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S u m m a r y  

To ascertain how the actual repertoire of T cell receptors (TCRs) deviates from the theoretical, 
we have generated a large number of junctional region sequences from TCRs carrying the Va17 
variable region. The >600 sequences analyzed represent transcripts from nine different cell 
populations, permitting several comparisons: transcripts from an expressed vs. a non-expressed 
Va17 allele, those from E + vs. E- mice, transcripts from immature vs. mature thymocytes, those 
from thymic vs. peripheral T cells, and those from CD4 + vs. CD8 + cells. These comparisons 
have allowed us to distinguish between the influence of molecular events involved in TCR gene 
rearrangement and that of various selection events that shape the T cell repertoire. Our most 
striking findings are: (a) that J~ usage is markedly skewed, partly due to recombination mechanics 
and partly due to selection forces: in particular, those mediated by the class II E molecule in 
the thymus; and (b) that TCRs on CD4 + and CD8 + cells show intriguing dissimilarities. In 
addition, we present evidence that N nucleotide additions occur with clear biases, probably due 
to idiosyncrasies of the recombination enzymes, and provide arguments that TCR and 
immunoglobulin CDR3s have distinct structures. 

T heoretically, the murine immune system can make use of 
an enormous repertoire of ot/~ T cells. Any rearranged 

TCR B chain gene is created by the juxtaposition of 1 of 
22 V, 1 of 2 D, and 1 of 12 J region segments (for reviews, 
see references 1 and 2). At each of the juxtaposed segment 
termini (YV, 5'D, 3'D, 5'J) one or two so-called P nudeo- 
tides can be added, almost certainly as byproducts of the 
mechanics of rearrangement (3); some of the terminal nucleo- 
tides can then be nibbled away by an undefined exonuclease 
activity (1, 2). Finally, a variable number of so-called N nucleo- 
tides can be inserted at the V-D and D-J junctions by a 
template-independent mechanism (1, 2). Assuming that these 
processes operate randomly, and considering similar processes 
to be in play with the c~ chain genes, Davis and Bjorkman 
(4) have calculated that there may be as many as 10 Is c~/~ 
TCR specificities available to the mouse. 

But is this enormous repertoire actually realized? Already 
there have been some indications that it is not. Some mice 
lack particular V (5, 6) or J (7) gene segments, or do not 
express certain ones because of mutations (8). Some animals 
delete from the peripheral repertoire almost all T cells dis- 
playing particular Vas, seemingly because they are self reac- 
tive (for reviews, see references 9 and 10). In this report, we 

have sought to determine whether the junctional regions of 
TCR ~/chains really have a haphazard constitution. According 
to Davis and Bjorkman (4), the TCRjunctional regions should 
make by far the greatest contribution to their diversity. We 
have asked questions like: is J region usage entirely random? 
Is D region usage? Are P nucleotides found at random? What 
are the constraints on exonudeolytic nibbling? Are N nucleo- 
tides really added randomly? We have posed these questions 
in a variety of contexts chosen to permit a distinction be- 
tween the various forces potentially capable of skewing the 
repertoire, e.g., the molecular events involved in TCR gene 
rearrangement, selection events during E-mediated donal de- 
letion in the thymus, and selection events predicating MHC 
class I vs. class II restriction. 

The extensive data we have accumulated provide a detailed 
picture of the actual Va17 + TCR repertoire, and provide 
some hint of the forces that shape it, some previously un- 
recognized. 

Materials and Methods 

Mice. C57 B1/6J (B6) and SJL/J (SJL) mice were obtained from 
Iffa-Credo (Les Oncins, France) and The Jackson Laboratory (Bar 
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Harbor, ME), respectively. The SJL.E~ line was created by repeat- 
edly backcrossing the E~16 line onto SJL; for the experiments 
presented here, mice in the seventh or eighth backcross generation 
were used. The E~16 line has been described (11-13); it carries an 
E~ k transgene that is expressed entirely normally. 

T Cells and RNA. Thymocytes or lymph node cells were pre- 
pared from individual mice, and were incubated with a cocktail 
of antibodies: anti-Va17 (KJ23; 14) followed by Texas Red-tagged 
anti-mouse IgG, PE-conjugated anti-CD4, and fluorescein- 
conjugated anti-CD8, as described (11, 13). The triple-labeled cells 
were sorted on a cytofluorimeter (ATC 3000; ODAM, Wissem- 
bourg, France) equipped with dual-laser excitation into CD4 + 
CD8+Va17 *, CD4+CDS-Va17 +, CD4-CD8+V~17 +, or CD4 + 
CDS+V~17 - populations of from 3 x 103 to 105 cells. 1 or 2 x 
106 HeLa cells were added to each sample as carrier. RNA was pre- 
pared by the standard NP-40 lysis method (15) and was stored in 
water at -20~ 

PCR Amplifications. cDNA was synthesized from 0.5-1 gg of 
RNA by the action of avian myeloblastosis virus reverse transcrip- 
tase in the buffer recommended by Cetus Corp. (Emeryville, CA) 
for PCIL incubations, cDNA/RNA duplexes were denatured for 
5 min at 95-100~ After quick-cooling on ice, the mixture was 
supplemented with Taq DNA polymerase (1 U) and primers (50 
pm), and the volume was brought up to 50/A with PCR buffer 
(Cetus Corp.). For amplification of Vtd7 sequences, the primers 
were 5'-CTTTGTCTGCTTGGGG-3' in the V region and 5'- 
AGCACACGAGGGTAGCCTT-3' in the C region. 30 cycles of 
amplification were performed in a "DNA Thermal Cycler" (Perkin 
Elmer/Cetus, Emeryville, CA). Each cycle consisted of 30 s at 92~ 
30 s at 50~ and 1 rain at 72~ The last cycle was followed by 
an incubation at 72~ for 10 rain. A second round of amplification 
was performed starting with I gl of the first-round mixture. The 
PCR conditions were identical except that the V region primer 
was 5'-GTCCTGTGGCGCTGCAGGCTCTTTATGTTGCT-3' 
and the C region primer was 5'-GACAGAACTTTGAATTCCT- 
CTGCTTTTGATGG-3'. Both of these oligonucleotides contain 
artificial cloning sites (underlined): PstI in the former case, EcoRI 
in the latter. 

