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Postictal generalized EEG suppression is the state of suppression of electrical activity at the end of a seizure. Prolongation of this

state has been associated with increased risk of sudden unexpected death in epilepsy, making characterization of underlying elec-

trical rhythmic activity during postictal suppression an important step in improving epilepsy treatment. Phase-amplitude coupling

in EEG reflects cognitive coding within brain networks and some of those codes highlight epileptic activity; therefore, we hypothe-

sized that there are distinct phase-amplitude coupling features in the postictal suppression state that can provide an improved esti-

mate of this state in the context of patient risk for sudden unexpected death in epilepsy. We used both intracranial and scalp EEG

data from eleven patients (six male, five female; age range 21–41 years) containing 25 seizures, to identify frequency dynamics,

both in the ictal and postictal EEG suppression states. Cross-frequency coupling analysis identified that during seizures there was a

gradual decrease of phase frequency in the coupling between delta (0.5–4 Hz) and gamma (30þ Hz), which was followed by an

increased coupling between the phase of 0.5–1.5 Hz signal and amplitude of 30–50 Hz signal in the postictal state as compared to

the pre-seizure baseline. This marker was consistent across patients. Then, using these postictal-specific features, an unsupervised

state classifier—a hidden Markov model—was able to reliably classify four distinct states of seizure episodes, including a postictal

suppression state. Furthermore, a connectome analysis of the postictal suppression states showed increased information flow within

the network during postictal suppression states as compared to the pre-seizure baseline, suggesting enhanced network communica-

tion. When the same tools were applied to the EEG of an epilepsy patient who died unexpectedly, ictal coupling dynamics disap-

peared and postictal phase-amplitude coupling remained constant throughout. Overall, our findings suggest that there are active

postictal networks, as defined through coupling dynamics that can be used to objectively classify the postictal suppression state;

furthermore, in a case study of sudden unexpected death in epilepsy, the network does not show ictal-like phase-amplitude cou-

pling features despite the presence of convulsive seizures, and instead demonstrates activity similar to postictal. The postictal sup-

pression state is a period of elevated network activity as compared to the baseline activity which can provide key insights into the

epileptic pathology.
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Abbreviations: CC ¼closeness centrality; CFC ¼cross-frequency coupling; DTF ¼directed transfer function; HMM ¼hidden

Markov model; iEEG ¼intracranial EEG; PAC ¼phase-amplitude CFC; PES ¼non-generalized postictal EEG suppression; PGES

¼postictal generalized EEG suppression; P(G)ES ¼PGES or PES; RSE ¼refractory status epilepticus; SUDEP ¼sudden unexpected

death in epilepsy

Introduction
Frequently, after an epileptic seizure, the brain enters a

postictal state—a transition period to a following baseline

interictal state. This postictal state has been correlated

with impaired cognition, prolonged confusion and various

other co-morbidities (Fisher and Schachter, 2000;

Theodore 2010). One particular postictal state frequently

follows convulsive seizures—postictal generalized EEG

suppression (PGES), which manifests as a reduction or

even total cessation of apparent background activity

(Lhatoo et al., 2010; Surges et al., 2011), and is assumed

to represent underlying markedly decreased electrophysio-

logical activity. PGES tends to be present in patients with

a history of uncontrollable generalized tonic-clonic seiz-

ures (Moseley and DeGiorgio, 2015), particularly those

at greatest risk for sudden unexpected death in epilepsy

(SUDEP) (DeGiorgio et al., 2017). In recent years, studies
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on postictal states focused primarily on PGES since sev-

eral studies have connected its incidence and duration

with SUDEP (Lhatoo et al., 2010; Kang et al., 2017).

Since the presence and duration of PGES is correlated

with the risk of SUDEP, the ability to predict PGES dur-

ation is an important step in identifying at-risk patients.

While the relationship between PGES and SUDEP is ap-

parent, conflicting reports have emerged as to how these

two phenomena are connected. While one study reported

that longer PGES states lead to a higher risk of SUDEP

(Lhatoo et al., 2010), another has shown that SUDEP

patients have shorter PGES duration as compared to

other epilepsy patients (Kang et al., 2017). Hence, the

standard amplitude and duration definitions of PGES

may not be sufficient to address the relationship between

the postictal state and SUDEP risk.

One way to analyse epileptiform discharges in brain

networks is to decompose the original signal into its con-

stituent oscillations. The coupling between specific neur-

onal oscillations can be assessed using phase-amplitude

cross-frequency coupling (PAC; Tort et al., 2010) and is

an important part of cognition (Lisman and Jensen,

2013). It can also signify how brain communication

changes under pathological conditions like Parkinson’s

disease (de Hemptinne et al., 2013), and epilepsy (Guirgis

et al., 2015). In particular, the phase of the delta (0.5–4

Hz) oscillation and amplitude of the high-frequency oscil-

lation (>30 Hz) were previously successful in localizing

the epileptogenic zone of patients (Guirgis et al., 2015),

in predicting pre-clinical seizure onset (Jacobs et al.,

2018), and for differentiating seizure types (Amiri et al.,

2019). Therefore, we hypothesized that PAC can better

characterize PGES. The objectives were to identify

coupled neuronal oscillations specific to postictal states,

and to use those PAC features to highlight the active net-

work state during PGES in refractory epilepsy patients

and in a case study of a patient with confirmed SUDEP.

