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ABSTRACT
Statistical and biochemical studies of the standard genetic code (SGC) have found
evidence that the impact of mistranslations is minimized in a way that erroneous
codes are either synonymous or code for an amino acid with similar polarity as the
originally coded amino acid. It could be quantified that the SGC is optimized to
protect this specific chemical property as good as possible. In recent work, it has
been speculated that the multilevel optimization of the genetic code stands in the
wider context of overlapping codes. This work tries to follow the systematic approach
on mistranslations and to extend those analyses to the general effect of frameshift
mutations on the polarity conservation of amino acids. We generated one million
random codes and compared their average polarity change over all triplets and the
whole set of possible frameshiftmutations.While the natural code—just as for the point
mutations—appears to be competitively robust against frameshift mutations as well,
we found that both optimizations appear to be independent of each other. For both,
better codes can be found, but it becomes significantly more difficult to find candidates
that optimize all of these features—just like the SGC does. We conclude that the SGC
is not only very efficient in minimizing the consequences of mistranslations, but rather
optimized in amino acid polarity conservation for all three effects of code alteration,
namely translational errors, point and frameshift mutations. In other words, our result
demonstrates that the SGC appears to be much more than just ‘‘one in a million’’.

Subjects Bioinformatics, Evolutionary Studies, Genetics
Keywords Standard genetic code, Overlapping codes, Frameshift mutation, Polar requirement

INTRODUCTION
Some of the 20 proteinogenic amino acids are non-polar and hydrophobic, others are
negatively or positively charged. The cysteine side chain can build covalent bonds in the
form of disulfide bridges with other cysteines. The folding of a protein chain is therefore
determined by disulfide bonds between its cysteines and the sets of weak non-covalent
bonds that form between other amino acids of the chain (Anfinsen, 1973). Another factor
that drives the folding is the tendency of hydrophobic molecules, including the non-polar
side chains of amino acids, to cluster in the interior of the molecule. This allows the side
chains to avoid contact with the aqueous environment of the cytoplasm. Due to these many
factors, even small changes in the DNA sequence can render a protein useless or completely
change its three-dimensional structure (Alexander et al., 2007). Since the discovery of
the standard genetic code (SGC, Nirenberg & Matthaei, 1961), there has been an ongoing
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discussion on the evolution of this code especially because of its near universality (Vetsigian,
Woese & Goldenfeld, 2006). This strong conservation inspired many theories on adaptive,
historical and chemical arguments assuming that the SGC is optimized: it might reflect
either the expansion of a more primitive code towards the inclusion of more amino acids,
or could be a consequence of direct chemical interactions between RNA and amino acids.
Alternatively, stereochemical, co-evolutionary and error minimization mechanisms might
have acted in concert to assign the 20 proteinogenic amino acids to their present position
in the SGC (Knight, Freeland & Landweber, 1999).

Haig & Hurst (1991) found evidence that the SGC minimizes the effects of
mistranslations, since the impact of a base substitution is much stronger for almost
all out of 10,000 simulated alternative triplet block codes. Their results were based on
the assumption that all single-point substitutions were equally likely. Freeland & Hurst
(1998) extended this work by taking into account the imbalance between transitions and
transversions. They showed that the relative efficiency of the genetic code even increased at
any reasonable transition/transversion bias. In addition, when they included this bias into
the translational errors, then only one in every million randomly generated codes showed
to be more efficient than the natural code, again suggesting that the code might be the
product of selection. Recently, Itzkovitz, Hodis & Segal (2010) proposed that the SGC is also
optimized for another modification, i.e., the insertion of overlapping information within
protein-coding regions. This feature strongly correlates with the robustness of the natural
code against frameshift mutations. Such mutations can have very severe effects on a amino
acid sequence, because a single shift impacts all triplets following downstream (Drummond
&Wilke, 2008). On the other hand, these non-coding blocks inside the coding sequences
appear to be particularly necessary in higher animals (such as mammals) to allow for
the complex gene regulation processes. But in addition to the robustness of the coding
sequences, the molecular dynamics of DNA also seem to depend on the degeneracy of
the DNA code (Babbitt et al., 2014). Thus, we might expect that the use of suitable codons
may also play an important role outside the coding regions. In particular, those last three
arguments suggest that the DNA code is optimized for much more than just robustness
against point mutations.