Cloning and Sequencing. After the last amplification, the Taq 
polymerase was eliminated by phenol/chloroform then chloroform 
extraction, and the DNA was precipitated in ethanol. The pelleted 
material was redissolved and digested with PstI and EcoRI and then 
migrated on a 2.5% agarose gel. The band at ,,~450 bp was excised 
and the DNA recovered by electroelution followed by precipita- 
tion in ethanol. The purified fragments were ligated with a vector 
prepared by digesting M13mp19 DNA with PstI and EcoRI. The 
ligated material was transfected into JM103 cells, and the resulting 
plaques were screened with either the oligo 5'-ACAGAGGTA- 
CAGTG-3' (VB17a) or the oligo 5'-ACAGAGCTACAGTG-3' 
(V~17b). Single-stranded DNA was prepared from positively hy- 
bridizing plaques and was sequenced by the dideoxy method using 
standard techniques. 

Screening for Jol.1. Large numbers of M13 clones emanating 
from different T cell populations were doubly screened for V~17 
and JBI.1. For the former, we used the PCK primer detailed above; 
for the latter, we used the oligo 5'-CTACAACTGTGAGTGTGG- 
3'. Hybridization was at 45~ in 2 x SSC, and washing was per- 
formed at 37 ~ in 2 • SSC. 

Contamination. Elaborate precautions were taken to prevent 
sample contamination, a major problem of PCR-based techniques. 
All solutions were aliquoted, and aliquots were used only once. 
Aside from the customary negative controls, a mock sample was 
processed along with each set of experimental samples: droplets 

of PBS without any cells were sorted and the entire procedure con- 
tinued, including the screening of M13 plaques. This control ruled 
out contamination at any step along the way. 

Results 

Strategy 
To evaluate how dosely the actual T cell repertoire approx- 

imates the theoretical, we have chosen to focus on a single 
TCR V3. This vastly reduces the number of sequences that 
must be generated to ensure statistical significance and greatly 
simplifies the sequence analysis. We have elected to concen- 
trate on V~17 for a variety of reasons. 

(a) Va17 is a particularly well-characterized TCR variable 
region, at both the gene and protein levels, cDNA and genomic 
sequences have been determined (14, 16, and K. Signorelli, 
unpublished results) and an effective anti-V017 reagent is 
available (14). 

(b) V~17 alleles are not always expressed as cell surface 
protein. A few inbred mouse strains (e.g., SJL) carry the ex- 
pressed allele, Vt~17a1. Many others (e.g., B6) bear the 
nonexpressed counterpart, V~17b, which has a point muta- 
tion that specifies a stop codon, resulting in translation ter- 
mination in the variable region (8). Thus, this allele is de- 
tectably transcribed into mRNA, but there is no corresponding 
protein at the cell surface. Hence, V~17b transcripts repre- 
sent a virgin repertoire, incapable of being selected. 

(c) V~17a + T cells have been observed to undergo both 
negative (17) and positive (18-20) selection. For example, donal 
deletion of many, though not all, Vt317a + T cells occurs 
within the thymus of mice that express the E complex and 
an as yet uncharacterized ligand. By repeatedly backcrossing 
an E,~ transgene (11) onto the SJL background, we have 
created a well-controlled system for studying this phenom- 
enon: SJL vs. SJL.E~, strains that should differ only by ex- 
pression of the E complex. 

Our strategy relies on the power of PCR technology. 
Thymus or lymph node cells are divided into discrete popu- 
lations by electronic sorting after staining with anti-CD4, 
-CD8, and -V~17 reagents. Va17 transcripts are amplified 
from the various pools by PCR using C3- and V~17-specific 
oligos. And finally, 50-100 transcripts are sequenced for each 
population. Although we have routinely tried to work with 

10,000 sorted cells, the technique is so sensitive that one 
can use <100. 

Following this strategy, we have generated sequences from 
the following populations: thymus CD4+CD8+Va17b, 
thymus CD4+CD8+V~17a + and CD4+CD8-Val7a § from 
E- mice, lymph node CD4+V~17a + and CD8+V~17a + 
from E- mice; thymus CD4+CD8+V~17a + and CD4 + 
CD8-Val7a + from E + mice; and lymph node CD4 + 
Va17ot + and CD8+V~17a + from E + mice. It should be kept 
in mind that each set of sequences routinely derives from three 
or more individual mice in order to ensure generality of the 
observations. 

Nucleotide Sequences 
Due to an editorial decision, we do not present nucleotide 
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Figure 1. Frequency of individual J/5 region usage. J/3 
region frequencies were calculated from the data sets, and 
are shown here as histograms. (A) All Vo17a sequences 
are compiled. (B) individual histograms for each of the 
sorted thymic or lymph node populations from B6, SJL, 
or SJL.Ec~ mice. 

sequences for the V~17 § TCRs from the nine cell popula- 
tions. These can be obtained in raw form from the EMBL 
and GenBank data bases and in a considerably more useful 
annotated form directly from the authors. Several points 
emerge from our analysis of the data. 

j Region Usage. A rearranged TCR ~ gene can use any 
one of 12 J segments, half associated with CB1 and the other 
half with CB2 (1, 2). Fig. 1 presents histograms of J region 
usage, both globally (A) and for individual sorted popula- 
tions (B). 
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Considering the global histogram, one is immediately struck 
by the fact that J region usage is nonrandom. Jill.5 is used 
in only 0.9% of the TCRs, while J/32.6 is used 21.3% of 
the time. In general, there is a marked preference for J~2 
over J~l: 80% vs. 20%. This skewing appears to be unrelated 
to thymic selection events because it occurs with both im- 
mature (thymic CD4 + CD8 +) and mature (peripheral CD4 + 
and CD8 +) populations, with both E + and E- mice, and 
even with the nonexpressed V~17b allele. 

Considering the histograms for the different cell popula- 
tions, one does see some evidence for selection of particular 
J~s. For example, JBI.1 is highly enriched during the transi- 
tion from CD4*CD8 + to CD4+CD8 - thymocytes in E- 
mice, increasing from 4.1% to 17.6%, and this heavy usage 
persists in peripheral CD4 + cells, at a level of 21.3%. In- 
terestingly, enrichment for J/31.1 is not observed in the thymic 
CD4+CD8 - or the peripheral CD4 ~ population of E + 
animals, nor in CD8 single-positives from either E* or E- 
mice. To fortify the conclusion that T cells expressing JBI.1 
undergo selection, we screened large numbers of M13 plaques 
derived from the different populations with both a V~17 and 
a JBI.1 probe. As is evident from Table 1, this experiment 
produced results in complete accord with the sequencing data: 
there is a dear difference in the number of V~17a + clones 
that carry JBI.1 in the CD4 + population of E + vs. E- mice, 
as well as in the CD4 + vs. CD8 + populations of both E + 
and E- animals. 

