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We study the scaling behavior of the size of minimum dominating set (MDS) in scale-free networks, with
respect to network size N and power-law exponent c, while keeping the average degree fixed. We study
ensembles generated by three different network construction methods, and we use a greedy algorithm to
approximate the MDS. With a structural cutoff imposed on the maximal degree kmax~

ffiffiffiffi
N
p� �

we find linear
scaling of the MDS size with respect to N in all three network classes. Without any cutoff (kmax 5 N – 1) two
of the network classes display a transition at c < 1.9, with linear scaling above, and vanishingly weak
dependence below, but in the third network class we find linear scaling irrespective of c. We find that the
partial MDS, which dominates a given z , 1 fraction of nodes, displays essentially the same scaling behavior
as the MDS.

A
central issue arising in the context of networked systems is the ability to efficiently control, track, or detect
the behavior of the constituent nodes of a network. In static networks or slowly evolving networks, a
solution to this problem often involves computing a dominating set of the network. A dominating set of a

network (graph) G with node set V is a subset of nodes S # V such that every node not in S is adjacent to at least
one node in S. Example problems in whose solution the dominating set (or some variant of it) has been shown to
play a part include optimal sensor placement for disease outbreak detection1, controllability of networks2 and
social influence propagation3,4. The smallest dominating set of G constitutes its minimum dominating set (MDS).
Thus, the MDS of a network is the smallest subset of nodes such that every node of the network either belongs to
this subset or is adjacent to at least one node in this set. The MDS is an important construct if the inclusion of
members into the dominating set comes at a certain non-zero cost. For example, in the case of network sensor
placement, if placing a sensor has a non-zero cost and if each sensor can eavesdrop on all its neighbors, then the
MDS nodes define the lowest cost placement that allows all nodes to be monitored. Continued interest in network
control, detection and efficient spreading or curbing of network flows motivates our interest in understanding the
scaling behavior of the MDS on stylized network models of real networks.

In particular, we focus on the properties of the MDS in scale-free networks that are characterized by a power
law degree distribution (P(k) , k2c). These networks constitute a class of stylized networks which bear strong
resemblance to several real-world networks including social, infrastructural and biological networks. Typically,
values of the power law exponent c lie in the range 2 , c , 35,6, although there are few examples of networks with
c , 2 value; for example the co-authorship network in high-energy physics7, and some email networks8. Several
algorithms have been developed and used in previous works to generate scale-free networks. Most of these
methods are more general solutions to the problem of constructing a network from any prescribed degree
distribution9,10, applied to a power-law degree distribution.

The mathematical literature focusing on bounds on dominating sets is vast11. In most prior works (with the
exception of12 to be discussed below), the MDS has not been studied systematically for scale-free networks over a
significantly varying range of c. For example, Cooper et al.13 studied the behavior of MDS size on the special class
of scale-free networks generated by preferential attachment14 (corresponding to c 5 3), and found that minimum
dominating sets as well as minimum h-dominating sets (where every node needs to be dominated at least h times)
have sizes that are bounded above and below by functions linear in N, where N is the number of nodes in the
network. Other studies have focussed on MDS sizes for random regular graphs and Erdős-Rényi (ER)15 graphs.
Zito16 studied the size of the minimum independent dominating set on r-regular random graphs (with 3 # r # 7)
and showed that the size of this set (and therefore the MDS) is upper bounded by a linear function of N. Recently,
Bı́ró et al.17 improved the pre-factor of the O(N) bound of the size of the MDS in r-regular graphs based on a
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greedy algorithm18–21. Wieland et al.22 derived general bounds for
dense ER graphs (with fixed edge probability), showing that the
MDS size scales as log N (with no direct applicability to sparse graphs
with fixed average degree).