Materials and methods

Human EEG recordings

For analysis of PGES and its biomarkers, EEG data were

obtained from 12 patients (see Table 1) at Toronto

Western Hospital (TWH—Toronto, Canada) and

Phramongkutklao Hospital (PH—Bangkok, Thailand). All

patients suffered from refractory epilepsy, and one patient

died from SUDEP within 2 years of EEG collection. The

majority of patients underwent surgical resection to remove

a suspected epileptogenic zone. Epileptic surgical interven-

tion outcomes were classified using Engel Class system

(Durnford et al., 2011), with Engel Class 1 (EC1) indicat-

ing that the patient was free from seizures following the

surgery, Engel Class 3 (EC3)—a worthwhile improvement

without abolishing seizures, and Engel Class 4 (EC4)—no

worthwhile improvement. To choose an electrode closest to

the seizure onset zone, a combination of the clinician-

defined region of focal epileptic seizure generation and anal-

yses done previously by our lab (Guirgis et al., 2015) was

used. In total, 26 substantially artefact-free seizure record-

ings were identified in patients—ten seizures with intracra-

nial EEG (iEEG) recordings, nine seizures with scalp EEG

recordings (using the standard 10–20 system), and seven

seizures with simultaneous intracranial-scalp recordings.

Three patients with five seizures (Patients 9–11) had a pos-

tictal state classified as PGES by an expert electroencepha-

lographer. One patient (Patient 12, referred to as SUDEP

patient) was an individual who died of SUDEP around 2

years after the recording and did not show any postictal

suppression. The other patients had a postictal EEG sup-

pression state (PES) that did not generalize across all chan-

nels. The acronym P(G)ES was used in this study to refer

to both generalized and non-generalized postictal suppres-

sion states. Referential recordings were used in all analyses,

with the exception of network connectivity where a bipolar

montage was computed to remove common elements for

spatial analysis. Recordings used an acquisition reference at

FCz, grounded at Fpz; with artefactual channels removed

before data analysis. For the SUDEP patient, one iEEG and

one scalp EEG recording were obtained. A further summary

of patient data is in Table 1.

Seizure onset and termination were marked by experi-

enced clinical electroencephalographers (J.M.C., Y.C. and

R.W.), with occasional differences resolved by consensus.

A formal comparison for the inter- and intra-rater reli-

ability was not performed. The durations of postictal sup-

pression states were determined visually (with

confirmation from at least two EEG specialists), and seiz-

ures were selected that had P(G)ES durations of at least

4 s long. Previous studies have allowed for PGES of as

short as one second (Surges et al., 2011); however, we

are looking at very low delta frequencies (0.5–1.5 Hz),

requiring at least four seconds of P(G)ES.

Patient data were originally filtered with a 0.1 Hz high-

pass filter during acquisition and were later pre-processed

by removing power line interference using an FIR notch

filter at 50 Hz or 60 Hz (depending on the data source)

and associated harmonics.

Phase-amplitude CFC analysis

To investigate PAC dynamics between baseline (defined

as the quiet period before the seizure without visible arte-

facts, spikes or other activity at least 60 s before seizure

onset) and the postictal states, wavelet coefficients corre-

sponding to frequency bands of interest were extracted

from patient data using the continuous wavelet trans-

form. We used the complex Morlet wavelet with a

mother wavelet of 0.8125 Hz centre frequency and 5 Hz

bandwidth, as these parameters have been previously

found to work best with EEG data for epilepsy (Guirgis

et al., 2015).

Biomarker of postictal suppression BRAIN COMMUNICATIONS 2020: Page 3 of 16 | 3



The strength of PAC is measured by the cross-fre-

quency coupling (CFC) index following the protocol

established by Tort et al. (2010) and adapted by our lab

(Guirgis et al., 2015; Colic et al., 2017). PAC is a nor-

malized measure of how much preference the amplitude

of the higher frequency component has for particular

phases of the lower frequency component. In short, wave-

let coefficients obtained from continuous wavelet trans-

form of the form

W f ; tð Þ ¼ x f ; tð Þ þ jx
�ðf ; tÞ (1)

were used to recreate these two time-series (Colic et al.,

2017), with the amplitude envelope signal FA covering

the range fH of 30–100 Hz in 1 Hz increments (except in

select iEEG cases, where higher sampling rate allowed to

expand the range to 30–200 Hz), and the instantaneous

phase signal Fu covering the range fL of 0.5–5 Hz in

0.1 Hz increments:

FA fH ; tð Þ ¼ x fH ; tð Þ þ jx
�ðfH ; tÞ (2)

Fu fL; tð Þ ¼ tan�1 x
�ðfL; tÞ
x fL; tð Þ

 !
(3)

Fu was binned into 20� windows—for a total of 18

bins—and FA within each bin was averaged. A discrete

probability density function was then calculated for each

individual averaged amplitude envelope (denoted as

FA fH ; tð Þ
� �

:

P jð Þ ¼
FA fH ; tð Þ
� �

jPN
k¼1 FA fH ; tð Þ
� �

k

(4)

and the PAC was effectively the normalized Kullback–

Leibler distance of this distribution from the uniform dis-

tribution (where N¼ 18):

PAC ¼
log Nð Þ �

PN
j¼1 P jð ÞlogðP jð ÞÞ

logðNÞ : (5)

While in the case of iEEG recordings of EC1 patients it

is fairly easy to establish the location of the seizure onset

electrodes (since they are captured by the electrode grid

and lie within the successful resection area), the task

becomes significantly harder in scalp EEG recordings. In

order to reduce the effects of potential artefacts and ana-

lyse phenomena in a more spatially generalized manner,

we used a global PAC measure, inspired by Jacobs et al.

(2018). To calculate global PAC with a reduced influence

of potential artefactual channels, a median for each

phase-amplitude combination was obtained. For compari-

son, in addition to scalp EEG, global PAC was also cal-

culated for iEEG.

To identify changes in PAC between the baseline state

and the P(G)ES state, we binned the PAC values into 63

bins, with each bin having a value of the median PAC

across 0.5 Hz of phase and 10 Hz of amplitude. The ab-

solute difference between baseline state and P(G)ES state

was calculated for each bin, and regions of increased

PAC in both states were identified as those having PAC

greater than 3 dB (�0.707) of the maximal coupling dur-

ing P(G)ES (a common ‘half-maximum-power’ threshold).

