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Neurodevelopmental diversity results in some children 
receiving a clinical diagnosis of a developmental dis-
order and others experiencing learning difficulties in 
the absence of a diagnosis. As a result, 14% to 30% of 
children and adolescents worldwide experience barriers 
to learning (Department for Education, 2018; National 
Center for Education Statistics, 2020) that vary widely 
in scope and impact. Some children are formally diag-
nosed via specialist education services and placed in 
categories including dyslexia, dyscalculia, or develop-
mental language disorder. Other children, such as those 
with attention-deficit/hyperactivity disorder (ADHD), 
dyspraxia, or autism spectrum disorder (hereafter, 
autism), are normally diagnosed in clinical services. 
However, many children who struggle will never receive 
a formal label for their learning difficulty, despite meeting 
the criteria for multiple different diagnoses (e.g., Bathelt, 
Holmes, et al., 2018; Holmes, Bryant, the CALM Team, & 
Gathercole, 2019; Siugzdaite, Bathelt, Holmes, & Astle, 
2020; see also Embracing Complexity Coalition, n.d.).

This classification structure has also been used within 
research to integrate and guide empirical work (Regier, 
Kuhl, & Kupfer, 2013). As a result, the literature is organized 
around a patchwork of different theories that provide puta-
tive explanations for different recognized disorders. In 

these theories, a complex array of observable characteris-
tics are frequently categorized according to a single defin-
ing neurocognitive deficit. As understanding of a particular 
set of diagnostic features evolves, most such theories are 
gradually pruned from the field because of insufficient 
evidence, counterevidence, or the emergence of better-
specified theories. These theoretical accounts fail, but that 
is their purpose. Choose any clinical categorization of 
developmental differences, and there is a graveyard of 
once-popular theoretical accounts, from the magnocellular 
theory of dyslexia (Stein, 2001) to the mirror-neuron theory 
of autism (Williams, Whiten, Suddendorf, & Perrett, 2001).

Over and above specific problems with any single 
theory, this general class of theory is problematic because 
of the reliance on the very notion of a “core deficit”—
something that has been repeatedly debunked both 
within specific (Happé, Ronald, & Plomin, 2006) and 
across multiple diagnostic categories (e.g., Pennington, 
2006). But in practice, developmental psychologists and 
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developmental-cognitive neuroscientists frequently 
return to core-deficit theories, either implicitly or explic-
itly, if not to motivate studies, then to interpret them. 
Here, we provide a working definition of a core-deficit 
account, describe the inherent weaknesses in the theo-
ry’s accompanying methods and methodology, and argue 
that building the empirical foundations for more com-
plex (and accurate) theoretical frameworks will require 
a wholesale rethink in the way we design, collect, and 
analyze developmental data.

Identifying a Core-Deficit Hypothesis

A core-deficit hypothesis pins a multiplicity of cogni-
tive, behavioral, and neurobiological phenomena onto 
a single mechanistic impairment and is assumed to have 
the power to explain all observed profiles within a 
particular diagnostic category. To provide one example, 
in autism, the dominant core-deficit hypothesis since 
the mid-1980s has been the theory-of-mind model. This 
model proposes that autistic people uniquely lack the 
ability to detect, interpret, or understand the mental 
states of others. Versions of this model vary in the range 
of behaviors and mental states they attempt to encom-
pass. At its broadest, the theory-of-mind deficit can 
draw in differences in play, language development, and 
all types of processing of emotions, including basic 
emotions, as well as desires, beliefs, and higher-order 
complex mental states such as suspicion. On a narrower 
scale, theory-of-mind impairments in autism are under-
stood to apply only to the automatic and easy process-
ing of complex mental states. Until recently, evidence 
for this latter position has looked fairly robust, but now 
even this pillar of autism theory is under threat, as 
innovative research has revealed that the apparent 
“deficits” in mental-state understanding exhibited by 
autistic people may apply only to understanding the 
mental states of nonautistic people (e.g., Crompton 
et al., 2020). At the same time, there is a growing body 
of evidence showing that nonautistic people show 
impairments in detecting and interpreting the mental 
states of autistic people (e.g., Edey et al., 2016). This 
reframes the characteristic “deficit” of autism as a typical 
manifestation of failed communication across different 
sociocultural groups (Milton, Heasman, & Sheppard, 
2018). More importantly for our argument here, the 
model has never been adequately able to explain the 
sleep disturbances, sensory sensitivities, intense and 
consuming interests, or executive difficulties that are 
equally prevalent among autistic people.