J~2.5 usage also shows evidence of selection. In E + mice, 
passage from the CD4+CD8 + to the CD4+CD8 - thymus 
compartment is accompanied by an increase in frequency from 
16.2 to 24.7%. This is further augmented in the periphery 
where nearly one-third of CD4 + cells use this JB. In E- 
mice, there is no such increase in either thymic or peripheral 
CD4 single-positives. 

Both of these variations in JB usage are statistically 
significant when assessed by the X 2 method (p <0.05). 

D Region Usage. The TCR ~ locus has two D segments, 
one associated with C~1 and the other with CB2 (1, 2). In 
calculating the frequency of DB1 vs. D/32 usage, we have 
only taken into account those sequences for which an unam- 
biguous assignment can be made: not always possible given 
the marked sequence homology between the two segments, 

Table 1. J/31.1 Usage in v~17 § T Cells 

Mouse strain CD4 CD8 

E negative 165/1,232 43/1,024 
(13.4%) (4.1%) 

E positive 1/972 66/1,140 
(0.1%) (5.7%) 

Values represent the numbers (and percentages) of M13 plaques that were 
positive after hybridization to a specific J/31.1 probe (see Materials and 
Methods for details). Plaques are derived from lymph node CD4 § or 
CD8 + T cells from SJL or SJL.Ec~. 

coupled with the fact that extensive exonudease digestion 
can occur during the rearrangement process. D~I  is preferred 
over D~2 both globally (54% vs. 46%) and in the unselec- 
table V~17b cell population (62% vs. 37%). Skewing in the 
individual T cell populations is variable, with no obvious logic. 

DB1 is found in combination withJB2 about twice as often 
as with J~l. This is true for all T cell populations. 

P Nucleotide Addition. If no exonucleolytic nibbling has 
taken place, one or two P nudeotides (3) may be found at 
each of the four recombined segment termini: the 3' end of 
the V region, the 5' and 3' ends of the D segments, and the 
5' end of the J segment. 

Indeed, we find P nucleotides in a number of sequences. 
Interestingly, they are found more often at VD joints (at 67% 
of undigested 3'V or 5'D termini) then at DJ joints (45% 
of undigested YD or 5'J termini). 

Exonucleolytic Chewing. Rearrangement of TCIL and Ig 
genes often entails a variable degree of exonucleolytic nib- 
bling of the recombining termini. Table 2 lists the number 
of nudeotides removed from the 3'V and 5'J termini (a similar 
analysis for the D termini would not be meaningful because 
the deletion assignments are often ambiguous). 

At the 3'V end, the vast majority of sequences show removal 
of zero to four bases, but in a few cases the nibbling does 
extend further, up to 11 bases. A very similar profile is ob- 
served with the unexpressed V~17b sequences. At the 5'J 
end, removal of zero to four bases is also standard, but there 
are some surprising differences with the different J segments. 

Table  2. Exonucleolytic Nibbling during 
Va17 TCR Rearrangement 

3' end of 5' end of J region 
V region (V~17a sequences) 

No. of bases 
removed V~17a ValTb J/32.1 JB2.3 J~2.6 

0 13.6 11.5 8.8(1)* 46.0 19.7(3) 
1 14.6 9.6 23.5(2) 11.8(1) 5.3(0) 
2 15.0 17.3 8.8 14.4 3.8(2) 
3 17.9 15.3 10.8(1) 9.2(1) 12.1(5) 
4 20.7 19.2 11.8(2) 5.2(1) 19.7(7) 
5 5.3 7.6 11.8 6.5 13.6(1) 
6 8.6 13.4 11.8 3.9 12.8(0) 
7 1.8 1.9 5.9 1.3 11.4(2) 
8 1.4 3.8 2.9 0 0.7(0) 
9 0.3 0 2.9 1.3 0.7(0) 

10 0 0 0 0 0 (0) 
11 0.3 0 1.0 0 0 (0) 

n = 279 n = 52 n = 102 n ~ 76 n = 132 

* The values in parentheses indicate the corresponding number of occur- 
rences in V~17b sequences. 
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For J~2.3, almost half of the sequences show no deletion. 
For JB2.6, the distribution seems bimodal: several sequences 
are undeleted, but the majority have three to six bases re- 
moved. The JB2.1 pattern seems different again. While the 
number of Vtfl7b sequences is too small for a rigorous com- 
parison, one notes that the Va17b percentages for J/52.6 
seem to parallel the Va17a values. Thus, the peculiar distri- 
bution that we observe directly reflects molecular recombi- 
nation events rather than selective influences, and exonucleoytic 
nibbling seems a fairly controlled process, sensitive to local 
DNA structure. 

N Nucleotide Addition. A variable number of N nucleo- 
tides can be inserted at the VD and DJ junctions. For the 
V~17 + TCKs analyzed here, the number added per sequence 
ranges from 0 to 14, reaching a maximum of 11 for a single 
junction, The average number of N nudeotides per sequence 
shows little variation in the different T cell populations, 
hovering between 2.2 and 3.4, with an average of 2.8. 

As a further refinement, we sought to determine whether 
N region addition shows any nucleotide preferences. Table 
3 lists the frequency with which each of the four bases is 
used at each junction, globally and in individual cell popula- 
tions. Interestingly, base utilization at the VD and DJjunc- 
tions is not identical. The nucleotides inserted between V 
and D are rich in cytosine, while those added between D 
andJ show no such enrichment: 38.9-57.9% vs. 10.6-23.3%. 

Protein Sequences 

Protein sequences for the Vo17 + TCRs from the nine cell 
populations are presented in Fig. 2. Only the junctional regions 
are shown. Several points emerge as salient. 