Brain network connectivity

To assess changes in the network connectivity from base-

line to P(G)ES, network analysis was performed on the

iEEG recordings. Noisy or artefactual channels were

removed from the analysis and all iEEG traces were z-

score normalized in order to reduce the influence of amp-

litude differences on the network connectivity estimation

(van Mierlo et al., 2018).

Table 1 Summary of patient data

Patient

no.

Age/

sex

Surgical

outcome

MRI findings Electrode

placement

Intracranial EEG Scalp EEG Average

P(G)ES

duration (s)No. of

recordings

Sampling

rate

No. of

recordings

Sampling

rate

1 36/F N/A Abnormal intensity lesion Left FT 1 2 kHz 0 10

2 28/M EC3 Non-lesional Left FT 3 2 kHz 1 200 Hz 19.5

3 21/M EC1 Cortical dysplasia Left DF 3 2 kHz 2 256 Hz 21.5

4 41/M EC1 Mesial temporal sclerosis Right T 0 2 512 Hz 4.2

5 22/M EC1 Normal Left T 1 500 Hz 0 13

6 31/M EC1 Mesial temporal sclerosis Right T 1 500 Hz 2 200 Hz 9.8

7 26/F EC1 Normal Right F 2 500 Hz 3b 500/256 Hz 11.7

8 36/F EC1 N/A N/A 0 1 256 Hz 29.5

9 29/F EC3 Normal Bilateral F 1 1000 Hz 0 11

10 32/F EC4 Normal Left T 2 500 Hz 2b 500 Hz 39

11 29/M N/A Normal Bilateral F 2 250 Hz 2b 250 Hz 18

12a 30/M EC1 Normal Left FT 1 1 kHz 1b 1 kHz

aPatient with intractable epilepsy which later died from SUDEP.
bScalp EEG seizures are simultaneous recordings with iEEG with the same sampling rate.

D ¼ dorsolateral; F ¼ frontal; T ¼ temporal.
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A time-varying directed transfer function (DTF) (Astolfi

et al., 2008) was computed following the implementation

described in detail by Omidvarnia et al. (Omidvarnia

et al., 2011) using a multivariate adaptive autoregressive

model (MVAAR) based on the Kalman filter approach

(Vidaurre et al., 2011). Model parameters were found in

the literature of similar studies (Staljanssens et al., 2017;

van Mierlo et al., 2018): model order of 8, an update co-

efficient of 10�3, and a downsampling factor of 10. The

time-varying DTF was computed in the frequency ranges

corresponding to the 3 dB peak global PAC specific to

each window, corresponding to fL 2 (0.5, 1.5 Hz) in

0.1 Hz intervals, and various subsets of fH 2 (30, 70 Hz)

in 1 Hz intervals depending on the window (ranges

shown in Supplementary Fig. 3 and summarized in

Supplementary Table 1). Thus, the DTF for a given win-

dow can be represented as 4D matrix (NChannel �
NChannel � NTime � NFrequency), where the first channel

dimensions are information sinks and the second dimen-

sion are information sources, and NFrequency ¼ NfH þ
NfL depending on the global PAC for the window in

question. To better represent PAC effects, we took the

mean of the DTF coefficients at each (fL, fH), which

results in the 5D DTF matrix DTFCC ¼ (NChannel �
NChannel � NTime � NfH � NfL).

In order to properly compare the DTFCC across states

and subjects, network characteristics were summarized

using the graph theory measure of closeness centrality

(CC). Here, CC is computed at each (fL, fH) pairing for

each event as the inverse of the sum of the shortest dis-

tances from the jth source channel to all other channel

sinks, using the Floyd–Warshall algorithm (Rubinov and

Sporns, 2010). For each baseline versus P(G)ES state

comparison, we control for the differences in window

duration, frequency range and number of channels by

normalizing to the baseline state median.

Assessing postictal state duration
with hidden Markov models

To classify the post-ictal state, a first-order hidden

Markov model (HMM) was applied as per Breton et al.

(2019). We adapted the features for application to a 4-

state model with two Gaussians used to fit each state (as

depicted in Supplementary Fig. 10). To make the feature

set used for the classifier, first, the continuous wavelet

transform was computed using 30–50 Hz (in 1 Hz inter-

vals) for the high-frequency amplitude signal and 0.5–

1.5 Hz for the low-frequency phase signal (in 0.5 Hz

intervals). Second, the phase (u) signal was combined

with the amplitude (A) signal over time (t) using the fol-

lowing formula (Li et al., 2016):

nth feature ðn1; n2; tÞ ¼ An1 tð Þsin un2 tð Þ
� �

(6)

with n1¼ 1 . . . N1, n2¼ 1 . . . N2, where N1¼ 21 and

N2¼ 3 for this study. The envelope of the resultant nth

feature signal was averaged on two second intervals, with

no overlap. Then, the envelope signal was normalized to

the maximum and minimum for the entire trace for each

feature independently. Training was performed on the

ictal and post-ictal period of Patient 4 seizure 1 data.

Testing was performed on the entire signal using six se-

cond windows with two second moving windows for all

patients.

Association of P(G)ES duration with
ictal PAC

In order to establish the correlation between P(G)ES dur-

ation and ictal PAC dynamics, PAC was extracted from

onset iEEG electrodes following the algorithm described

in the earlier section [see eqs (1)–(5)]. Specifically, PAC

was calculated on consecutive four second windows, with

no overlap, throughout the seizure. Maximal PAC meas-

ures were then tracked throughout the seizure, and the

phase of the PAC measure was used with a maximal low

frequency of 5 Hz to obtain the dominant PAC curve. To

allow for better comparison across patients, phase fre-

quency was normalized by subtracting the minimal value

of the phase of maximal PAC, setting the baseline to 0.