A recent study12 has focused on the behavior of the MDS size on
model scale-free networks with varying degree exponent, as well as
empirical networks. The authors employed the Havel-Hakimi algo-
rithm23,24 with random (Monte-Carlo) edge swaps25 (HHMC) for
constructing synthetic networks, and they used a binary integer pro-
gramming method to obtain the MDS. They reported that the MDS
size decreases as c is lowered, making heterogeneous networks very
easy to control. However, our study of a variety of scale-free network
families suggests a more complicated picture. In particular, we find
that details of the network generation process, and the choice of the
maximum degree cutoff, bear an enormous influence on the depend-
ence of MDS size on c, even when the average degree Ækæ is kept fixed.
The latter constraint is motivated by the need of comparing networks
(from the MDS perspective) with the same amount of ‘‘resources’’,
i.e., fixed average edge-cost per node, or equivalently, fixed average
degree in unweighted networks. Naturally, for c , 2 and fixed aver-
age degree, there is only a finite (but large) parameter range in terms
of c and N with realizable networks. Nevertheless, motivated by the
existence of several such real-world sparse networks26,27, we also
investigate networks from various ensembles in this regime and, in
particular, how easy or hard it is to dominate them. On the other
hand, when keeping the minimum degree fixed in this regime, the
number of edges increase faster than the number of nodes, and those
networks are becoming inherently easy to dominate. For c . 2 keep-
ing the average or the minimum degree fixed are equivalent con-
straints in the large network-size limit.

Finding the exact MDS is one of the well-known NP-hard pro-
blems of graph theory. While it has been proven that finding a sub-
logarithmic approximation to the MDS is also NP-hard, a
logarithmic approximation of the MDS28 can be found by a simple
greedy algorithm18–20. The greedy algorithm is ideal for practical
applications as it provides a logarithmic approximation for the
MDS, and runs in time linear in the number of edges. This is certainly
superior in comparison to binary integer programming-based meth-
ods (used in Ref. 12) that have unknown (network structure depend-
ent) polynomial run time, exponential run time in the worst case, and
yield no significantly better approximation to the MDS size in finite
waiting time than the greedy algorithm, according to our experi-
ments.

In practice, one could imagine a scenario where rather than dom-
inating all nodes of the network, it is sufficient to dominate some
(large) fraction of nodes. This reduces to the problem of finding a
partial minimum dominating set (pMDS)29 which is the smallest
subset of nodes (and possibly a subset of the full MDS) such that
at least some given fraction of the nodes are either in the set or
adjacent to a node in this set. We investigate the scaling of both
the MDS as well as the pMDS with respect to the network size N.

Results
We start with a short description of the three network construction
methods that we utilize to generate three classes of networks with the
same power-law degree distribution, and a predefined average
degree. Each method is a general degree sequence sampling method
applied to degree sequences drawn from discrete power-law distri-
butions with predefined parameters. The degree sequence is treated
as a list of stubs (half-edges) for each node; pairs of stubs are con-
nected to form edges. The methods are identified by four-letter
abbreviations, and are as follows:

. Configuration model10,9 (CONF networks), where we randomly
pick any two edge stubs and connect them, until there are no more
stubs to connect. This results in a multigraph; we reduce multiple
links to single links, and remove self loops, to get a simple graph.

. a Markov chain Monte Carlo method25 (HHMC networks),
where we first build a simple graph deterministically by the
Havel-Hakimi algorithm, and then we randomize the links by
swapping pairs of edges. The number of the attempted edge swaps
is four times the number of edges in the network (see
Supplementary Information Sections S.1 and S.4).

. a sequential algorithm that generates samples from all possible
realizations of a given degree sequence30 (DKTB networks, named
after the authors). The DKTB graph-construction algorithm is
based on the underlying theorems proven in Ref. 31.

We use two possible subclasses of each network class, according to
the maximum degree cutoff kmax. Either there is no explicit cutoff,
having kmax 5 N 2 1 (where N is the network size), or we use a
structural cutoff kmax~

ffiffiffiffi
N
p

, resulting in uncorrelated scale-free
networks32,33. When we have the

ffiffiffiffi
N
p

cutoff, we indicate it in the
name of network type as cCONF, cDKTB, or cHHMC, where c
stands for cutoff.

As indicated in the results and in our figures, the average degree of
each individual network is kept fixed at a predetermined value
throughout all samples of each dataset. Details on controlling the
average degree are included in the Methods section, technical data is
provided in the Supplementary Information, Section S.3.

Results shown in the next subsections are generated by running a
sweep of network size N and power-law exponent c values, generat-
ing hundreds of network realizations, and averaging MDS size
among them for each parameter combination. The MDS of each
individual network is found by a greedy algorithm.