CRD3 Lengths. By analogy with Ig heavy chains, the 
CDR3 ofa TCR ~ chain should extend from the serine situ- 
ated at position 94 to the phenylalanine in the motif FGXG, 
conserved in almost all TCR J regions (21). Fig. 3 shows 

histograms of CDR3 lengths, again globally (A) and for the 
individual sorted populations (B). 

The overall average length is 10.0 amino acids, ranging 
from 6 to 15. The profiles from E- mice exhibit very little 
variability, while those from E + animals do show one differ- 
ence worth mentioning: the CDR3s from peripheral CD8 + 
cells are noticeably longer than those from peripheral 
CD4+s (10.7 amino acids on average, vs. 9.3). 

NDNAmino Acids. The impressive variability of the TCR 
/5 chain CDR3 regions rests partly on N addition and partly 
on the D segment choice and its "processing". The partic- 
ular residues that one finds in the NDN stretch are heavily 
influenced by the coding potential of the D segments. The 
amino acids that can be specified by DB1 and DB2 are indi- 
cated in Figure 4. It is worth keeping in mind that all three 
reading frames can be used and that glycine predominates 
in each. 

Table 4 illustrates amino acid usage in the NDN region 
of our V~17 + TCRs. Clearly, the patterns are nonrandom. 
Considering first those amino acids encoded within DB, we 
can make two points of interest. First, as expected, glycine 
is by far the most frequently used residue (fully one third 
of all the NDN amino acids are glycine). Second, one residue 
appears to be differentially used in the various cell popula- 
tions (tryptophan is used distinctly more frequently in pe- 
ripheral CD8 + cells than in CD4 + cells). Considering those 
amino acids not encoded within D/~, we can again bring out 
two points. First, cysteine is almost never found, perhaps not 
surprisingly considering its potential to interfere with the 
Ig fold. Second, proline is frequently observed, but this can 
probably be explained by the fact that its codon is CCN. 
As discussed above, N nudeotides inserted at the VD junc- 
tion are enriched in Cs; in addition, P nudeotides are fre- 
quently detected at the 5'D terminus, where they occur as 
either one or two Cs. 

Table 3. Base l~'stribution in N Nucleotides 

N nucleotides 
between V and D 

G A T C 

N nucleotides between 
D and J 

G A T C 

19.6 17.0 15.6 48.1 

Va17b,CD4+ 8 § 24.3 9.7 11.3 54.3 

Thy CD4+8 + 26.6 15.0 8.4 50.0 
Thy CD4+8 - 20.6 18.6 19.6 43.3 
LN CD4 § 8.0 19.3 14.8 57.9 
LN CD8 § 14.0 19.3 18.3 48.4 

Thy CD4+8 § 16.4 17.9 17.9 47.8 
Thy CD4+8 - 21.9 21.9 17.2 39.0 
LN CD4 § 22.9 14.6 9.4 53.1 
LN CD8 + 21.5 16.5 23.1 38.9 

31.2 28.1 23.8 16.7 All sequences 

23.0 33.8 21.6 21.6 B6 

25.0 28.3 23.3 23.3 
26.9 27.9 34.6 10.6 
31.7 28.7 24.8 14.8 SJL 
37.1 26.7 19.0 17.2 

30.9 35.5 19.1 14.5 
44,2 27.4 15.8 12.6 SJL.Eot 
32.5 27.7 19.3 20.5 
30.0 17.7 36.9 15.4 

993 Cand6ias et al. 



B
6(

Vl
~1

7b
) 

T
H

Y
M

IC
 4

+8
+ 

A
S
S
L
~
H
R
S
L
L
W
*
R
N
 

A
S
S
P
(
~
T
Q
K
S
S
L
V
K
 

A
S
S
~
A
N
S
D
Y
T
F
G
S
G
T
R
 

A
S
S
L
~
Q
T
P
T
T
P
S
A
Q
G
P
 

A 
S
S
P
I
~
K
 
y 
A 
L 
F
W
R
R
K
P
 

A
S
~
W
K
Y
A
L
F
W
R
R
K
P
 

A
S

~
Y

A
 

L
F
W
R
R
K
 

A
S
S
R
G
T
G
E
R
T
T
S
S
A
F
W
R
 

A
S
S
I
~
X
I
R
P
S
T
F
G
R
 

A
S
S
P
T
E
T
I
R
P
S
T
L
R
Q
A
P
 

A
S
S
P
D
X
*
F
A
P
L
L
C
G
K
H
P
 

A
S
S
I
2
~
N
S
P
L
Y
F
A
A
G
T
 

A
S
C
~
N
Y
A
E
Q
F
F
G
P
G
T
R
L
 

A
S
S
L
S
~
M
L
S
S
S
S
D
Q
G
H
 

A
S
S
L
~
L
C
~
A
V
L
R
T
R
D
 

A
S
S
L
~
M
L
S
S
S
S
D
Q
G
 

%
~
 

A
S
S
L
*
~
M
L
S
S
S
S
D
Q
G
 

.
~
 

A
S
S
L
G
~
Y
A
E
Q
F
F
G
P
G
T
 

A
S
S
L
~
P
G
S
S
T
L
V
K
A
 

A
S
S
L
Y
~
S
R
N
A
V
F
W
L
 

A
S
S
P
~
R
N
A
V
F
W
L
 

~.
~ 

A
S
S
P
~
(
~
K
R
C
I
L
A
Q
 

A
S
S
L
~
A
E
T
L
Y
F
G
S
G
T
R
L
 

A
S
~
H
L
V
L
W
C
G
H
P
 

A
S
S
L
C
C
~
S
K
H
L
V
L
W
C
G
H
 

A
S
S
L
P
D
~
S
Q
N
T
L
Y
F
G
A
 

A
S
S
L
~
K
H
L
V
L
W
C
G
H
P
T
 

A
S
S
L
P
T
~
x
~
S
K
H
L
V
L
W
C
 

A
S
S
L
I
~
S
K
~
 L

V
L
N
C
G
H
P
 

A
S
S
P
A
T
K
H
L
V
L
W
C
G
H
P
T
 

A
S
S
L
*
R
R
B
P
V
L
W
A
R
H
S
A
 

A
S
S
L
~
T
C
~
H
P
V
L
W
A
R
H
 

A
S
S
P
G
~
K
T
P
S
T
L
G
Q
A
L
 

A
S
S
L
~
R
H
P
V
L
W
A
R
H
 

A
S
S
L
Y
G
T
Q
y
F
G
P
G
T
R
L
L
 

A
S
S
P
W
~
L
L
*
T
V
L
R
S
R
H
 

~'
~ 

A
S
S
L
G
V
L
L
*
T
V
L
R
S
R
H
Q
 

~
-
 

A
S
S
P
*
Q
(
~
S
T
S
V
P
A
P
 

A
S
S
~
L
L
*
T
V
L
R
S
R
H
 

A
S
P
P
P
D
L
*
T
V
L
R
S
R
H
Q
A
 

A
S
~
Y
E
Q
Y
F
G
P
G
T
 

~"
 