Therefore, we dedicate ourselves in this work to the so-called adaptive theory that
suggests the pattern of codon assignments to be an adaptation optimizing a certain set
of functions, such as the minimization of errors caused by mistranslations (Wong, 1975).
We reproduced the simulations of Freeland & Hurst (1998) and extended this approach
to the problem of frameshift mutations. Even though we generated a completely new set
of 1,000,000 codes out of about 1018 possible codes, we still got very precisely the same
results as proposed by Freeland and Hurst. It also turned out that if the natural code has
been evolved to be robust against mistranslations, it seems to be just as optimized against
frameshift mutations. Finally, it seems that this factor is more than just a side-effect of
the point mutation stability, as codes that successfully outperform the SGC for one of the
features proposed in this work do not automatically reach this level for any of the other
features, but the SGC does.
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Table 1 Polar Requirement (PR) of every proteinogenic amino acid as measured byWoese et al.
(1966).

Amino acid Abbrev. PR Amino acid Abbrev. PR Amino acid Abbrev. PR

Alanine Ala 7.0 Glycine Gly 7.9 Proline Pro 6.6
Arginine Arg 9.1 Histidine His 8.4 Serine Ser 7.5
Aspartic acid Asp 13.0 Isoleucine Ile 4.9 Threonine Thr 6.6
Asparagine Asn 10.0 Leucine Leu 4.9 Tryptophan Trp 5.2
Cysteine Cys 4.8 Lysine Lys 10.1 Tyrosine Tyr 5.4
Glutamic acid Glu 12.5 Methionine Met 5.3 Valine Val 5.6
Glutamine Gln 8.6 Phenylalanine Phe 5.0

DATA AND METHODS
Generating one million random codes
Haig & Hurst (1991) generated alternative encodings by permuting the 20 (amino acid)
labels of the 21 codon sets of the original code. Each set contains all codons that decode
for one of the 20 proteinogenic amino acids plus there is one set containing the three stop
codons. A new code is thus created by randomly assigning each of the 20 amino acids to
one of the codon sets while leaving the stop codons unchanged. This shuffling keeps the
basic organization of the natural code intact (i.e., the level of redundancy).

These permutations are chosen from a repertoire of 20!(>2.4×1018) possible alternative
code tables. Given this huge number, both test set sizes are rather small, not only the
10,000 codes analyzed by Haig & Hurst (1991) but also the 1,000,000 codes in the work
by Freeland & Hurst (1998) can likely miss some even better codes. However, as both
results showed a rather homologous picture of the resulting codes statistics, we decided to
generate our own subset with 1,000,000 codes and to reproduce the results from Freeland
& Hurst (1998) first.

One principal measure that we will focus on in the following is the conservation of the
polar requirement (PR) for every triplet after a given mutation. See Table 1 for a complete
list of the exact PR values for each of the 20 proteinogenic amino acids. These values
were proposed by Woese et al. (1966). In these experiments, multiple mixtures of water
and dimethylpyridine were used to estimate a specific linear trend for each amino acid
on a log–log diagram between a chromatographic measure and the mole fraction water
for different concentrations. According to this data, a mutation of e.g., Proline (CCA,
6.6) to Threonine (ACA, 6.6) would be a silent mutation as the PR remains unchanged.
In contrast, a change from Proline to Arginine (CGA, 9.4) would lead to a significant
alteration in PR.

Change in polar requirement after point mutations
Haig & Hurst (1991) introduced a mean square (MS) measure to quantify the relative
efficiency of any given code: Let P(ci) be the PR value of an amino acid represented by
codon ci. M j(ci) is the jth mutation of codon ci, and thus P(M j(ci)) the PR value of the
mutated codon. Note that of course for every codon position M is a different function
which describes a specific mutation, e.g., a point mutation. Furthermore,mi is the number
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of possible mutations of codon ci. Again, this number depends on the mutation M . There
are 61 codons that might be mutated, as we leave out the three stop codons. Hence, the
squared distance D for a given mutationM is calculated by

DM :=

61∑
i=1

mi∑
j=1

(P(ci)−P(M j(ci)))2. (1)

They introduced a scaling factor F that is defined as the number of possible mutations
over all codons, F :=

∑61
i=1mi. Specifically, for point mutationsM1,M2, andM3 at the first,

second, and third position, these values are F1= 174,F2= F3= 176, because in the set of
all 61∗3= 183 possible mutations, there are nine resulting into stop codons for the first
position and seven for the other two mutations. The mean squared error MS1, MS2, and
MS3 can then be calculated by

MS1=
D1

F1
, MS2=

D2

F2
, MS3=

D3

F3
. (2)

The mean squared error of mutations for all three positions is then computed by

MS0=
D1+D2+D3

F1+F2+F3
. (3)

Transition/transversion bias
Since transitions (U↔ C, A↔ G) occur more likely than transversions (U, C↔ A, G),
Freeland & Hurst (1998) proposed a weighting that incorporates this bias. Basically, they
split up the set of all mutations into two parts, S (transitions) and V (transversions) with