To quantify the rate of dominant PAC rise and decay, a

single measure, b, was obtained by fitting the equation

below to the extracted dominant PAC curve:

f tð Þ ¼ Hbte�bt; (7)

where H was fitted to the height of the dominant PAC

curve. The b-fit has been proposed in Zalay et al. (2010)

to characterize system excitability, and has been favour-

ably compared to other excitability measures—such as

Teager energy—and used in evaluating spontaneous epi-

leptiform discharges (Grigorovsky and Bardakjian, 2018).

Statistical analysis

A Pearson coefficient was calculated to measure the de-

gree of linear relationship between the HMM-defined

PGES-like states and visually identified P(G)ES durations.

HMM-derived ictal and postictal state duration distribu-

tions were also fitted using a gamma function (gamfit in

the MATLAB package):

y ¼ kaxa�1e�kx

CðaÞ ; (8)

where a is the shape parameter and k is the rate param-

eter. When the shape parameter is equal to one, gamma

distribution collapses to an exponential distribution, sug-

gesting that the underlying process is a Poisson process.

When, however, the shape parameter is larger than one,

the process is non-Poisson in nature and instead is time-

dependent. When comparing the SUDEP case study pa-

tient to the population of other patients, S2 (ictal-like)

state durations were compared using both Vysochanskij–
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Petunin inequality and Chebyshev inequality. Chebyshev

inequality is a conservative approach to a non-parametric

estimation of confidence interval, while Vysochanskij–

Petunin inequality assumes a unimodal distribution. This

established lower bounds for the probability that the

SUDEP patient’s S2 duration belonged to the general pa-

tient population:

P X � l � krð Þ �

4

9k2
in case of V� P

1

k2
in case of Cheb

:

8>><
>>: (9)

To assess whether the area of the regions of increased

PAC (calculated as the number of phase-amplitude com-

bination above the 3 dB threshold, or pixels) across the

channels and patients varies significantly, a Shapiro–Wilk

test was first performed to determine whether the data

were distributed normally or not. If it was, a two-sample

t-test was used to test for significant change in the aver-

age area; if, however, the data were not normally distrib-

uted, Wilcoxon rank sum test was used to test for

significant change in the median area. A similar approach

for significance calculation was used for connectivity ana-

lysis. The method of surrogate data testing was adapted

from Guirgis et al. (2015) and Breton et al. (2019). A

200-surrogate test with 5% significance threshold was

used on a sample patients’ iEEG data, to determine

whether the PAC observed was significant.

Data availability

The data that support the findings of this study are avail-

able on reasonable request from the corresponding au-

thor. The data are not publicly available due to

institutional restrictions associated with original data ac-

quisition protocols.

Results

Phase-amplitude coupling in P(G)ES

To identify the coupled neuronal oscillations specific to

postictal suppression states, we first looked at the PAC

features that are present during PGES. As PGES is a gen-

eralized phenomenon, a global PAC analysis was used to

compare the PGES state to the baseline state (Fig. 1A).

Increased coupling between the phase of 0.5–1 Hz and

amplitude of 30–40 Hz is observed in both scalp and

iEEG (Fig. 1B). Both iEEG and scalp EEG showed a sig-

nificant (P< 0.0005) increase in coupling during PGES as

compared to pre-seizure baseline, when measured by the

median area of increased coupling across channels (i.e.

the number of individual phase-amplitude combinations

over the 3 dB threshold; Fig. 1C). A computation of PAC

using surrogate data confirmed that this identified PGES

marker was significant, and not due to noise present in

the recording (Supplementary Fig. 2). While sampling

rates vary between patients based on the data source, we

found no distinguishable difference in PAC analyses and

elected to use the original data sampling.

A similar comparison between the baseline and non-

generalized PES was done for Patient 7, Seizure 2

(Fig. 2). In both scalp and iEEG, we observed an increase

in PAC strength during the PES state within the same

ranges as in the PGES case (Fig. 2C), which was con-

firmed by the Wilcoxon rank test of the median area

(Fig. 2D).

These postictal PAC features are not patient-specific—

across patients with both PGES and PES, P(G)ES states

demonstrated similar ranges of increased PAC (Fig. 3A

and C) and a similar increase in the median area of

increased PAC (Fig. 3B and D). Since the ranges and the

areas were comparable for both PGES and PES patient

groups, results were pooled into an overall comparison

for P(G)ES (Fig. 3E and F). The sum of the area was sig-

nificantly larger in the P(G)ES state (P< 0.005, Wilcoxon

test). Note that, while the area of increased PAC shows

the binned ranges of interest, the median area represented

the number of individual phase-amplitude frequency com-

binations—without binning—above the 3 dB threshold

(Fig. 3B, D and F). Overall, these PAC results show that

there is a significant increase in global PAC in P(G)ES,

regardless of whether postictal suppression is generalized

or not.

Brain network connectivity using
P(G)ES-specific PAC features

After establishing the P(G)ES-specific PAC frequencies,

we wanted to investigate what effect these frequency

ranges have on network connectivity. Network-level con-

nectivity analysis showed significantly elevated CC during

the postictal state within the same PAC frequency bands

as those present during P(G)ES. To identify network con-

nectivity, the shortest-path weight between iEEG channel

pairs was measured, and from this weight, the CC of the

networks was computed using 0.5–1.5 Hz coupled to 30–

50 Hz features (Fig. 4, Supplementary Fig. 5), as the

average of all nodes. In the case of PGES, we show a

representative shortest-path network between the channel

with the median-level CC during the PGES state (channel

3) and all other channels (Patient 10, seizure 2, Fig. 4A;

iEEG channel locations are shown in Supplementary Fig.

4). There was a decrease in the connection path length

between channel pairs during the postictal state as com-

pared to baseline. This decrease summed to an overall

greater CC during PGES. In comparison, in a case of

PES (Patient 7, Seizure 2; Fig. 4C channel 13), the same

increase in CC occurred (Fig. 4D; electrode montage

shown in Supplementary Fig. 4). Across all nine subjects

with iEEG recordings (Fig. 4E), the P(G)ES CC was

found to be significantly elevated above the baseline

(P< 0.0005, Wilcoxon rank sum test; for individual
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patient comparison, see Supplementary Fig. 5). Hence,

the connectivity of the particular network discussed above

is enhanced in the post-ictal state, and this occurs both

in the generalized and non-generalized EEG suppression

cases.