A
SS

LY
R~

Q
Y

FG
PG

 
A
S
S
L
~
Y
E
Q
Y
F
G
P
G
T
R
 

A
S
S
~
D
T
L
*
T
V
L
R
S
R
H
Q
A
 

A
S
S
L
~
"
T
V
L
R
S
R
H
 

A
S
S
G
~
G
V
T
M
/
~
S
T
S
V
P
A
P
 

A
S
S
R
~
r
~
.
~
L
L
*
T
V
L
R
S
R
 

A
S
S
L
~
*
T
V
L
R
S
R
H
Q
A
H
 

~
"
 

A
S
S
L
G
Q
~
L
*
T
V
L
R
S
R
H
 

A
S
S
L
~
R
~
"
T
V
L
R
S
R
H
Q
 

O 
A
S
S
P
~
L
*
T
V
L
R
S
R
H
Q
A
 

A
S
S
L
&
T
G
*
 D

~
Q
Y
~
G
P
G
T
 

A
S
S
~
T
G
L
*
T
V
L
R
S
R
H
 

A
S
S
L
~
%
~
Y
E
Q
Y
F
G
P
G
T
 

A
S
S
L
Y
~
Y
F
G
P
G
T
R
L
 

A
S
S
Q
T
C
~
E
Q
Y
F
G
P
G
T
R
 

C~
 

S
JL

 
I 

TH
Y

M
IC

 
TH

Y
M

IC
 

LY
M

P
H

 N
O

D
E

 
LY

M
P

H
 N

O
D

E
 ~

 
4+

8+
 

4+
8-

 
4+

 
8+

 
A
S
S
L
~
D
R
~
T
E
L
F
F
G
K
G
 

A
S
S
L
Y
~
T
E
V
F
F
G
K
G
T
 

A
S
S
L
~
E
V
F
F
G
K
G
T
 

A
S
S
L
Y
~
V
F
F
G
K
G
T
R
 
L
T
 

A 
S
S
I
~
D
T
E
V
F
F
 G

K
G
T
 R
L
 

A
S
S
~
T
E
V
F
F
G
K
G
 

A
S
 S
 L
D
P
~
N
T
E
V
F
F
 G
K
 G
T
R
 

A
S
S
~
N
T
E
V
F
F
G
K
G
T
 

A
S
S
L
T
~
S
D
Y
T
F
G
S
G
T
R
 

A
S
S
L
Y
P
(
~
N
T
E
V
F
F
G
K
G
 

A
S
 S
P
G
~
A
N
T
E
V
F
 F

G
K
G
T
 

A
S
~
T
E
V
F
F
G
K
G
 

A
S
S
L
W
D
~
N
S
D
Y
T
F
G
S
G
 

A
S
S
 L
~
T
E
V
F
F
G
K
G
T
 

A
S
S
L
D
~
h
%
N
T
E
V
F
F
G
K
G
T
 

A
S
S
L
~
S
D
Y
T
F
G
S
G
T
 

A
S
S
P
(
~
N
S
D
Y
T
F
G
S
G
T
R
 

A
S
S
 L
~
T
E
V
F
F
G
K
G
T
 

A
S
Z
L
~
D
~
N
T
E
V
F
F
G
K
G
T
 

A
S
S
 L
Q
G
D
N
Q
A
Q
H
F
G
E
G
T
 

A
S
S
P
4
~
S
N
E
R
 L

F
?
G
H
 G
Y
 

A
S
S
L
Y
~
E
V
F
F
G
K
G
T
R
 

A
S
S
L
D
N
T
E
V
F
F
G
K
G
T
R
L
 

A
S
S
 L
~
G
~
Z
S
N
E
R
L
F
F
G
H
G
 

A
S
S
P
C
~
N
E
R
L
F
F
G
H
G
T
G
 

A 
S
S
~
E
V
F
F
G
K
G
T
R
 

A
S
S
L
P
~
)
T
E
V
F
F
G
K
G
T
 

A
S
S
~
z
~
z
~
N
E
R
L
F
F
G
H
G
 

A
S
S
~
G
N
N
Q
A
Q
H
F
G
E
G
T
 

A
S
S
~
V
F
F
G
K
G
T
R
 

L 
A
S
S
L
~
V
F
F
G
K
G
T
R
L
T
 

A
S
S
Z
T
~
S
N
E
R
L
F
F
G
H
G
 

A
S
S
L
Y
B
D
A
E
Q
F
F
G
P
G
T
R
 

A
S
S
L
R
~
T
E
V
F
F
G
K
G
T
R
 

A
S
S
~
N
T
E
V
F
F
G
T
R
L
T
 

A
S
S
L
~
S
N
E
R
L
F
F
G
H
 

A
S
S
 L
~
"
~
G
L
A
E
Q
F
F
G
P
 G
T
 

A
S
S
 L
~
N
T
E
V
F
F
G
K
G
 

A
S
~
I
~
R
N
 T
s
 

A
S
S
 L
~
S
I
E
R
L
F
F
G
H
G
 

A 
S
5
~
T
~
N
Y
A
E
Q
F
F
G
 

A
S
S
~
G
R
V
F
F
G
K
G
T
 

A
S
 S
~
T
E
V
F
F
G
K
G
R
R
L
 

A
S
 S
L
W
~
C
~
K
S
Y
A
E
Q
F
F
G
 

A 
S
S
~
V
E
Q
F
F
 
G
P
G
T
R
L
 T
 

A
S
T
~
N
T
E
V
F
F
G
K
G
T
R
 

A
S
~
T
E
V
F
F
G
K
G
T
R
 

A
S
S
~
Y
A
E
Q
F
F
G
P
 
G
T
R
L
 

A
S
S
~
A
E
Q
F
F
G
P
G
T
R
 

A
S
R
T
C
~
S
D
Y
T
F
G
S
G
T
G
 

A
S
S
T
~
T
E
V
F
F
G
K
G
T
R
 

A
S
S
I
~
-
~
N
 Y
A