MDS scaling with network size. Figures 1(a)–(c) show the MDS size
for networks without any explicit upper cutoff on degree (kmax 5 N
2 1). For CONF networks, the MDS size scales linearly with N for all
c values. In striking contrast, DKTB networks and HHMC networks
show a marked transition in the scaling behavior at cc < 1.9. For c .

cc , MDS size scales linearly with N, whereas for c , cc , the MDS size
appears to lose its dependence on N in the asymptotic limit.
Figures 1(a)–(c) focus on a subset of all considered c values, which
range from c 5 1.6 to 3.00, to clearly show the scaling transition for
DKTB and HHMC networks.

Figures 1(d)–(f) show in contrast that with the structural degree
cutoff, kmax~

ffiffiffiffi
N
p� �

, for all network classes the MDS size scales
linearly with N irrespective of the c value.

To better understand this scaling, we can derive a lower bound for
the MDS size by considering a ‘‘best case scenario’’ for dominating
the network. We use the continuous probability density function
fK(k) equivalent to the discrete degree distribution and we define
l(k9) as the expected number of nodes above a certain degree thresh-
old k9:

l k’ð Þ~
ðkmax

k’
N fK kð Þ dk: ð1Þ

In the ‘‘best case’’, the neighborhoods of these nodes are disjoint sets
(not overlapping), and therefore each node with degree k dominates
k 1 1 nodes (itself, and its neighbors). Then we can find the appro-
priate degree threshold to ensure the domination of all nodes by the
following:

k� : ~max k’ :

ðkmax

k’
N kz1ð ÞfK kð Þ dk§N

� �
: ð2Þ

Therefore, l(k*) sets a lower bound for the size of MDS. Note, that
these formulae can be used with any degree distribution, and k* can
always be found numerically. Figure 2 shows the l(k*) bounds for
power-law distributions as a function of N with Ækæ 5 10.

There are multiple consequences of the lower bound’s scaling. For
kmax 5 N 2 1 networks, the possibility of an O(N)-to-O(1) transition
of MDS size is supported by l(k*) (Fig. 2): it exhibits an O(1) behavior
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for c , 2, while it progresses to a linear scaling with N for c . 2
[Fig. 2(a)], similar to the results of DKTB and HHMC networks. For
networks with kmax~

ffiffiffiffi
N
p

, l k�ð Þ*
ffiffiffiffi
N
p

when c , 2 and l(k*) , N
when c . 2. Note, however, that the convergence to the asymptotic
behavior is extremely slow for 2 , c , 3 [see insets of Figs. 2(a) and
(b)]. Thus, for the case of structural cutoff, the lower bound indicates
that the MDS size can never become O(1) and we cannot expect a

sharp scaling transition. Derivation of the asymptotic behavior of
l(k*) is included in the Supplementary Information (Section S.7).

Scaling of partial dominating sets. Next, we study the scaling
behavior of the partial MDS size with N as we vary the value of the
required dominated fraction z. In Figure 3, we present results for the
DKTB class of networks; our findings are qualitatively similar for

Figure 1 | The size of MDS scaling with N, Ækæ 5 14, for all network types, averaged over 400 network realizations with 5 greedy searches for each at
every data point. The figure insets show the same data on log-log scales. Error bars are shown for all data points (however, they may be very small and

hidden by the larger symbols).
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Figure 2 | The scaling of the calculated lower bound of MDS size in power-law distributions, for various power-law exponents, Ækæ 5 10.
(a) kmax 5 N 2 1, (b) kmax~

ffiffiffiffi
N
p

. Figure insets show l(k*) bounds on log-log scales. See Supplementary Information (S.7) for details.

Figure 3 | The size of partial MDS scaling with N, Ækæ 5 14, averaged over 400 network realizations and 5 greedy searches for each, (a) DKTB, c 5 1.7,
(b) DKTB, c 5 2.5, (c) cDKTB, c 5 1.7, (d) cDKTB, c 5 2.5. The dominated fraction of nodes is expressed as percentage of the network size. Error bars

are shown for all data points (however, they may be very small and hidden by the larger symbols).
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CONF and HHMC network classes, and networks with kmax~
ffiffiffiffi
N
p

.
Results for these networks are shown in Supplementary Information
(Figs. S7 and S8).