Assessing postictal state duration
with HMMs

Investigating whether identified PAC frequency ranges

can be used to classify different states within a seizure

episode, HMM were used with iEEG recordings to bet-

ter understand if, and how, postictal suppression states

compare to the statistical properties of ictal states.

Classification resulted in a clear delineation of the

iEEG into four states (including seizure state S2 and

post-seizure state S3) (Fig. 5A). To validate this classifi-

cation, the model output was compared to visually

identified epochs of the iEEG. First, the durations of

the HMM-classified PGES-like state were compared

with visually determined P(G)ES (Fig. 5B). We found a

significant positive correlation of 0.77 (P¼ 0.009) be-

tween the HMM classified and the visually identified

P(G)ES, suggesting that the P(G)ES state was well clas-

sified using the HMM. Then, classification was per-

formed on visually identified interictal data from an

iEEG trace, which designated state S4 as interictal

(Supplementary Fig. 6).

Then, the statistical properties of the ictal and PGES

states were compared by measuring the shape parameters

of the duration of the HMM-identified states. HMM

analysis was performed on all patient iEEG data, and

collated results are shown in Fig. 5C and D for S2 and

S3 durations, respectively. A gamma function was fitted

to each duration distribution; the shape parameter, alpha,

was calculated as 3.54 (95% confidence interval 1.59–

7.89) for S2 (Fig. 5B), and 2.21 (CI: 1.01–4.82) for S3

(Fig. 5C). These results validated the existence of the

P(G)ES state, and identified similar statistical processes

underlying the ictal and postictal state.

Figure 1 Global PAC of PGES patient. (A) Scalp EEG traces of a baseline, seizure onset, seizure offset and a following PGES state in patient

10 seizure 2—seizure duration of 88 s, baseline 100 s before onset, PGES state begins 15 s after the seizure. (B) Global PAC comparison

between baseline and PGES states in both intracranial and scalp EEGs, as well as the area of increased (>3 dB) PAC. (C) Median area of

increased coupling—in number of phase-amplitude combinations—during baseline and PGES states in both intracranial and scalp EEG recordings

for patient 10 (*Wilcoxon rank sum test, P< 0.0005). Red lines show 25% and 75% quartiles. Reference electrode—FCz.
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Association of P(G)ES duration with
ictal PAC

Given that the gamma function hinted at similar statistic-

al properties between HMM-classified ictal- and P(G)ES-

like states, our aim was to find an association between

PAC features and the P(G)ES state. Some of the CFC

changes used by the HMM appear not only between

P(G)ES and baseline states, but within the ictal state as

well. Figure 6B highlights phase-amplitude coupling dy-

namics during the ictal and PGES states, compared to the

baseline state in patient 10, seizure 2 (Fig. 6A). Similar

ictal PAC dynamics were also observed in patients with

PES (Fig. 6C and D). In both cases, PAC features during

P(G)ES and baseline states are not clearly visible on the

scale of ictal coupling since ictal PAC is significantly ele-

vated as compared to P(G)ES PAC (baseline and P(G)ES

co-modulograms obtained from iEEG data are shown

separately in Supplementary Fig. 1 with PAC). These

data showed variability in PAC, shifting from �4–5 Hz

to �1–2 Hz of the maximal coupled frequency of the

low-frequency phase signal, over the course of the ictal

state.

To further establish a connection between the ictal

PAC variability and the P(G)ES duration, we applied a b-

fit to the frequency of the phase part of the maximal

ictal PAC. From empirical observations of the results, for

a proper b-fit, the variability in the frequency of the

phase signal during the seizure had to be at least 2 Hz

and postictal state needed to be <20% of the duration

of the preceding seizure. Conversely, if the duration of

the postictal state exceeded 40% of the seizure duration,

ictal PAC variability flattened and no reliable b-fit could

be achieved. Under these constraints, there was a strong

correlation between the inverse of the b value and the

HMM-defined postictal state duration with Pearson coef-

ficient of 0.98 (P< 0.001; see Fig. 7B; for sensitivity

Figure 2 Global PAC of PES patient. (A) Scalp EEG traces of a baseline, seizure onset, seizure offset and a following PES state in Patient 7

Seizure 2—seizure duration of 65 s, baseline 900 s before onset. (B) Zoomed in traces of the scalp EEG showing the actual PES state. Note lack

of generalization of the state across all of the electrodes. (C) Global PAC comparison between baseline and PES states in both intracranial and

scalp EEGs, as well as the area of increased (>3 dB) PAC. (D) Median area of increased coupling—in number of phase-amplitude combinations—

during baseline and PES states in both intracranial and scalp EEG recordings for Patient 7 (*Wilcoxon rank sum test, P< 0.005). Red lines show

25% and 75% quartiles. Reference electrode—FCz.
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analysis see Supplementary Fig. 7), suggesting a link be-

tween relatively long postictal state durations and low

ictal PAC variability.

Note that for both Figs 2C and 6D, the broader fH

range in the PAC did highlight additional activity in the

100–200 Hz range; however, it did not impact the final

analyses (significant PAC during the P(G)ES and the fre-

quency of the phase of the dominant PAC, respectively),

and so was omitted from other patients.

A SUDEP patient case study

To see how SUDEP patients differ from our cohort

(Patients 1–11), one SUDEP patient with concurrent scalp

and iEEG recordings was used (Fig. 8). In this SUDEP

patient, there was an absence of the PAC variability as

previously observed in the other patients. Specifically, the

PGES-like PAC features appeared throughout the record-

ing, even though a seizure had been identified by an

electroencephalographer (Fig. 8A and B; Supplementary

Fig. 9 for zoomed in intracranial traces). When the same

HMM from the previous section was tested on the iEEG

trace of the SUDEP patient, it identified primarily S3

(PGES-like) and S4 (interictal-like) states throughout the

recording outside of the seizure and primarily S1 state

during the seizure. Meanwhile, the S2 (ictal-like) state

was largely absent (Fig. 8C) with only a short duration

at the beginning of the seizure.