E
Q
F
 F
G
P
G
 

A
S
S
L
Y
Q
~
E
Q
F
F
G
P
 

G 
A
S
S
P
T
G
G
N
S
D
Y
T
F
G
S
G
T
 

A
S
S
L
~
T
E
V
F
F
G
K
G
T
R
 

A
S
S
P
I
%
D
~
 N
Y
A
E
Q
 F
F
G
P
 

A
S
S
 L
~
Y
A
E
Q
F
F
G
P
 

G 
A
S
S
R
D
%
'
F
S
G
N
T
L
Y
F
G
E
G
 

A
S
 5
L
~
I
A
~
T
E
V
F
F
G
K
G
 

A
S
S
L
~
F
F
G
P
G
T
R
 

A
S
S
 L
Y
F
J
2
~
E
Q
F
F
G
P
G
T
R
 

A
S
S
L
Y
~
S
G
N
T
L
Y
F
G
E
 

A
S
S
~
D
~
T
E
V
F
F
G
K
G
T
 

A
S
S
L
Y
~
L
F
Y
A
E
Q
F
F
G
 

A 
S
S
~
A
L
A
E
Q
F
F
G
P
G
T
 
R 

A
S
S
L
~
G
N
T
 

L
Y
F
G
E
G
S
 

A
S
S
~
T
E
V
F
F
G
K
G
T
 

A
S
~
Y
A
E
Q
F
F
G
P
G
T
 

A
S
S
L
~
E
Q
F
F
G
P
G
T
R
 

A
S
S
 L
~
I
S
N
E
R
L
F
F
S
H
 
G 

A
S
S
L
~
S
D
Y
T
S
A
Q
G
P
G
 

A
S
S
L
W
D
N
Y
A
E
Q
F
F
G
P
G
T
 

A
S
S
L
W
F
.
A
E
Q
F
F
G
P
G
T
R
L
 

A
S
S
L
Y
S
Y
N
S
P
 
L
Y
F
A
A
G
T
 

A
S
S
L
G
R
N
S
D
Y
T
S
A
Q
G
P
G
 

A
S
S
L
Y
~
A
E
Q
F
F
G
P
G
T
 

A
S
S
L
Y
K
~
Q
F
F
G
P
G
T
R
 

A
S
S
 L
Y
G
T
Y
N
S
P
 L
Y
 F
A
A
G
 

A
S
S
L
D
K
N
S
D
Y
T
S
A
Q
G
P
G
 

A
S
S
L
W
~
Y
A
E
Q
F
F
G
P
G
T
 

A
S
S
 L
~
T
T
E
Q
~
F
G
P
G
T
R
L
 

A
S
S
 L
Y
K
D
S
P
L
Y
F
A
A
G
S
R
 

A
S
S
L
Y
]
~
N
S
D
Y
T
S
A
Q
G
P
 

A
S
S
L
~
A
E
Q
F
F
G
P
 

A
S
S
P
D
T
N
Y
A
E
Q
F
F
G
P
G
T
 

A
S
S
~
A
~
Q
F
F
G
P
G
T
R
 

A
S
S
L
D
~
'
~
S
G
N
T
L
Y
F
G
E
G
 

A
S
S
R
D
N
Y
A
E
Q
F
F
G
P
G
T
R
 

A
S
S
L
T
~
N
T
G
Q
L
Y
F
G
K
 

A
S
S
~
Y
A
E
Q
F
F
G
P
 

G 
A
S
~
D
~
N
T
 

L
Y
F
 G
E
G
S
R
 

A
S
S
 L
L
%
~
A
E
Q
F
F
 G
P
 G
T
R
 

A
S
S
 L
S
Q
G
T
G
Q
 L
Y
F
G
E
G
S
 

A
S
S
W
T
D
Y
A
E
Q
F
F
G
P
G
T
R
 

A
S
S
P
C
~
/
S
N
E
R
L
F
F
G
H
G
 

A
S
S
I
~
L
A
E
Q
F
F
G
P
 
G
T
R
L
 

A
S
S
L
C
~
N
T
G
Q
L
Y
F
G
E
G
 

A
S
S
 L
Y
S
G
D
Y
A
E
Q
F
F
G
P
 
G 

A
S
 S
L
G
T
C
~
I
 S
N
E
R
L
F
F
G
 

A
S
 S
V
N
Y
A
E
Q
F
F
G
P
 G

T
R
L
 

A
S
S
L
C
~
R
G
C
~
Z
A
E
T
L
Y
F
G
S
 

A
S
S
 L
Y
~
N
Y
A
E
Q
F
F
G
P
 

A
S
 S
P
(
~
E
R
L
F
F
G
H
 

G
T
 

A
S
S
 L
L
T
G
N
Y
A
E
Q
F
F
G
P
G
 

A
S
R
T
G
T
D
A
E
T
 L

Y
F
G
S
C
T
 

A
S
S
 L
S
I
~
r
f
A
E
Q
F
F
G
P
 G

T
 

A
S
F
~
G
Q
~
N
E
R
L
F
F
G
H
G
 

A
S
 S
L
L
T
~
A
E
Q
F
F
G
P
 
G
T
 

A
S
S
L
Y
C
~
A
E
T
L
Y
 

A
S
T
T
~
y
A
~
Q
F
F
G
P
G
T
R
 

A
S
T
W
C
~
A
E
Q
F
F
G
P
 
G
T
R
 

A
S
S
P
P
~
A
E
Q
F
F
G
P
 

G
T
 

A
S
S
 L
Y
 T
G
~
A
A
E
T
L
Y
F
G
5
 

A
S
S
 L
Q
~
N
T
G
Q
 L
Y
F
G
E
G
 L
 

A
S
$
 L
G
T
G
N
Y
A
s
 

A
S
 S
L
Y
N
A
E
Q
F
F
G
P
G
T
R
L
 

A
S
S
L
Y
T
(
~
E
T
L
Y
F
G
S
 

A
S
S
 L
E
G
G
A
E
T
 L
Y
F
G
S
G
T
 

A
S
S
P
G
T
H
Y
A
E
Q
F
F
G
P
 
G
T
 

A
S
S
L
G
L
~