Below a certain value of z~k̂max
.

N , where k̂max is the highest
realized degree in the network, the pMDS trivially contains only
the node with highest degree. Apart from this trivial case, for
zwk̂max

.
N , the size of the pMDS exhibits the same scaling as the

full MDS in the different c regimes (Fig. 3). In other words, DKTB
and HHMC networks display a transition in the scaling behavior of
pMDS size from linear dependence on N to virtually no dependence
on N at c < 1.9, while CONF networks always show a linear scaling of
pMDS size with N.

For a baseline-comparison to the partial MDS size obtained by
greedy algorithm, we also study the expected number of nodes
needed to dominate a given fraction of the network using random
node selection, giving a partial random dominating set (pRDS). We
run the random search five times on each realization to obtain an
expected RDS size. Figure 4 compares pRDS with pMDS, showing
that a simple random node selection gives approximately an order of
magnitude larger dominating set than the greedy method. Note also,
that in order to reach full domination using random node selection,
we would need to include almost all nodes of the network in the
dominating set. Further, for reference, in Fig. 4 we also show
the known upper bound, obtained for optimized random selection
of the dominating set (oRDS)18 but also applicable to the
greedy algorithm11,18,19, for a graph with minimum degree kmin:

oRDSj jƒN 1{kmin 1zkminð Þ{1{1=kmin

h i
. Note, that in our network

construction schemes with fixed average degree, kmin 5

kmin(N, c, Ækæ), hence the small jumps in the above bound when
plotted as a function of N for fixed c and Ækæ.

MDS scaling with power-law exponent. To measure the depen-
dence of MDS size on c, we find the MDS for a fixed network size
of N 5 5000 nodes. Results for various Ækæ values are presented in
Figure 5(a) for networks with no structural cutoff, and in Figure 5(b)
for networks with a structural cutoff.

We find a surprising trend in several cases. Perhaps, most intri-
guing is the trend seen in the case of CONF networks where the MDS
size appears to have a non-monotonic dependence on c. Traversing
increasing c values on a coarse scale, the MDS size starts out large at
low c, reaches a global minimum in the range 1.9 , c , 2.3, and then
grows again as c increases. However, generating network samples
with a finer resolution of c values (Dc 5 0.01, reaching the resolution
of error between desired and achieved c values), we also notice the
existence of kinks in addition to the large scale non-monotonicity.

By probing the dependence of MDS size on c for DKTB and
HHMC networks at fine resolution similar to one used for CONF,
we find only minor traces of kinks, but they are within the error
margin of MDS size. On a coarse scale, we find quantitatively similar
results for both network classes. The MDS size curve is flat at very low
values of c, and then increases steadily beyond c < 1.9. When c . 3,
the MDS size of all three network types converge to the same value,
indicating that beyond this point the structure of these networks are
very similar [Fig. 5(a)].

Figure 4 | Comparison of partial MDS and partial RDS scaling with N for DKTB (a, b) and cDKTB (c, d) networks (without and with structural cutoff,
respectively); Ækæ 5 14, averaged over 400 network realizations and 5 greedy searches for each. The dominated fraction of nodes is expressed as a

percentage of the network size. For reference, we also show the upper bound (dashed lines) for an optimized random dominating set (oRDS)11,18 (see text).
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The dependence of MDS size on c is strikingly different for net-
works with a structural cutoff [Fig. 5(b)]. In this case, all three
network classes show identical results for given network parameters.
For increasing c values the size of MDS first decreases, then reaches
its minimum at approximately 2.5 , c , 3.0, and increases again
when c . 3. Since all three classes display almost indistinguishable
results, we can infer that these networks are structurally very similar.
Kinks like those seen in CONF networks are also observed here, but
with a much smaller amplitude.

In the vicinity of (and above) the transition point, we also found
that for sufficiently large DKTB (not shown) and HHMC [Fig. 5(c)]
networks, the scaled MDS size can be reasonably well approximated
with a power-law,

MDSj j
N

~const:: c{ccð Þb ð3Þ

with b < 0.37 [Fig. 5(d)] (see Discussion and Supplementary
Information S.10 for further details).