To measure the probability that the S2 state of this

SUDEP patient belonged to the general patient popula-

tion, a Chebyshev inequality was used, establishing a

95% interval for ictal state durations: 28.2–77.6 s, while

Vysochanskij–Petunin inequality gave a 99% confidence

interval of 11.1–90.8 s. Hence, the SUDEP patient S2

duration of 6 s most likely did not belong to that of the

general population of epilepsy patients (P ¼ 0.009).

Overall, this case study suggested that P(G)ES-like PAC

features dominate the network activity of patient at risk

Figure 3 Comparison of global PAC between baseline and P(G)ES states across patients. (A) Median CFC across all of the patients

with PGES (n¼ 3) within iEEG and scalp EEG, highlighting the increased coupling in the PGES state using binned frequency ranges. (B) Median

area of increased coupling—in number of phase-amplitude combinations—during baseline and PGES states in both intracranial and scalp EEG

recordings for patients with PGES. Red lines show 25% and 75% quartiles. (C) Similar to part (A), median CFC across all of the patients with PES

(n¼ 8) in iEEG and scalp EEG. (D) Median area of increased coupling during baseline and PES states in both intracranial and scalp EEG across

patients with PES. Red lines show 25% and 75% quartiles. (E) Median CFC of both (A) and (C) pools joined together (n¼ 11). (F) Median area of

increased coupling during baseline and postictal states across all patients. In parts (B), (D), (F), postictal states have significant increase in mean

area—Wilcoxon rank sum test, P< 0.005.

Biomarker of postictal suppression BRAIN COMMUNICATIONS 2020: Page 9 of 16 | 9

https://academic.oup.com/braincommsarticle-lookup/doi/10.1093/braincomms/fcaa182#supplementary-data
https://academic.oup.com/braincommsarticle-lookup/doi/10.1093/braincomms/fcaa182#supplementary-data
https://academic.oup.com/braincommsarticle-lookup/doi/10.1093/braincomms/fcaa182#supplementary-data


of SUDEP, unlike the activity analysed in the general pa-

tient cohort (Patients 1–11).

Discussion
We used phase-amplitude CFC features from ictal and

postictal states to show that (i) the P(G)ES state has a

distinct PAC signature, compared to the baseline state, re-

gardless of whether it is generalized or not; (ii) this PAC

signature can be used with HMM to identify a similar

postictal state as seen by visual inspection, and with

graph-theoretic measures to highlight changing network

connectivity between P(G)ES state and the baseline; and

(iii) in the case of the SUDEP patient, PAC features and

HMM analysis suggest that the network largely stays in

a postictal PGES-like state, regardless of the EEG ampli-

tude measure.

The role of delta-gamma PAC in

epileptic state classification

Epilepsy has been described as a pathological manifest-

ation of a multistate oscillatory system (Kalitzin et al.,

2019), and the coupling between neural oscillations was

an obvious target for investigation. We identified 0.5–

1.5 Hz and 30–50 Hz coupled signals as markedly ele-

vated in the PGES state, as compared to baseline.

Furthermore, this marker was largely consistent in the

postictal suppression state regardless of whether or not

the suppression was generalized across channels.

Compared to a previous study, which highlighted delta-

gamma coupling during seizure termination (Guirgis

et al., 2015), we have identified a narrower range of

delta-gamma features that persist within the P(G)ES state.

Furthermore, this range was able to resolve four states of

the epileptic cortex, as was previously not obtainable

using a broader PAC frequency range (Guirgis et al.,

2013). We have also demonstrated that the PAC features

observed in the iEEG can be extended to analysis of

scalp EEG signals. Given that as few as 5% of patients

with intractable epilepsy are eligible for surgery (Ryvlin

and Rheims, 2008), and scalp EEG is much less invasive

than iEEG, these PAC features have the potential for use

in a broader epilepsy population. Moreover, these PAC

features can be used for identification and classification

of PGES and other postictal states, which can improve

tasks such as automated detection of PGES using ma-

chine learning algorithms (Theeranaew et al., 2018).

Activity during P(G)ES

It is important to distinguish ictal and non-ictal PAC.

While PAC during P(G)ES is significantly smaller than

during a seizure, it is larger than a state before the seiz-

ure (see Figs 1–3). Network connectivity showed

Figure 4 CC of iEEG networks is elevated for P(G)ES state versus baseline. (A) Example network shown for baseline versus PGES

state for Patient 10, Seizure 2. Network consists of outward shortest-path connections for the PES median channel (3), normalized to the PGES

state. Edge length is scaled by physical distance in the iEEG bipolar montage, and colour and line width is scaled by the connection strength. (B)

Summary of networks for all channel pairings for P10, Seizure 2, using cross-channel mean of CC. Here, it is shown as a function of PAC

frequency ranges and normalized to the median of the baseline. (C, D) Same as (A) and (B) but for Patient 7, Seizure 2. (E) CC is generally

elevated for the PES state when considering the lumped normalized data from all subjects (Nsubjects ¼ 9, Nevents ¼ 16). (*Wilcoxon rank sum test,

P< 0.0005).
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increased CC in the P(G)ES state compared to baseline

suggesting that, despite having decreased voltage ampli-

tude, PGES state is more active than baseline. Yet, des-

pite these results an earlier study argued that there exists

a ‘neuronal emergency brake’ mechanism that prevents

status epilepticus and when ‘activated too strongly or per-

sistently, PGES occurs’ (Bauer et al., 2017), suggesting

that the PGES is a result of a dampened network activity.

