase G-tolerance [19]. Some authors have reported that
improved G-tolerance after physical conditioning is not due to muscle hypertrophy but rather
to physiological alterations such as neuromuscular adaptation [12]. In our study, we examined
muscle mass, strength, and general endurance and could not find any difference between the
G-LOC and non-G-LOC groups.

The investigated variables in our study included muscle mass and physical fitness as well as
PFT for indirectly measuring the intrathoracic pressure during AGSM. Some studies have
assumed the importance of lung volume and peak expiratory pressure in the determination of
intrathoracic pressure during the Valsalva maneuver [25–27]. Using the PFT, we measured
FVC, FEV1, FEV1/FVC, FEV0.5, FEV0.5/FVC, and peak expiratory pressure, but we found no
statistically significant difference between the 2 groups. On the other hand, Bain et al. [15] sug-
gested that respiratory muscle fatigue is responsible for G-tolerance. This cannot be deter-
mined by our study findings because we did not measure this parameter.

This study investigated only the basic parameters of physical condition. The authors believe
that the group action of the muscles or coordination is very important for G-tolerance.
Although the data are not shown, almost all the aviators eventually completed the human cen-
trifuge program at their second or third attempts. Although they eventually passed their tests,
the authors do not think that their physical condition has been improved within such a short
period. We think the improvement of G-tolerance originates from the improvement of coordi-
nation and adaptation to effective timing during AGSM. This is also the reason why we divided
the subjects into the G-LOC and non-G-LOC groups according to only the results of the first
trial. Future studies on the coordination and adaptation problem during AGSM surely are
needed. The daily condition of the aviator and/or unexpectedly abrupt G-forces during flight
are more likely to be responsible for very rare G-LOC related flight accidents, especially in
highly-experienced pilots.

Table 3. (Continued)

Characteristics B(slope)a p-value OR (95% CI)

FVC (L) 0.314 0.257 1.369 (0.796–2.354)

FEV0.5 (L) 0.792 0.083 2.208 (0.901–5.412)

FEV0.5/FVC (%)b 1.799 0.517 6.046 (0.026–1405.618)

FEV1 (L) 0.570 0.114 1.769 (0.872–3.589)

FEV1/FVC (%)c 1.881 0.575 6.563 (0.009–4732.331)

Peak expiratory flow (L/sec) 0.156 0.189 1.169 (0.926–1.476)

a B is a positive value if the increase of the characteristics is more positively related to G-LOC.
b Calculated from FVC and FEV0.5
c Calculated from FVC and FEV1

doi:10.1371/journal.pone.0147921.t003
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Our findings should be interpreted in the context of some considerations. First, many previ-
ous studies investigated whether G-tolerance could be increased by several weeks of weight
training. However, a large study was nearly impossible, and the bias caused by the degree of
weight training or learning effect from the experience of G-force was a disadvantage [18,19]. In
this aspect, our study might have reduced bias by investigating a relatively large number of
well-experienced aviators who had flown high performance aircrafts for>2 years after their
initial flight training. Second, although the applied G-force was very high (9G), the duration
was only 15 seconds. Therefore, it is difficult to determine the effect of muscle fatigue on G-tol-
erance in our study. Furthermore, because our study was performed using a human centrifuge
test and not an actual flight, the assessment of G-LOC due to unexpected G-forces that could
happen during an actual flight was also difficult. Third, we assessed the differences in physical
condition in a cross-sectional study; therefore, it cannot be concluded that physical condition-
ing such as weight training is irrelevant for increasing G-tolerance in each individual. Fourth,
our study did not include variables such as the daily condition of the aviators, nor did it include
flight hours or G-force exposure in real flight environments, which might more accurately
reflect each subject’s flight experience. Likewise, we only investigated the basic parameters for
physical condition. The action of muscle group, muscle tensing, or coordination was not inves-
tigated. For example, although we included PTF as a substitute for Valsalva maneuver, effective
timing and coordination with other muscle tensing seem to be more important than expiratory
force alone. The present study also did not include other possible functional causes of G-LOC
such as jugular vein geometry [28]. Fifth, the physical conditions were compared only among
military aviators. The physical condition might affect the G-tolerance because military aviators
are already physically conditioned subjects compared to the general population. However,
authors believe this study is still meaningful because it is extremely rare for the general popula-
tion to be exposed to such high G force during flight.

Conclusions
Physical conditions including muscle mass, strength, and general endurance were not associ-
ated with G-LOC in well-experienced aviators. Although more studies are needed, physical
condition does not seem to be a significant determinant of G-LOC among the experienced
aviators.
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