The Origins of Core-Deficit Theories 
and Their Persistent Appeal

Across multiple categories, and despite well-articulated 
perspective articles highlighting their limitations (Happé 

et  al., 2006; Pennington, 2006), core-deficit accounts 
remain a recurring theme in developmental-disorders 
research (e.g., Kucian & von Aster, 2015; Mayes, Reilly, 
& Morgan, 2015). Part of their intuitive appeal is their 
relative simplicity. Publishing in higher-tier journals is 
easier when the story is simple, and doing so can 
quickly turn into a citation gold mine if the field invests 
in challenging your theory. If a series of findings can 
be woven together, this provides an ideal way of com-
bining decades of research and cementing its contribu-
tion to the field. However, such tapestries are riddled 
with loose threads that, if pulled, quickly reveal the 
flaws in their construction.

Examples of these construction flaws are found in 
the design choices, participant selection, sample sizes, 
statistical methods, and restrictive range of measures 
that are hallmarks of core-deficit thinking. These flaws 
are still prevalent in the wider developmental literature 
because despite being mindful of the problems inherent 
in core-deficit theories, we have yet to change the meth-
odological template inherited with them.

Highly selective samples

Studies of developmental disorders typically use strict 
exclusion criteria (e.g., Toplak, Jain, & Tannock, 2005; 
Willcutt et al., 2001), including the removal of children 
with co-occurring difficulties. But in reality, co-occurring 
difficulties are the norm rather than the exception 
(Gillberg, 2010). For example, it is rare to have selective 
reading or math impairments; the majority of children 
with one difficulty will also have the other (e.g., Landerl 
& Moll, 2010). The same is true within clinical samples: 
44% of children who receive an ADHD diagnosis would 
also meet the diagnostic criteria for a learning difficulty, 
and a similar percentage who meet the latter criteria 
would also meet the criteria for an ADHD diagnosis 
(Pastor & Reuben, 2008).

Because most children with the difficulties of interest 
are excluded, the literature overstates the “purity” of 
developmental differences. In turn, basing models on 
highly selective samples biases theory toward simpler 
core-deficit accounts. Where studies do include chil-
dren with different diagnoses or with co-occurring dif-
ficulties, the purpose is usually to identify what is unique 
to each diagnosis rather than to establish which dimen-
sions are important for understanding individual out-
comes, irrespective of the diagnostic category applied.

Study designs do not capture heterogeneity

Most studies use a case-control design, with children 
grouped according to strict inclusion criteria (see 
above) and then matched to one or more control 
groups. Significant differences in group-level statistics 
are then taken as evidence for a specific deficit in the 
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“case” group. Variability in performance within groups 
is rarely studied, in part because few studies have suf-
ficient power but also because of reliance on univariate 
statistics. This issue becomes more and more problem-
atic as diagnostic criteria broaden. Regarding heteroge-
neity as noise to be minimized removes a crucial signal 
that could lead to a more complex and accurate theo-
retical conclusion. Although we endorse the application 
of Occam’s razor to interpretation of findings, we must 
be wary of parsimony achieved via flawed means.

Circular logic of measurement selection

Theoretical conclusions about underpinning mecha-
nisms are constrained by our choice of measures. Tasks 
are often included because they are regarded as the 
gold standard for distinguishing a particular group from 
controls, even though the conceptual underpinnings of 
the task are poorly understood. The logic can become 
circular: “We always include a theory-of-mind task 
when studying autistic people, and autism is character-
ized by theory-of-mind task performance.” The task has 
become an implicit requirement within the field without 
any real mechanistic understanding of why different 
children find it hard. Moreover, the dominance of a 
specific core-deficit theory with an associated gold-
standard measure eliminates consideration of other pos-
sibilities: In the case of autism, why not consider an 
executive-planning or sensory-profiling measure? If the 
same domains of measurement are selected in every 
study, to the exclusion of alternatives, then the sup-
posed cardinality of this profile will inevitably be rein-
forced. But little has been explained, and alternative 
possible profiles are not documented.

Neuroimaging methods inherited from 
the adult literature

Finding a shared neural substrate that purportedly 
causes the difference is typically taken as strong evi-
dence for a core-deficit theory. But this is largely an 
artifact of the analytical approach we take to neuroim-
aging. Most canonical neuroimaging methods assume 
a direct correspondence between spatially overlapping 
brain differences (structural or functional) and surface-
level cognitive profiles. A voxel-wise approach to analy-
sis will always produce peaks. Despite its dominance, 
this approach yields remarkably inconsistent results. 
For example, ADHD has been associated with differ-
ences in gray matter within the anterior cingulate cortex 
(Amico, Stauber, Koutsouleris, & Frodl, 2011), caudate 
nucleus (Onnink et  al., 2014), pallidum (Frodl & 
Skokauskas, 2012), striatum (Greven et al., 2015), cer-
ebellum (Mackie et al., 2007), prefrontal cortex (Dirlikov 

et al., 2015), premotor cortex (Mahone et al., 2011), and 
most parts of the parietal lobe (Shaw et al., 2006).