S :=
61∑
i=1

ms
i∑

j=1

(P(ci)−P(M j,s(ci)))2, V :=
61∑
i=1

mv
i∑

j=1

(P(ci)−P(M j,v(ci)))2. (4)

Here, M j,s(ci) is the jth transition, M j,v(ci) represents the jth transversion of codon ci,
and ms

i and mv
i are the number of all transitions and transversions for ci. After separating

these two cases, S can be weighted by an ω resulting in a weighted squared error W ω with
a weighted scaling factor Fω:

W ω
:=ωS+V , Fω :=ω

61∑
i=1

ms
i+

61∑
i=1

mv
i (5)

The weighted mean squared error over all codons is denoted asWMS1ω, WMS2ω, WMS3ω,
respectively and computed by

WMS1ω=
W ω

1

Fω2
, WMS2ω=

W ω
2

Fω2
, WMS3ω=

W ω
3

Fω3
.

These local errors are combined to a position-independent weighted mean squared error
WMS0ω, which is defined by

WMS0ω=
W ω

1 +W
ω
2 +W

ω
3

Fω1 +F
ω
2 +F

ω
3

.
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Table 2 Quantification of translational errors used to measure the relative efficiency of the natural ge-
netic code in terms of mistranslation (taken from Freeland & Hurst (1998)).

Bases First Second Third

Relative frequency 0.5 0.1 1
Transition weighting 2 5 1
Combined weighting for
transitions ψS 1 0.5 1
transversions ψV 0.5 0.1 1

One drawback here of course is the free parameter ω. For ω= 1, WMS0 equals MS0, but
for other regimes, it is hard to tell whichω to choose. Interestingly, Freeland & Hurst (1998)
found that the regime that is optimal for stability for the natural code is corresponding
with the ratio found in nature.

Translational errors
The MS and the WMS measures focus on transcriptional errors and point mutations. A
third factor are so called translational errors, i.e., the mistranslation of accurate mRNA.
This error is also not equally distributed over all positions, they are much more likely
for the third position. Friedman &Weinstein (1964) investigated the polypeptide product
resulting from in vitro translation of poly(U)mRNA. Freeland & Hurst (1998) quantified
those results, as seen in Table 2, and used this combinedweighting to propose a translational
error (tMS). The squared error for transitions and transversions are calculated as shown
in Eq. (4), but this time, we have fixed weights ψS and ψV for both, S and V. Thus, the
translational squared error Tψ and its scaling factor Fψ is defined as

Tψ :=ψSS+ψVV , Fψ :=ψS

61∑
i=1

ms
i+ψV

61∑
i=1

mv
i .

The translational mean square deviation of mutations at all positions (tMS0) is computed
by

tMS0=
T 1
+T 2
+T 3

F1+F2+F3 .

Change in polar requirement after frameshift mutations
There is another important set of mutations: the so-called frameshift mutations. These
mutations describe the impact of deletions or insertions (so called indels) of nucleotides out
of or into coding sequences. Such mutations can be specifically severe, as they are changing
the reading frame of all codons following upstream. As the amino acids are represented by
triplets, the reading frame can only be shifted by one or two positions to the left or right
to be effectively changed. These shifts are then called ±1 resp. ±2 frameshifts. A ±3 shift
mutation is not changing the reading frame, but such mutations can also have a strong
impact on the function or the shape of an affected protein.

In Table 3, the impact of frameshift mutations on the reading frame is illustrated on a
short sample sequence. It can be seen that a frameshift of+1 is leading to the same codons
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Table 3 Illustration of the impact of frameshift mutations to the reading frame. A deletion or an in-
sertion of a DNA fragment somewhere in an upstream codon is shifting the reading frame for all codons
downstream. For±3 letters, the reading frame stays intact, hence this shift is not a frameshift mutation.
The reading frame after+1 and−2 reading frame shifts is leading to the same read out, just as the−1 and
+2 shifts lead to the same reading frame. XYZ hereby denote the (unknown) nucleotides that slip into the
sequence due to the frame shift.

Sequence Triplets

Original sequence AUCGUAGUCAAU −→ AUC GUA GUC AAU
Shift+1 XAUCGUAGUCAA −→ XAU CGU AGU CAA
Shift−2 CGUAGUCAAUXY −→ CGU AGU CAA UXY
Shift−1 UCGUAGUCAAUX −→ UCG AUG UCA AUX
Shift+2 XYAUCGUAGUCA −→ XYA UCG AUG UCA

as for a−2 shift. The same holds for the−1 and+2 shifts. Thus, without loss of generality,
we will restrict the following examination on only ±1 reading frame shifts.