In line with our results, a recent modelling study, demon-

strated that seizure cessation and an overall suppressed

state was achieved by increasing the coupling of oscilla-

tory units, rather than reducing their activity (Farah

et al., 2019). These data provide evidence that the PGES

state is not characterized by reduced activity, but rather

by activity that is different from either ictal or interictal

states.

Pathophysiological mechanisms of
PGES

While the mechanisms behind PGES generation are un-

clear, one hypothesis is that PGES relates to increased

neuronal inhibition at and after seizure termination,

and that longer PGES occurs after a more severe seizure

(Rajakulendran and Nashef, 2015). This is supported

by a recent modelling study which showed that the ex-

citation/inhibition balance drove the ictal frequency and

coupling dynamics (Liu et al., 2020). Several modelling

papers also showed that microglial effects were respon-

sible for increasing the time between spontaneous epi-

leptiform discharges (Grigorovsky and Bardakjian,

2018a; Farah et al., 2019), suggesting that microglial

pruning could be involved in longer PGES durations.

This is supported by experimental evidence that ictal

Figure 5 State classification of iEEG recordings using a four-state HMM. (A) State classification of an example iEEG trace from Patient

2 (reference electrode—FCz), where S2 is a seizure-like state, and S3 is PGES-like state. (B) Comparison of HMM-driven S3 state classification

to the visually estimated PGES durations, with the overall correlation of 0.77 (P¼ 0.009). (C) Histogram of S2 durations, with a gamma function

fitted to the data. The shape parameter of the gamma function—alpha—was calculated to be 3.54 (95% CI 1.59–7.89), which is consistent with

the average alpha for seizure duration distributions from Suffczynski et al. (2006) of 3.03 and from Bauer et al. (2017) of 2.66. (D) Histogram of

S3 durations, with gamma function fitted to the data with alpha parameter calculated to be 2.21 (95% CI 1.01–4.82) which is consistent with

alpha for PGES duration distributions from Bauer et al. (2017) of 1.54. This can also be compared to alpha value of 1.83 (95% CI 1.04–3.20)

obtained from distribution of visually estimated PGES durations (not shown). These shape parameters suggest that the transitions (to and from

seizure states) occur not according to Poisson process, but rather that the probability of transition varies with time. For both sections (C) and

(D), n¼ 11.
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activity can enhance motility and drive alterations in

microglial physiology (Sepulveda-Rodriguez et al.,

2019), and that seizure activity increases microglial

process numbers, suggesting that under certain condi-

tions microglia have neuroprotective effects in the epi-

leptic brain (Eyo et al., 2014).

Furthermore, similar PAC features appeared in a

computational model of neuroglial networks

(Grigorovsky and Bardakjian, 2018b), suggesting that

glial factors play an important role in hyperexcitability,

and dysfunction in excitability pathways leads to an

emergence of PAC features similar to those seen in epi-

leptic patients.

Ictal PAC features and P(G)ES

Both HMM and b-fit were used to investigate the P(G)ES

state features and duration, and how they relate to ictal PAC.

Using HMM, S2 (ictal-like state) and S3 (PGES-like state)

were classified, and alpha values from gamma distributions

of these state durations were consistent with previous studies

(Suffczynski et al., 2006; Bauer et al., 2017). For ictal-like

states, previous studies found alpha in seizure duration distri-

butions in humans to be, on average, 3.03 (Suffczynski et al.,

2006) and 2.66 (Bauer et al., 2017). For S3, our alpha value

(2.21) was qualitatively similar to the earlier study which

used a larger patient cohort with 48 seizures and arrived at

the alpha of 1.54 (CI 1.01–2.33) (Bauer et al., 2017). These

Figure 6 Ictal phase-amplitude coupling dynamics in the onset electrode of P(G)ES patients. (A) iEEG trace from PGES patient 10

(electrode LAT 2) with seizure occurring at 9845–10 033 s. (B) Four second samples of EEG trace with concomitant CFC co-modulograms of

different points in the ictal state, baseline state and PGES state, plotted on the same scale. Clear ictal PAC dynamics appear, showing a phase

slowing from theta to low delta frequency ranges throughout the seizure. (C) iEEG trace from PES Patient 7 (electrode RPF 6) with seizure

occurring at 1038–1103. (D) Similar analysis to part (B) showing the same theta to low delta shift in frequencies. Reference electrode—FCz.
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values can be further compared to the alpha obtained from

the distribution of visually estimated P(G)ES durations in our

study—1.83 (CI 1.04–3.20; not shown). These findings sug-

gest that both transitions to and from S2 and S3 states (ictal-

and postictal-like states, respectively) occur not according to

a Poisson process, but rather the probability of transition

varies with time (Suffczynski et al., 2006). Despite the lower

number of seizures in our study than in previous studies, the

general trend in ictal and postictal state distributions are

consistent.

Furthermore, the b-fit of the phase frequency of dominant

PAC during seizures showed a strong correlation to the P(G)ES

duration (Pearson coefficient of 0.98, P< 0.001). While this

P(G)ES duration marker does not appear to apply universally—

as some of the patients did not show PAC dynamics necessary

for a b-fit—in the subset of patients where it does apply, these

PAC features show a higher correlation with P(G)ES duration

compared to the more broadly applicable feature developed by

Bauer et al. (2017).

These dominant PAC features (as seen in Fig. 6), and their

association with the P(G)ES state duration suggest that rather

than two distinct and unrelated states, ictal and postictal

states show a continuation of activity, but with a reduction in

the frequency of phase—from high-delta to low-delta. This

link between ictal and postictal states is further supported by

the gamma distribution analysis which suggested similar stat-

istical features of S2 and S3 states.