E
Q
F
F
G
P
 

G
T
 

A
S
S
P
E
R
C
~
E
T
 L

Y
F
G
S
G
T
 

A
S
S
P
~
L
Y
F
G
S
C
T
R
 

A
S
S
P
~
N
Y
A
E
Q
F
F
G
P
~
 

A
S
S
~
D
R
G
T
N
T
G
Q
 
L
Y
F
G
 

A
S
S
V
~
E
T
L
Y
F
G
S
G
T
R
 

A
S
S
L
T
~
A
E
T
L
Y
F
G
S
G
T
 

A
S
 S
S
(
~
N
Y
A
E
Q
F
F
G
P
 
~
T
 

A
S
S
 L
R
T
C
~
N
T
C
Q
 L

Y
F
G
E
 

A
S
S
 L
Y
D
R
~
Q
N
T
 L
Y
 F
G
A
G
 

A
S
S
 L
~
D
~
T
L
Y
F
G
S
 

A
S
 S
L
~
Q
N
Y
A
E
Q
F
F
G
P
G
T
 

A
S
 S
T
W
S
N
T
G
Q
 L
Y
F
G
E
G
S
 

A
S
S
P
P
G
L
~
N
T
L
Y
F
G
A
 

A
S
S
P
T
G
Q
~
A
E
T
L
Y
 
F
G
S
G
 

A
S
S
I
 G
T
C
~
A
E
Q
F
F
C
P
G
 

A
S
S
[
2
N
T
A
N
T
G
Q
L
Y
F
C
E
 

A 
S
S
P
R
D
W
~
)
T
 L
 Y
P
G
A
G
T
 

A
S
S
P
A
G
~
A
S
A
E
T
L
Y
~
C
S
 

A
S
S
 L
Y
R
A
Y
A
E
Q
F
F
G
P
G
T
 

A
S
S
P
R
~
W
T
N
T
C
~
 
L
Y
F
G
K
 

A
S
S
 L
~
G
Q
D
T
Q
Y
F
G
P
G
T
 

A
S
S
L
~
T
S
A
E
T
L
Y
F
G
S
C
 

A
S
S
L
S
A
E
Q
F
F
G
P
G
T
R
L
T
 

A
S
S
L
L
~
N
T
G
Q
L
Y
F
G
E
G
 

A
S
S
P
L
G
~
3
Q
D
T
Q
Y
F
G
P
G
T
 

A
S
S
 L
Y
~
V
S
G
~
T
L
Y
F
G
E
 

A
S
S
L
D
Y
A
E
Q
F
F
G
P
G
T
R
L
 

A
S
S
L
W
G
G
N
T
G
Q
L
Y
F
G
E
G
 

A
S
S
 L
C
~
K
D
T
Q
Y
F
G
P
 G
T
R
L
 

A
S
S
P
R
S
A
E
T
L
Y
F
G
S
G
T
R
 

A
S
S
L
~
"
~
T
G
Q
L
Y
F
G
E
 

A
S
S
C
~
.
A
V
T
G
Q
 L
Y
F
G
E
G
S
 

A
S
S
 L
G
D
Q
D
T
Q
Y
F
G
P
G
T
R
 

A
S
S
L
G
L
~
E
T
L
Y
F
G
S
 

A
S
 ~
G
Q
G
N
T
G
Q
L
Y
F
G
E
G
 

A
S
S
L
Y
P
R
G
S
A
E
T
 
L
Y
F
G
S
 

A
S
S
P
D
W
G
D
Q
D
T
Q
Y
F
G
P
G
 

A
S
S
 L
Y
&
~
;
E
T
L
Y
F
G
S
G
T
R
 

A
S
R
P
G
T
G
N
T
G
Q
L
Y
F
G
E
G
 

A
S
S
L
~
S
A
E
T
L
Y
F
G
S
G
 

A
S
S
 L
G
V
N
Q
D
T
Q
Y
F
G
P
G
T
 

A
S
S
 L
S
L
~
S
A
E
T
L
Y
F
G
S
 

A
S
 S
~
&
~
G
N
T
G
Q
 
L
Y
F
G
V
 

A
S
S
L
~
S
A
E
T
L
Y
F
G
S
G
 

A
S
S
 L
S
C
~
Q
Y
F
G
P
G
T
 

A
S
S
L
Y
~
A
E
T
L
Y
F
G
S
 

A
S
 S
L
~
T
G
Q
L
Y
F
G
E
G
 

A
S
S
P
G
T
A
S
A
E
T
L
Y
 
F
G
S
G
 

A
S
S
 L
T
C
~
S
Y
E
Q
Y
F
G
P
G
 

A
S
R
G
L
C
~
"
Q
N
T
 L
Y
F
G
A
G
T
 

A
S
S
L
~
A
E
T
L
Y
F
G
S
G
T
 

A
S
S
L
Y
~
E
T
L
Y
F
G
S
 

A
S
S
R
D
W
G
D
S
Y
E
Q
Y
F
G
P
G
 

A
S
S
L
R
C
~
N
T
L
Y
F
G
A
G
T
R
 

A
S
S
~
Q
(
~
A
~
T
L
Y
F
G
S
G
T
 

A
S
S
L
Y
~
C
-
A
S
A
E
T
L
Y
 
F
G
 

A
S
S
 L
Y
T
~
S
Y
E
Q
Y
F
G
P
 
G 

A
S
S
L
S
G
N
T
L
Y
F
G
A
n
T
R
L
 

A
S
S
L
Y
~
E
T
 
L
Y
F
G
S
G
T
R
 

A
S
S
~
G
S
A
E
T
L
Y
F
G
S
 

A
S
S
L
~
E
Q
Y
F
G
P
G
T
R
L
T
 

A
S
S
 L
S
B
A
D
T
L
Y
F
G
A
G
T
R
 

A
S
S
L
C
~
S
A
E
T
L
Y
F
G
S
C
 

A
S
S
L
Y
I
~
S
C
~
A
E
T
 
L
Y
 F
G
 

A
S
S
 L
C
~
E
Q
Y
F
~
P
G
T
R
L
T
 

A
S
S
 L
G
V
Q
N
T
L
Y
 ~
C
A
G
T
R
 

A
S
S
P