As with the point mutations, we consider only the non-stop codons (61 triplets). This
time, themutation is defined as follows: first, happens a frameshift and then the completion
of the triplet by a new character. Since we do not know this character for the general case,
we have to estimate the average change in polar requirement (PR) over all four possible
nucleotides. The triplet AUU e.g., can become AAU, CAU, GAU, UAU after a right shift (+1)
or UUA, UUC, UUG, UUU after a left shift (−1). Thus, this gives us 4∗61= 244 triplets, and
for each of these patterns, we can estimate the pairwise PR change between the PR of the
associated amino acid and that of the original triplet and its associated amino acid.

We will further exclude all occurring stop codons after shift from our statistics. For
mutations to both sides, there are 12 codon-to-stopcodon indels: for the right shift
mutations (+1 shifts), these are

{AAA,AAC,AAG,AAU}→ UAA,

{AGA,AGC,AGG,AGU}→ UAG, and

{GAA,GAC,GAG,GAU}→ UGA.

For the left shift mutations (−1 shifts), we get

{AUA,CUA,GUA,UUA}→ UAA,

{AUA,CUA,GUA,UUA}→ UAG, and

{AUG,CUG,GUG,UUG}→ UGA.

Hence, for both right and left shift there are Fr = Fl = 232 possible codon-to-codon
transformations. The squared distances Dr and Dl are then calculated as shown in (1).
Right-shift (rMS), left-shift (lMS) and the total mean squared error (fMS) are denoted as

rMS=
Dr

Fr
, lMS=

Dl

Fl
, fMS=

Dr+Dl

Fr+Fl
. (6)

Please note that the total squared error for left- and right-shift mutations are identical:
let X and Y be two non-stop codons and X becomes Y after a shift mutation to the left
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Table 4 Statistics for the distribution of MS calculations distributions of possible MS values in com-
parison to Freeland & Hurst (1998). Both studies generated 1,000,000 random out of 20! possible codes.
Nonetheless, the mean errors are almost identical.

Measure
Mean± SD (P)

Our simulation
(n= 1,000,000)

Freeland and Hurst
(n= 1,000,000)

MS0 9.42±1.51 (0.0001) 9.41±1.51 (0.0001)
MS1 12.05±2.80 (0.0031) 12.04±2.80 (0.0031)
MS2 12.63±2.60 (0.2213) 12.63±2.60 (0.2216)
MS3 3.59±1.50 (0.0001) 3.59±1.50 (0.0001)

(X←Y ). Then, it follows directly that there is also a right-shift pair (Y→X) of the exact
same two codons. In other words, the left- and right-shift mutations lMS and rMS are
calculated from the exact same set of codon-to-codon pairs. Thus, they are identical. But
then also the total mean squared error fMS equals to lMS and rMS.

Combining frameshift and point mutations
Finally, we want to see, especially for the newly generated codes, whether or not they are
top scorers in only one of the tested categories and if there are other codes that might
perform better in a combined comparison. Specifically, we combined tMS0 and fMS to a
new measure ftMS with

ftMS := (tMS0+ fMS)/2. (7)

RESULTS
We were able to reproduce the MS-scores that also Freeland & Hurst (1998) obtained for
their set of 1,000,000 codes. In Table 4, the similarities of the estimated errors can be seen.
Listed are the mean squared errors and their standard deviation. In brackets, we provided
the proportion of random codes that are more conservative than the SGC, e.g., one out
of 10,000 codes had a lower MS0 value than the SGC. We could also reproduce the effect
regarding the transition weighted error WMS0: In Fig. 1, the SGC code becomes even more
outstanding when varying ω, compared against the top 15 better codes (using the MS0
score). Already for ω= 3, there are only three of the 15 codes left with a WMS0 score lower
than that of the SGC. Remarkably, there are some codes that even increase their score for
higher ω. In Table 5, the amino acid sequences for our top 15 codes can be seen. The three
that also remain better for ω≥ 3 are marked in bold.

The third series of calculations that Freeland and Hurst carried out maps translational
error instead of errors resulting from point mutations. Figure 2B shows the distribution
of tMS values of this work set of one million random codes. Descriptive statistics of the
distribution of the variant codes of this work in comparison with the statistics of Freeland
and Hurst are given in Table 6 along with the obtained tMS value of the SGC.

Freeland and Hurst found only one out of one million random codes with a lower tMS
score compared to the SGC. With our set of one million variant codes, two better codes
were found. To render the number of better codes more precisely, a set of ten million
unique variant codes was created, which led to the estimation that the probability of a code
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Figure 1 Best 15MS0 codes. The behavior of WMS0 values of 15 superficially better codes (given in
Table 5) at each of 20 transition/transversion weightings, compared with the behavior of the natural code.