Our contention is that the assumption of spatial cor-
respondence is not valid for understanding brain–cognition 
or brain–behavior links in childhood, especially in chil-
dren with developmental disorders (see also Johnson, 
2011). Difficulties that emerge over developmental time 
can be arrived at via multiple different underlying neural 
routes—a phenomenon called equifinality (Bishop, 
1997). There may also be multifinality: The same apparent 
underlying neural effects can have different consequences 
for behavior and cognition across children (Siugzdaite 
et  al., 2020). The canonical voxel-wise neuroimaging 
methods that dominate developmental cognitive neuro-
science instead create the false impression that the neural 
underpinnings of developmental differences are akin to 
those resulting from acquired focal brain damage, and in 
turn this implicitly leads us back to “core deficits” in our 
theoretical interpretation.

Moving Beyond the Core-Deficit Hypothesis

There is no shortcut to a comprehensive empirical basis 
for more complex theory. Nonetheless, in this section, 
we make some nonprescriptive suggestions as a posi-
tion from which to move forward.

Well-powered studies with inclusive samples

If our samples are more reflective of the children we 
are seeking to understand, then our theories, though 
necessarily more complex, will likely have greater 
practical value. It is necessary to include participants 
with different or multiple diagnoses. Emerging first in 
adult psychiatry (Cuthbert & Insel, 2013; Morris & 
Cuthbert, 2012), transdiagnostic approaches focus on 
identifying underlying symptom dimensions that likely 
span multiple supposed categories (e.g., Astle, Bathelt, 
The CALM Team, & Holmes, 2019; Bathelt, Holmes, 
et al., 2018; Bryant, Guy, The CALM Team, & Holmes, 
2020; Hawkins, Gathercole, Astle, The CALM Team, & 
Holmes, 2016; Holmes et al., 2019; Siugzdaite et al., 
2020). Within developmental science there are good 
examples of researchers cutting across hitherto 
unquestioned diagnostic boundaries in order to iden-
tify cognitive symptoms that underpin learning, but 
they remain relatively rare (e.g., Astle et  al., 2019; 
Casey, Oliveri, & Insel, 2014; Hulme & Snowling, 2009; 
Peng & Fuchs, 2016; Sonuga-Barke & Coghill, 2014; 
Zhao & Castellanos, 2016). A review of a transdiag-
nostic approach is well beyond the scope of the cur-
rent article, but suffice it to say, contemporary 
developmental science needs larger and more diverse 
samples.
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Embracing methods that capture complexity

There is now a growing array of analysis methods allow-
ing researchers to move beyond univariate group com-
parisons or pairwise associations between variables. A 
well-developed tool is structural equation modeling 
(SEM; e.g., Kline, 2015). SEM combines the strengths of 
path-modeling and latent-variable approaches to allow 
researchers, for instance, to specify how latent factors may 
explain the continuous variability on a set of observed 
measures (e.g., task performance) and the potential 
causes and consequences of such factors. SEM offers 
the tools to identify continuous dimensions that cut 
across diagnostic boundaries or to directly compare 
competing causal accounts. More advanced variants of 
SEM, such as latent-growth-curve models and growth-
mixture models, can address more sophisticated ques-
tions about how changes in one latent construct relate 
to changes in another (e.g., Hjetland et al., 2019; Kievit, 
Hofman, & Nation, 2019). Other variants—for example, 
hierarchical mimic modeling—can be used to identify 
multiple routes to particular outcomes (equifinality), 
such as the role that multiple different brain structures 
might play in developmental changes to a particular 
aspect of cognition (e.g., Kievit et  al., 2016; Ritchie 
et al., 2015).

Whereas SEM methods are ideal for testing complex 
theories or pitting theories against one another, other 
methods are able to handle complexity in a different 
way. A more recent development from data science that 
aims to capture complex interrelationships in an explor-
atory way is network analysis (e.g., Bathelt, Holmes, 
et al., 2018; Epskamp, Borsboom, & Fried, 2018; Mareva, 
the CALM team, & Holmes, 2019). The resulting net-
work can open the door to a new toolbox of analytical 

techniques, such as graph theory. Rather than inferring 
the presence of singular latent factors, these approaches 
capture various different ways in which individual mea-
sures can be related over developmental time. For 
example, does phonological processing act like a hub 
for verbal short-term memory and literacy development, 
or is there a dynamic relationship between these con-
structs over time? Network analysis can also capture 
heterogeneity within a sample and provide a relatively 
theory-free means of exploring the underlying structure 
and composition of a data set. With a network analysis, 
it is possible to identify subgroups of individuals within 
which the task interrelationships are different, and a 
strong advantage of this approach is that a network 
analysis incorporates metrics for identifying these clus-
ters (e.g., Bathelt, Holmes, et al., 2018).