Discussion
As demonstrated clearly by the results, the specific method used for
generating a network ensemble has a profound influence on the MDS
size. This suggests that there are distinctive features in the structures
of networks generated by the different classes. From the details of the
generation methods, it might appear that DKTB and HHMC classes
produce networks that are similar in structure, and this is certainly
corroborated by our results. However, their distinction from net-
works in the CONF class seems to disappear when a structural cutoff

is introduced in the degree distribution. Although we cannot rigor-
ously demonstrate that particular structural features are responsible
for the observed scaling behavior, we conjecture on the origin of the
distinct behaviors shown in the Results.

It should be noted that Del Genio et al.34 have shown the non-
existence of realizable graphs with a power-law degree sequence with
0 # c # 2. However, as they point out, their arguments refer to the
situation where the prescribed degree sequence has to be perfectly
satisfied. In our methods, networks with 1 # c # 2 are realized by
removing some edge stubs from the degree sequence that cause non-
graphicality. For CONF networks, pruning of multiple links and self
loops perform this task, while for DKTB and HHMC networks, a
Havel-Hakimi-based graphicality correction algorithm is applied
(see Methods and Supplementary Information Section S.1 for
details). It is notable, that we can choose appropriate parameters
such that even after pruning, or graphicality-preserving stub
removal, we have a network whose degree distribution (in particular,
its tail) approximates the desired power-law. (For the degree distri-
bution of the networks obtained this way, see Supplementary
Information S.9.) As a result of these procedures, our networks in
this range of c are not exact realizations of perfect power-law degree
sequences, and therefore do not contradict the fundamental results of
Ref. 34.

When the structural cutoff is not imposed on the degree sequence,
the non-graphicality below c 5 2 plays an important role in the
scaling transition of the MDS size with N. When c , 2, there are
too many edge stubs in the prescribed degree sequence, and some of
them have to be removed to resolve nongraphicality. Different

Figure 5 | The size of MDS as a function of c for various network types and average degrees, N 5 5000, averaged over 200 network realizations with 5
greedy searches for each at every data point. (a) for networks with no degree cutoff; (b) for networks with the structural cutoff. (c) shows the scaled MDS

size vs. c for HHMC networks with Ækæ 5 14 for various system sizes. (d) Scaled MDS size for the largest network and the best-fit power-law (solid red

curve) in the vicinity of (and above) the transition point, | MDS | /N / (c 2 cc)
b with b < 0.37. Inset: same data as in (d) after shifting the horizontal axis

and on log-log scales.
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network construction methods solve this problem differently. With
respect to MDS scaling behavior, the key difference is in the
treatment of the highest degrees. In case of CONF, the formation
of multiple links is allowed during the stub connection process, and
the duplicate links are pruned later. Since the realized multiple links
predominantly connect stubs belonging to high-degree nodes with
each other33,35, the large degrees of the hubs are effectively wasted in
connections that do not improve their potential to dominate.
Furthermore, as a consequence, the interconnections of low degree
nodes become more dominant, forming a relatively sparse web,
which necessitates the inclusion of many nodes in the dominating
set, preventing it to become O(1). However, in case of the Havel-
Hakimi-based graphicality correction (used in HHMC and DKTB
methods) the stubs of the highest degree nodes are connected first,
ensuring that these nodes are present in the network as hubs. The
MDS scaling transition can therefore be explained by the scaling of
the largest realized degree (also known as the natural cutoff of the
degree sequence), k̂max*N

1
c{1 33,36. When c , 2, the MDS size

becomes O(1) because the largest degree, and potentially the second
and third largest degrees become O(N), and the network is domi-
nated by these nodes. In essence, we find that the domination trans-
ition is directly related to the underlying graphicality transition34: the
same underlying structural properties which are responsible for the
graphicality transition34 in the infinite network-size limit allow for
the O(N)-to-O(1) domination transition for large but finite DKTB
and HHMC networks. In other words, those finite DKTB and
HHMC network realizations which happen to exist for c , 2 can
be dominated by an O(1) MDS. The sharp emergence of the O(N)
minimum dominating set (and the existence of the domination
transition) is also supported by the power-law behavior of the scaled
MDS size just above the transition point [Fig. 5(d)].

The small difference between our numerically observed value of
the domination transition at around c < 1.9 and the c 5 2 value of
the graphicality transition34 might lie in finite-size effects and in the

log(N) accuracy of the greedy algorithm with respect to the size of the
true MDS [Figs. 5(c) and (d)].