Full-size DOI: 10.7717/peerj.4825/fig-1

Table 5 Permutation lists of the 15 random codes with the lowest MS0 values. Each column represents one codon set (see Fig. 3). The amino
acids of the SGC are replaced by the corresponding amino acid, i.e., the amino acid in the same column, of the variant code.

SGC Phe Leu Ile Met Val Ser Pro Thr Ala Tyr His Gln Asn Lys Asp Glu Cys Trp Arg Gly

code 942623 Lys Gly Gln Ile His Arg Pro Thr Ala Asn Val Leu Trp Cys Phe Tyr Glu Asp Met Ser
code 254612 Phe Pro Met Leu His Ala Ser Tyr Gly Ile Thr Arg Trp Val Lys Asp Cys Glu Gln Asn
code 634755 Asn Gly His Val Phe Ala Pro Ser Trp Lys Gln Cys Tyr Ile Met Leu Asp Glu Arg Thr
code 697299 Ser His Lys Glu Gln Tyr Pro Thr Val Ile Leu Arg Asn Asp Phe Gly Trp Cys Ala Met
code 050521 Gln Thr Cys Leu Pro Gly Ser Met Tyr Lys Asn Trp Phe Ala Ile Val Asp Glu His Arg
code 584015 Gly Arg Glu Asp His Pro Ala Ser Leu Phe Val Trp Gln Asn Tyr Ile Met Lys Thr Cys
code 354015 Ile Phe Thr Glu Ala Ser Gly Arg His Cys Leu Pro Val Met Trp Tyr Lys Asp Gln Asn
code 602874 Ser Ala Cys Leu Tyr Gln Lys His Gly Arg Met Val Trp Ile Pro Phe Glu Asp Thr Asn
code 607794 Val Arg Lys Asp Tyr His Ser Gln Pro Met Thr Asn Ala Glu Phe Leu Ile Cys Gly Trp
code 672469 Ser Thr Leu Met Ile Gln Gly Val Phe Asn His Arg Ala Pro Cys Trp Asp Glu Lys Tyr
code 336066 Trp Gln Thr Pro Tyr His Asn Ala Gly Leu Ser Phe Cys Ile Val Met Glu Asp Lys Arg
code 660225 Tyr Ile Met Gly Val Lys Ala His Arg Asn Thr Cys Pro Trp Leu Phe Glu Asp Ser Gln
code 170069 Leu Ser Phe Met His Thr Ala Trp Gln Pro Gly Asn Cys Ile Lys Asp Tyr Glu Val Arg
code 581048 Val Pro Gly Trp Leu Arg Thr Ala Ile Lys Ser Tyr Gln Asn Phe Met Glu Asp His Cys
code 227926 Lys His Gln Asn Gly Ser Thr Tyr Trp Asp Cys Val Ala Leu Ile Met Glu Arg Pro Phe

Notes.
Items in bold are those three codes that still outperformed SGC after applying the transition/transversion weighting (See Fig. 1).
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Figure 2 Histograms for the four principal errors measured. In each plot, the x-axis shows the bins of
the corresponding error values, y-axis gives the number of random codes that fall in this bin. In addition,
the arrow in each plot shows the category into which the SGC falls. (A) MS0, 124 better codes found, P0 ≤

10−3; (B) tMS0, 2 better codes found, Pt ≤ 10−5; (C) fMS, 267 better codes found, Pf ≤ 10−3; (D) ftMS, 0
better codes found, Pft ≤ 10−6

Full-size DOI: 10.7717/peerj.4825/fig-2

Table 6 Statistics for the distributions of possible tMS values. Comparison of the results of this work
with those reported by Freeland & Hurst (1998). Each sample consisted of one million random codes.

tMS Our calculations
(n= 1,000,000)

Freeland and Hurst
(n= 1,000,000)

Mean± SD 7.63± 1.35 7.63± 1.35
Natural code 2.63 2.63
# better codes 2 1

as efficient as the SGC arising by chance alone is Pt = 0.0000028. Although this number is
nearly three times higher than the probability estimated by Freeland & Hurst (1998) and
though the precise quantification of mistranslations may be questioned, the SGC shows
clear evidence of structure. Its efficiency is indeed two orders of magnitude higher than
previously obtained by the MS or WMS measures.

In Fig. 2B, the histogram for the tMS0 values can be seen. Again, the arrow indicates
the bin that includes the tMS0-score of the SGC. Remarkably, only two random codes are
found with a lower tMS0 value than the natural code. Therefore, the probability of a code
as efficient as the natural code arising by chance alone is Pt = 0.000002.
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Table 7 Freeland & Hurst (1998) reported the first 15 codes that outperformed theWMS01 value. We evaluated these 15 reported codes with
the WMS02, tMS0 and the fMS scores as described in this work. For the WMS01 score, following from construction, all 15 codes are better than the
SGC, code 13 (marked bold) reached the lowest score. For the WMS02 score, only three codes (bold) reach lower values, all of these codes have been
reported by Freeland & Hurst (1998) to also become more robust when increasing the transition weighting (see Fig. 1). For the tMS0 score, none of
these codes outperform the SGC, only code 2 at least reaches an equally low score. For the frame shift score fMS, only code 13 reaches a better score.