Association of PGES duration with
SUDEP

The nature of the relationship between PGES and SUDEP

is still controversial—as mentioned earlier, while (Lhatoo

et al. 2010) reported that increased PGES duration (after

a 50-s threshold) correlated with higher chance of

SUDEP, (Kang et al., 2017) found that SUDEP patients

had statistically shorter PGES duration, and (Surges

et al., 2011) concluded that neither presence nor duration

of PGES state was associated with SUDEP. Moreover, an-

other study found that the presence of a long PGES state

was not consistent in patients with multiple seizures, sug-

gesting that it might not be a reliable clinical tool for

SUDEP risk assessment (Lamberts et al., 2013). It is pos-

sible that this discrepancy in research findings is due to

different aetiologies of seizures and associated PGES

states. Another reason could be, that the conventional

way of identifying PGES—by visual assessment or using

the EEG amplitude threshold—highlights a subset of pos-

tictal states. This is supported by our SUDEP case study,

where despite the EEG being above the PGES threshold,

PAC features identified in P(G)ES states dominated the

recording.

These networks might be dynamic—in a few instances,

dominant PAC regions differed between baseline and

PGES states—however, they have equally strong activity.

These states were further distinguished using a four-state

HMM, which clearly separated the PGES-like S3 state

from ictal and other states. Furthermore, when the same

model was applied to the iEEG recording of the SUDEP

patient, it identified S3 state to be present both before

and after the seizure, even when no suppression was

identified. Because the S3 state is confined to after a seiz-

ure in the general patient cohort, whereas in the SUDEP

patient, the S3 state is present during seemingly interictal

periods, we suggest that when measuring ‘PGES’ it is crit-

ical to consider that the markers that distinguish this

Figure 7 Correlation between frequency of the phase signal of PAC during seizure and postictal state duration. (A) An example

patient showing the evolution of normalized phase frequency of the dominant PAC during and right after the seizure, with the red bar showing

seizure offset and the blue line showing the fitted beta function. (B) Correlation between the inverse of the beta value and HMM-based postictal

state durations, with the dotted line showing trendline.
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state may begin to invade the ‘normal’ brain state when

epilepsy severity increases. Further support to this pro-

posed network state change can be seen in

Supplementary Fig. 8, where a separate SUDEP patient

with generalized tonic-clonic seizure and identified PGES

state is briefly analysed and the same PGES-like biomark-

er is present throughout most of the recording (see

Supplementary Fig. 8). This idea, then, may lead to fu-

ture tests of this potential novel biomarker for suscepti-

bility to SUDEP.

Figure 8 EEG recording analysis from a SUDEP patient. (A) iEEG recordings from the SUDEP patient with seizure onset identified by a

red line and seizure offset by a blue line. Below are the corresponding global PAC throughout the recording. These results highlight the relatively

low variability in the PAC, compared to coupling dynamics shown in Figs 1 and 2 and the presence of P(G)ES-like PAC features throughout the

recording. (B) Scalp EEG recordings (simultaneous with iEEG in (A). Below are the corresponding global PAC throughout the recording. Note

the predominance of the same PAC marker throughout the recording as in (A). (C) Single iEEG trace (from LOF1 electrode) centred around the

seizure. This iEEG trace is classified using an HMM. Reference electrode—FCz.
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Limitations and future
directions
Our work is limited by the sample size of our patient

population and is prone to artefacts in EEG or outliers

among the patients. To account for that, we relied on

median measures as opposed to averages; however, a

larger collection of patient data would potentially reduce

variability in the results. Our analysis—especially with

scalp EEG data—was also constrained by the range of

usable frequency bands. On one hand, due to the high-

pass filter during data acquisition, extremely low frequen-

cies (on the order of 0.01–0.3 Hz) could not be reliably

used for coupling analysis. Given that 0.3 Hz coupling

has been shown to increase in the postictal state

(Lundstrom et al., 2019), and 0.2 Hz is a marker in

paediatric epilepsy (Nariai et al., 2011), using lower

high-pass filtering cut-off can shed more light on PGES

and SUDEP features. On the other hand, sampling fre-

quency provided an upper bound on the HFO range that

could be used for PAC calculation, whereas very high-fre-

quency oscillations (VHFOs; 600–2000 Hz) (Jacobs et al.,

2012; Brázdil et al., 2017) could be combined with low-

delta as another biomarker for postictal states.

Furthermore, while the data Though Lundstrom et al.,

(2019) found that the coupling strength between 0.3–

1 Hz and 20–50 Hz increased in the postictal state—pro-

viding more support to our results (Lundstrom et al.,

2019) —they also saw some overlap in the broadband

delta and HFO power and CFC strength between awake

state, postictal state and sleep state. Also, given that pre-

viously obtained distributions of the ictal epochs are dif-

ferent depending on whether the EEG was obtained

during the day or night (Suffczynski et al., 2006), future

studies may consider the interaction between sleep and

postictal states.

It is prudent to highlight the fact that a long time after

EEG collection, patient 10 died of what could have been

possible SUDEP. Since more than nine years have elapsed

between the EEG recordings and death—unlike the

SUDEP case study, which was within 2 years—the patient

was treated as part of the overall cohort population

(compare, for example, with Fig. 8 and Supplementary

Fig. 8). However, this situation highlights the need for

longitudinal SUDEP analysis to understand at which

point and at what rate PGES-like biomarkers begin to

dominate EEG recordings.

While our SUDEP case study is an important compari-

son to the ictal and postictal PAC dynamics in the rest

of the patients, a more in-depth SUDEP patient analysis

is necessary to draw more general conclusions. This

includes not only having more SUDEP patients but also

incorporating EKG and respiration data into analysis, as

recently identified potential contributors to SUDEP sus-

ceptibility (Rajakulendran and Nashef, 2015;

Lertwittayanon et al., 2020). Furthermore, since the

exponential fit used by Bauer et al. has been used as an

input (together with video recording data) to PGES and,

indirectly, to a SUDEP classification algorithm using sup-

port vector machines (van Beurden et al., 2019), PAC

markers identified in this study can be used as alternate

features for a similar machine learning approach.

Supplementary material
Supplementary material is available at Brain

Communications online.
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