The different treatment of largest degrees in different network
classes can be illustrated by plotting k̂max against c, see Figure 8.
Note, that for the theoretical value we need to derive and evaluate
the exact formula from the degree distribution, see Supplementary
Information Section S.6. Further, the markedly different structure of
CONF networks compared to HHMC and DKTB networks in the
absence of a structural cutoff also shows up in the network visualiza-
tions in Fig. 6.

In contrast, with the structural cutoff, networks generated using
the three different methods appear to share similar structure as can
be seen in Fig. 7, from the similar scaling of MDS size with N, and the
dependence of MDS size on c. The restrictive kmax~

ffiffiffiffi
N
p

cutoff pre-
cludes the scaling of MDS size from becoming O(1), as shown by the
l(k*) lower bound in Fig. 2(b).

The non-monotonic behavior of the size of the MDS with c (with
the exception of the DKTB and HHMC constructions with no max-
imum degree cutoff) are in part the consequence of the stringent
constraint of resources for domination (fixed average degree, i.e.,
fixed number of edges for fixed N): for small and decreasing values
of c, while maintaining a fixed average degree for a given network size
N, the minimum degree decreases, and there are O(N) number of
such nodes. However, in the DKTB and HHMC networks the largest
hub can have O(N) links, and it has the potential alone to connect to
(and dominate) the nodes with the lowest degree, hence the mono-
tonic behavior with c (and the transition to O(1) domination) for
these networks [Fig. 5(a)].

Kinks seen in the curves of MDS size when plotted against c are the
result of controlling the average degree with very high precision.
Smooth change of the control parameters introduces gradual
changes in the network structure, however, the average degree does
not change smoothly (although it is monotonic; see Supplementary
Information Section S.3). Conversely, when we probe a range of

Figure 6 | Visualization of typical scale-free networks of each type with kmax 5 N 2 1 at three different power-law exponent values, embedded by the
SFDP layout engine of Graphviz visualization software37. In all networks, N 5 1000 and Ækæ 5 14; the colored nodes belong to the MDS.

www.nature.com/scientificreports
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c values, we need a smooth control over the average degree, requiring
non-smooth changes in control parameters and hence in the network
structure. Therefore, we can expect that any structure-dependent
quantity, like the MDS size, will show kinks with respect to c.

The results reported by Nacher et al.12 suggest that for a given Ækæ,
decreasing c results in a monotonic lowering of the MDS size.
However, they only studied the HHMC method of network genera-
tion with a variable cutoff. By introducing a well-defined structural
cutoff, and in addition studying two other classes of networks, we
show that precise details of the network construction have a strong
impact on the trend in MDS size as c is varied.

In summary, we have shown through extensive numerical experi-
ments, that the size of the minimum dominating set approximated by
a greedy algorithm undergoes a transition in its scaling with respect
to N only for particular methods of network construction in
the absence of a structural cutoff. For the configuration model

construction, or the other construction methods with a structural
cutoff, no such transition is observed. However, intriguingly, in the
presence of a structural cutoff, the MDS size increases as c is lowered
below 2. Thus our results demonstrate that it is not sufficient to have
a scale-free network with c , 2 to have an easily dominated (easily
controllable) network; intricate details in the wiring of the network
must also be taken into consideration.

Methods
As the first step of network construction, we generate a discrete power-law degree
distribution, and we also calculate the cumulative distribution function (CDF)
associated with the desired discrete power-law degree distribution. Then, using inverse
sampling of the CDF, we generate the degree sequence of the network. We find that
using a discrete distribution results in much better accuracy of the desired power-law
exponent than sampling degrees from a continuous distribution with rounding.

Once the degree sequence is generated, each node is assumed to have as many edge
stubs as its degree. The process of network generation connects pairs of edge stubs to

Figure 7 | Visualization of typical scale-free networks of each type with kmax~
ffiffiffiffi
N
p

at three different power-law exponent values, embedded by the
SFDP layout engine of Graphviz visualization software37. In all networks, N 5 1000 and Ækæ 5 14; the colored nodes belong to the MDS.