Measure SGC 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

WMS01 5.19 4.80 5.11 4.87 5.05 5.14 5.13 4.99 5.14 5.00 5.10 4.91 5.14 4.72 5.06 5.17
WMS02 4.66 4.97 4.70 4.73 4.83 5.26 4.64 5.25 4.98 4.39 5.03 4.99 5.09 4.60 4.96 5.31
tMS0 2.63 3.93 2.63 4.08 4.30 3.04 4.18 2.97 3.78 3.85 4.14 3.85 3.84 3.06 4.93 3.59
fMS 6.11 6.20 8.99 8.99 6.34 8.96 9.64 12.24 7.60 8.49 7.55 11.27 7.89 5.59 7.55 7.80

Using the proposed model for frameshift mutations (fMS), we estimated the fMS values
for the same 1,000,000 random codes that were used in the previous paragraph and
compared their fMS values with the SGC. As can be seen in the histogram in Fig. 2C, again,
the SGC is outstanding to most codes. Then, we combined both scores (tMS0 and fMS)
to the ftMS score (see Eq. 7). This score will be low only for those codes that are small
for both underlying values. As it turned out, most codes are not well suited to tackle both
measures; however, globally the SGC wins a little ground compared to the other codes (see
Fig. 2D).

Freeland & Hurst (1998) have published in their work the first 15 codes that
outperformed the SGC regarding the tMS0 score. We compared these 15 codes with
respect to the fMS score (see Table 7). Similarly, to our results, there are some codes that
improve and some that worsen as the transition weighting increases. Code 13 has the
lowest WMS01 score and remains better than the SGC for the WMS02 score (along with
two others). With regard to the tMS0 score, however, all these three codes fail, only code 2
achieves a better result than the SGC. Regarding FMS scores, only code 13 gets better, the
same code that has surpassed the WMS0 scores.

Finally, Goldman (1993) used a so called record-to-record-travel algorithm (Dueck,
1993) to estimate the global optimum for the point mutation scenario. Recently, Buhrman
et al. (2011) analytically proved that this code really is the optimal solution. It’s coding
table can be seen in Fig. 3B. We used this code to compare it against the SGC. Most random
codes that were better than the SGC typically did not perform well for the fMS values. But
even though the Goldman code is not optimal for the fMS value, it still did outperform the
SGC in this respect. The individual scores are summarized in Table 8.

DISCUSSION
In this work, we restricted our analysis to the same subset of triplet codes as Haig & Hurst
(1991) did: a random permutation of the amino acids but based on the block code of the
Standard Genetic Code (SGC). This means that all newly generated codes still express the
same degeneration of the third position that the SGC does. Accordingly, all silent mutations
of the SGC also remain silent mutations in each of the new codes, i.e., the degeneration of
the third position has zero effect on the stability considerations made in this work.
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On the efficiency of the genetic code after frameshift mutations
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(a) Standard Genetic Code (SGC)
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Figure 3. Comparison of the SGC (a) with the optimal code for WMS0 from Goldman (1993) (b),
and the most conservative codes found with the tMS0 (c), and fMS (d) measure, respectively. The
polar requirement (PR) of each amino acid is illustrated by a specific shade. The maximum value, i.e.
the PR of asparagine, is colored 100% and the mimimum, i.e. the PR of cysteine, is colored 0%.

understood mechanism. For the scope of this work, it would be very interesting to examine whether
or not there are statistical features, e.g. in the codon usage, that might be useful to find candidate
regions that qualify for ORFs. There is a growing evidence of overlapping functions also in other
species than viruses, including mammals (Kovacs et al., 2010).

Conclusion
The impact of point mutations, translational errors and frameshift mutations were investigated in this
work. For all three deleterious mechanisms the genetic code shows clear evidence of its capability to
minimize their effects by conserving the polarity of the coded amino acids. The results show that the
SGC is most efficient in minimizing the effect of translational errors. It outperforms more than 99.99%
of one million randomly generated codes. And this effect even got stronger for the combination of all
three proposed measures, indicating that all three factors might have been contributed independently
to the evolution of this sophisticated, robust, and universal coding.