Unsupervised machine-learning techniques are also 
capable of capturing the multidimensional space in 
which children may differ (e.g., Siugzdaite et al., 2020). 
But relative to SEM-based approaches and network 
analysis, machine-learning applications remain under-
developed. Although popular in other areas of science 
with similar challenges, these methods have yet to gain 
much traction within the study of developmental dif-
ferences (but see Astle et al., 2019). These algorithms 
are highly flexible, and the resulting models can easily 
accommodate nonlinear relationships, make predictions 
about unseen data, be combined with simulations, 
incorporate different data types, and open the way to 
tools for testing generalization, such as cross-validation. 
For the data shown in Figure 1, a simple artificial neural 
network was used to map different profiles across mul-
tiple measures of short-term memory, working memory, 
fluid reasoning, vocabulary, and phonological aware-
ness in a large group of struggling learners. Once the 

Fig. 1. Distributions of children within a simple artificial neural network trained on data from 530 children taken from the Centre for Atten-
tion, Learning and Memory (CALM) sample (Holmes, Bryant, the CALM Team, & Gathercole, 2019). Each node represents a profile learned 
by the algorithm, with spatially nearby nodes having more similar profiles. Therefore, the maps represent the multidimensional spaces that 
reflect the performance differences across the children. The left-most panel shows the best-matching unit for all children, and the subsequent 
panels show those for children with different diagnoses. The training data set included measures of fluid reasoning, vocabulary, verbal and 
spatial short-term and working memory, and phonological awareness (see also Astle, Bathelt, The CALM Team, & Holmes, 2019). ADHD = 
attention-deficit/hyperactivity disorder; ASD = autism spectrum disorder.



Beyond the Core-Deficit Hypothesis 435

individual nodes of the network were trained to repre-
sent the different profiles within the data set, the loca-
tions of children with different diagnoses could be 
identified. If common diagnoses are predictive of the 
cognitive profiles learned by the network, then those 
children’s performance profiles should group together—
but they did not. This highlights the potential utility of 
this approach to mapping the heterogeneity of a data 
set and exploring its composition. This is something 
largely untapped within the field to date.

Beyond voxel-wise measures of brain 
structure and function

Just as methods that capture complexity in cognitive 
and behavioral data are needed, the same is true for 
neuroimaging. In theory, the methods outlined above 
can be used alongside neuroimaging, although in prac-
tice there are very few examples. SEM techniques could 
allow researchers to identify many-to-one mappings 
(e.g., Kievit et al., 2016; Kievit et al., 2014), allowing 
the possibility that a particular set of symptoms could 
be associated with multiple different neurobiological 
effects. And network science has enabled the subfield 
of brain “connectomics,” enabling researchers to dem-
onstrate that apparently disparate neural effects could 
have very similar effects on brain organization, provid-
ing a meaningful endophenotype to bridge complex 
causal interrelations and shared surface-level profiles 
(e.g., Bathelt, Gathercole, Butterfield, the CALM Team, 
& Astle, 2018; Bathelt, Scerif, Nobre, & Astle, 2019).

Conclusions

Core-deficit models long held promise as optimistic 
researchers aimed to interpret behavioral complexity 
via cognitive or neurological simplicity. However, as 
more and more of these attempts fall by the wayside, 
many researchers have come to question the validity 
of the principle of the core deficit. At the same time, 
increased pooling and sharing of data, as well as better 
diagnostic ascertainment, has improved our capacity to 
gather substantial samples for well-powered complex 
analyses. New technologies provide opportunities for 
creative, data-driven analysis of such samples, which 
can provide us with an empirical basis for the develop-
ment of new theories.

We must embrace complexity within and between 
diagnostic boundaries in such theoretical models. In 
doing so, we will unlock our potential to understand 
the cross-cutting issues that frequently have the biggest 
impact on people’s lives rather than dwell on the nar-
row selection of domains that seem to be unique to a 
specific population. Importantly, a move away from the 

concept of “core” should also entail a movement away 
from the concept of “deficit”—there is no objective rea-
son why a condition should be defined by its disadvan-
tageous elements instead of its advantageous elements. 
Although the former may be needful of intervention, 
the latter may be essential to delivering that interven-
tion. Examples of successful application of this principle 
come from formal evaluations—for example, technologi-
cal supports for autistic children (Grynszpan, Weiss, 
Perez-Diaz, & Gal, 2014; Kasari et al., 2014)—but are 
also evident in practitioner-focused guides—for example, 
image-based rather than text-based learning materials for 
children with dyslexia (Mortimore & Dupree, 2008). In 
this way, the current direction of research in neurodevel-
opmental diversity is at a potential tipping point. The 
issues we outline above, and the recent developments 
we highlight, could have a beneficial impact not only on 
research innovation and knowledge generation but also 
on policy, practice, and societal understanding.
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