Figure 8 | Scaling of maximum realized degree bkmax with power-law exponent c, for various network sizes. (a) theoretical expected value from power-

law distribution, (b) degree sequence with graphicality correction (HHMC and DKTB networks), (c) degree sequence after pruning multiple links

(CONF networks).
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form edges, the three network construction methods (CONF, DKTB, HHMC) carry
out this task differently, according to their specific algorithms. In CONF and DKTB,
the random selection of edge stubs gives a random realization of the degree sequence.
In contrast, the HHMC method connects edge stubs deterministically (using the
Havel-Hakimi algorithm), and a random realization is obtained by a Markov chain of
swapping edge pairs. The mixing time of this Markov chain is determined empirically,
see Supplementary Information (Section S.4).

HHMC and DKTB methods are ‘‘exact methods’’ since they do not alter the given
degree sequence while constructing the network. Therefore, we must supply them
with graphical degree sequences, i.e. sequences for which it is assured that a simple
graph realizing that sequence exists. To ensure graphicality, we devised a graphicality
correction method (See Supplementary Information, Alg. 1 in S.1), based on the
Havel-Hakimi algorithm. The goal of the original algorithm is to test the graphicality
of a degree sequence. It reports failure when some stubs of a node cannot be con-
nected to other nodes. Instead of reporting failure, we simply remove these stubs from
the degree sequence, making the remaining sequence graphical. This correction
precedes the network construction step for HHMC and DKTB networks, but it is not
needed for CONF networks, because every degree sequence is graphical for a multi-
graph. We effectively remove any non-graphicality of the degree sequences when we
remove multiple links and self loops to create a simple graph.

The final step of network generation is to ensure that we have a single connected
component. Further details are provided in Supplementary Information Section S.1,
including a flow diagram that illustrates all steps of the network generation procedure.

We control the average degree of the networks by setting an appropriate lower
degree cutoff kmin. In order to have a very fine control over the average degree, we also
remove a given fraction f of the lowest degrees from the degree distribution, f [ 0,1½ Þ.
To calibrate which kmin and f values result in which average degrees, we constructed a
high-accuracy lookup table by generating network samples for all possible parameter
combinations of kmin, f, N and c, for all network classes. By numerically inverting this
table, we can find the needed parameters to achieve any desired average degree for any
given network class. Details on this construction, the corresponding lookup table and
achieved accuracy are included in the Supplementary Information (Section S.3).

Note, that the smallest reachable c is defined by Ækæ. The average degree of a
network increases rapidly as c decreases for given kmin (see Figure S2 in the
Supplementary Information), and for a given c the lowest Ækæ is obtained when kmin 5

1. Consequently, for a fixed Ækæ, the lowest possible c is the value at which the Ækæ vs. c
curve for kmin 5 1 attains the desired Ækæ. This lower limit on c for each Ækæ can be
determined from the lookup tables. We study the MDS scaling behavior in 8 # Ækæ #

16 range, because it allows for a wide range of c values.
Since finding the MDS is NP-hard, we approximate the exact solution by using a

sequential greedy algorithm. Starting with an empty setD, at each step the algorithm
adds that node to D which yields the largest increase in the number of dominated
nodes in the network. When there are multiple candidate nodes yielding the maximal
increase in domination, the algorithm chooses one randomly (uniformly among
candidates). These steps continue until all nodes are dominated and then the algo-
rithm terminates withD storing the approximated MDS. The greedy algorithm yields
a (1 1 log N) approximation28 to the size of MDS, and has a time complexity of O(E).
See the Supplementary Information for implementation details.

We found that the MDS sizes given by the greedy algorithm for any single network
follow approximately a Gaussian distribution, with at least an order of magnitude
smaller standard deviation than the standard deviation of average MDS size among
multiple network samples. (See distributions and histograms obtained by the greedy
search in the Supplementary Information, section S.8.) Therefore, for any given
network, we find it sufficient to run the greedy algorithm five times, to obtain a
reliable estimate of the average MDS size. Similarly obtained results for all network
realizations for a given combination of parameter values, and a given network class
are averaged to obtain an estimate of the mean greedily approximated MDS size.

In order to find the pMDS for a given dominated fraction z, we use the same greedy
approach as for the full MDS, except that we terminate the algorithm when the
desired fraction of nodes are dominated.
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