The analysis of this work assume that the codon assignments of the SGC reflect an adaptive
outcome of natural selection for error minimization. It is therefore necessary to address two key
vulnerabilities in terms of genetic code optimization. First, the assumed model by which mutations
or mistranslations occur lacks a satisfying amount of empirical data. The quantification of mistrans-
lational errors by Freeland and Hurst was rather crude and it would be valuable to conduct further
analyses incorporating better mistranslational error data. Second, the quantification of amino acid
averaged similarity is somewhat inaccurate. There is a plethora of reasons to expect similarity to
rather being a multidimensional concept that is still not fully understood and may well be a partly
relative phenomenon, depending on the precise amino acid sequence of a protein.

However, we do not expect the polarity requirement to be the sole evolutionary force that shaped
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the most conservative codes found with the tMS0 (C), and fMS (D) measure, respectively. The polar re-
quirement (PR) of each amino acid is illustrated by a specific shade. The maximum value, i.e., the PR of
asparagine, is colored 100% and the mimimum, i.e., the PR of cysteine, is colored 0%.
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Table 8 Comparison ofWMS02, tMS0 and fMS values of the standard genetic code (SGC) and the
most conservative codes found with theWMS0, tMS0 and fMSmeasure. In addition, the probability to
find a better code was calculated for every code and each measure.

Measure SGC Code 672469 Code 648040 Code 218957 Goldman’s Code

WMS02 4.66 4.15 4.86 5.10 3.50
P2
0 3.1×10−5 0 8.9×10−5 3.5×10−4 0

tMS0 2.63 3.19 2.56 3.83 2.19
Pt 2.0×10−6 6.0×10−5 0 4.6×10−2 0
fMS 6.11 13.66 10.26 5.25 5.69
Pf 2.7×10−4 7.8×10−1 2.7×10−1 0 5×10−5
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Looking at the millions of simulated alternative block codes, both the analysis Freeland
& Hurst (1998) as well as our work show that among all these codes, the SGC stands out
in particular for the conservation of Polar Requirement. Freeland & Hurst (1998) have also
shown that this is not the case for a variety of other biochemical features. We showed that
there are better codes than the SGC regarding both errors: there is the global optimum
for the point mutation that also outperforms the SGC regarding frame shift mutations
(Goldman, 1993). But even if we just take a look at the first 15 codes that Freeland & Hurst
(1998) found to be more robust to point mutation than the SGC, the proposed code 13 is
even more robust than Goldman’s code regarding frame shift mutation (see Tables 7 and
8). Obviously, it is not too difficult to find a code on a global scale that is more robust than
the SGC. However, the SGC appears to be effectively optimized for these two features by
the evolutionary processes that might have played a role here.

Haig & Hurst (1991) concluded that the primary selective force is to minimize the
effects of codon-anticodon mismatch during translation. Freeland & Hurst (1998) then
found further evidence for their hypothesis: when transitions are weighted twice as heavy
as transversions, the relative efficiency of the natural code increases. In addition, the
observed behavior of the SGC is not common to all codes: seven out of the 15 codes that
had the best MS0 scores (all better than the SGC) even decreased in their robustness for
increasingω. Finally, including the rather crudemodel of mistranslations, again the relative
efficiency of the SGC increases by a factor of 2 (indicating that SGC is ‘‘one in a million’’).

Despite the strong evidence that the SGC might have been evolved to conserve amino
acid polar requirement against mistranslations, there is no doubt that also the generation of
stop codons along any mutation might play an important role. Seligmann & Pollock (2004)
examined this phenomenon and argued that it would be optimal to enhance the probability
of stop codon generation after frameshifts, and thus early silencing a damaged gene to save
energy and resources of the biosynthetic machinery. In this work, we completely omitted
the stop codons, and rather focused on the conservation ability of the SGC, just as proposed
by Freeland & Hurst (1998), and the systematic alteration according to frameshift mutation
as proposed by Itzkovitz, Hodis & Segal (2010).

We found clear evidence that along the unique evolution of the SGC to what it is today,
it is also significantly more robust against any frameshift mutation than most random
codes are. We have further shown that the proposed measure of frameshift stability is
symmetric, i.e., equally robust for left and right reading frame shifts. But please note that
this might not hold for any real sequences, due to the unbalances of nucleotides and
codons in real sequences. Hence, this might be an interesting question to follow up in
further investigations. However, in our sample of one million random codes only 267
codes were outperforming the SGC in terms of polar requirement conservation.

One might argue that a code optimized to withhold even a frameshift mutation, might
be protected against point mutation as a side effect. Therefore, we examined our codes also
with a mixed measure, the average of the general point mutation measure (tMS0) and the
frameshift mean squared error (fMS). Interestingly, we did not find a single permutation
within our million samples to be better than the SGC for this combined measure (ftMS).
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Hence, the proposed results here are giving evidence that the SGC is even more than just
‘‘one in a million’’, as Freeland and Hurst stated.

In Table 8 the comparison between the SGC and the best codes for each measure
(WMS02, tMS0, and fMS) is summarized. For each code, we evaluated WMS02, tMS0, and
fMS, as well as the proportion of better random codes found within the respective category.
Code 672469, the best code under mutational bias (WMS0) is also very efficient regarding
translational errors (Pt = 0.00006), but with over 70% of better codes found using the
frameshift measure it clearly does not minimize the effect of frameshift mutations at
all. The same behavior can be observed for code 648040, the code that performs best
under translational bias. It minimizes the effect of point mutations very efficiently
(P2

0 = 0.000089), but there are 27% more conservative codes concerning the effect
of frameshift mutations. The best performing code regarding the effect of frameshift
mutations (code 218957) is the only one, aside from the SGC, that minimizes all three
effects. It minimizes point mutations very efficient with (P2

0 = 0.00035) and is still under
the best 5% that are conservative regarding translational errors.

The SGC and the three most conservative codes are shown in Fig. 3. The amino acids
are colored according to their respective polar requirement. The visual comparison of all
four amino acid distributions shows that Goldman’s code and code 648040 superficially
bear little similarity to the SGC. However, the pattern of the best fMS code (code 218957)
closely resembles SGC’s PR distribution.

Freeland and Hurst had one reason to suspect that mistranslation bias was more
important than mutational bias in the course of evolution. Their single better code in
terms of tMS showed a behavior very similar to that of the natural code when tested
under different transition weightings, while their best code under general transition bias
was, relatively, two orders of magnitude less efficient than the natural code in terms of
mistranslation. The results of this work, however, indicate that this hypothesis is at least
not the only aspect for which the SGC appears to be optimized.While code 648080, the best
code in terms of tMS, showed a similar behavior as the natural code in terms of increasing
transition bias as well, code 672469, the best code under WMS0, is nearly as efficient as the
SGC in minimizing the effect of translational errors (see Table 8).

Finally, some organisms (mostly viruses) have so called overlapping reading frames
(ORFs,Normark et al. (1983)), i.e., there is a protein embedded in another protein’s coding
sequence, but shifted to another reading frame. This might function for gene regulation
purposes, but it is a far from understood mechanism. For the scope of this work, it would
be very interesting to examine whether or not there are statistical features, e.g., in the
codon usage, that might be useful to find candidate regions that qualify for ORFs. There
is also growing evidence of overlapping functions in other species than viruses, including
mammals (Kovacs et al., 2010).

CONCLUSION
The impact of point mutations, translational errors and frameshift mutations were
investigated in this work. For all three deleterious mechanisms, the genetic code shows
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clear evidence of its capability to minimize their effects by conserving the polarity of the
coded amino acids. The results show that the SGC is most efficient in minimizing the
effect of translational errors. It outperforms more than 99.99% of one million randomly
generated codes. This effect even got stronger for the combination of all three proposed
measures, indicating that all three factors might have been contributed independently to
the evolution of this sophisticated, robust, and universal coding.

The analysis of this work assume that the codon assignments of the SGC reflect an
adaptive outcome of natural selection for error minimization. It is therefore necessary
to address two key vulnerabilities in terms of genetic code optimization. First, the
assumed model by which mutations or mistranslations occur lacks a satisfying amount of
empirical data. The quantification of mistranslational errors by Freeland and Hurst was
rather crude and it would be valuable to conduct further analyses incorporating better
mistranslational error data. Second, the quantification of amino acid averaged similarity is
somewhat inaccurate. There is a plethora of reasons to expect similarity to rather being a
multidimensional concept that is still not fully understood and may well be a partly relative
phenomenon, depending on the precise amino acid sequence of a protein.

However, we do not expect the polarity requirement to be the sole evolutionary force
that shaped the SGC. There are many theories about how the code might have evolved and
what its origin might have looked like (Higgs, 2009). But our results—along the lines of
lots of other work (Freeland et al., 2000)—show that there is a clear non-random structure
underlying the SGC, making it remarkably robust not only against point but also against
frame shift mutations.

Thus, our principal conclusion is that stability against frameshift mutations should be
put on to the list of the series of features the SGC achieved in the course of evolution.
We presented a theoretical framework to evaluate the SGC’s efficiency, assuming that
all incoming nucleotides are in fact equally likely. As a matter of fact, triplet usage or
nucleotide frequency are far from being uniformly distributed in the exome of almost
all organisms. Hence, the consequent next step will be to take a closer look at biological
relevant data and compare how competitive the SGC will be on real data scenarios.
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