~
5
~
A
E
T
L
Y
 

~
G
 

A
S
S
 L
&
~
G
A
S
A
E
T
L
Y
 F

C
S
 

A
S
S
 L
G
L
~
"
~
Y
E
Q
Y
F
 G
P
 G
T
 

A
S
S
L
C
~
N
T
L
Y
F
G
A
G
T
R
 

A
S
S
~
(
~
L
A
E
T
L
Y
F
G
S
C
 

A
S
S
 L
S
~
Q
N
T
L
Y
F
G
E
G
 

A
S
S
L
Y
E
Y
E
Q
Y
F
G
P
G
T
R
L
 

A
S
S
 L
E
(
~
D
T
Q
Y
F
G
P
 
G
T
 

A
S
S
L
~
S
A
E
T
L
Y
F
G
S
G
 

A
S
S
 L
E
S
Q
N
T
L
S
F
G
A
G
T
R
 

A
S
S
L
Y
N
G
G
~
3
T
Q
Y
F
G
P
 
G 

A
S
 S
 L
~
C
V
E
M
L
Y
 

F 
G
S
 

A
S
S
R
T
S
S
Q
N
T
L
Y
F
G
A
G
T
 

A
S
S
 L
W
Q
Q
D
T
Q
Y
 F
G
P
G
S
R
 

A
S
S
L
~
I
S
V
A
E
T
L
Y
F
G
S
G
T
 

A
S
S
L
W
~
S
 
S
Q
N
T
L
Y
F
G
A
 

A
S
S
I
~
K
Q
D
T
Q
Y
 
F
G
P
G
T
R
 

A
S
S
L
~
E
T
L
Y
F
G
S
 

A
S
S
L
~
Q
D
T
Q
Y
F
G
P
G
T
 

A
S
S
 L
G
~
S
Y
E
Q
Y
F
G
P
G
T
R
 

A
S
S
P
B
E
Q
N
T
L
Y
F
G
A
G
S
R
 

A
S
S
L
Y
D
S
N
Q
D
T
Q
Y
F
G
P
G
 

A
S
S
L
N
C
~
Q
Y
F
G
P
G
T
 

A
S
S
L
~
C
~
&
Q
N
T
L
Y
F
G
A
G
T
 

A
S
S
L
D
W
D
Q
D
T
Q
Y
 
F
G
P
 G
T
 

A
S
S
L
~
E
Q
Y
F
G
P
G
T
R
 

A
W
~
S
Q
N
?
L
Y
F
G
A
G
T
R
L
 

A
S
~
T
Q
Y
F
G
P
G
T
R
L
 

A
S
S
P
S
&
"
~
E
Q
Y
 

F
G
P
 G
 

A
S
S
L
S
G
Q
N
T
L
Y
F
G
A
G
T
R
 

A
S
S
L
~
G
~
T
Q
Y
F
G
P
G
 

A
S
S
L
~
S
Y
E
Q
Y
F
G
P
G
T
R
 

A
S
I
T
C
~
D
T
Q
Y
F
G
P
G
T
R
 

A
S
L
(
~
K
D
T
Q
Y
F
G
P
G
T
R
 

A
S
S
 L
~
S
Y
E
Q
Y
F
G
P
 

G
T
 

A
S
S
P
~
N
Q
D
T
Q
Y
F
G
P
G
 

A
S
S
L
L
G
C
.
Q
D
T
Q
Y
 F

G
P
 G
T
 

A
S
S
C
~
.
E
Q
Y
F
G
P
G
T
R
 
L
T
 

A
S
S
L
P
G
G
Q
D
T
Q
Y
F
G
P
 
G
T
 

A
S
S
P
D
~
D
 
T
Q
Y
F
G
P
G
T
R
 

A
S
S
L
P
~
S
Y
E
Q
Y
?
G
P
C
T
 

A
S
 S
L
~
R
I
~
Y
T
Q
Y
 

F
G
P
 

A
S
S
L
~
P
Q
Y
F
C
P
C
T
R
 

A
S
S
 L
~
(
~
Q
Y
 

F
G
P
 G
 

A
S
 S
L
~
N
Q
D
T
Q
Y
F
G
P
 
C
T
 

A
S
S
P
Q
D
Y
E
Q
Y
F
G
P
G
T
R
L
 

A
S
S
 L
Y
A
T
D
Y
Y
E
Q
Y
F
G
P
 
G 

A
S
 S
~
G
T
P
Q
D
T
Q
Y
F
G
P
 
G
T
 

A
S
S
P
D
~
E
Q
Y
F
G
P
G
T
R
 

A
S
S
 L
~
G
S
 
s
 

A
S
 S
R
D
P
~
3
 
T
Q
Y
 F
G
P
 G
T
 

A
S
S
L
T
~
S
Y
E
Q
Y
F
G
P
G
 

A
S
S
L
D
X
 S
Y
 E
Q
Y
~
G
P
G
T
R
 

A
S
I
~
T
~
D
T
Q
Y
F
G
P
 
G
T
R
 

A
S
S
L
Y
X
E
Q
Y
F
G
P
C
T
R
L
T
 

A
S
S
L
Y
S
Y
E
Q
Y
F
G
P
G
T
R
L
 

A
S
 S
L
F
G
~
g
T
Q
Y
F
G
P
G
T
R
L
 

A
S
S
L
~
Q
Y
F
G
P
G
T
R
L
T
 

A
S
S
S
Y
E
Q
Y
F
G
P
G
T
R
L
T
V
 

A
S
S
L
S
~
T
Q
Y
F
G
P
 

G
T
 

A
S
S
L
~
Y
 
E
Q
Y
F
G
P
 G
T
R
L
 

A
S
S
 L
T
&
"
~
E
Q
Y
F
G
P
 G
T
R
L
 

A
S
S
L
D
I
Y
E
Q
Y
F
G
P
G
T
R
L
 

A
S
S
 L
(
~
)
S
Y
E
Q
Y
F
G
P
G
T
R
 

A
S
S
L
A
D
Y
E
Q
Y
F
G
P
G
T
R
L
 

A
S
S
H
~
I
Y
E
Q
Y
F
G
P
G
T
R
 

A
S
S
P
T
G
~
/
%
S
Y
E
Q
Y
F
G
P
 
G 

A
S
 5
L
&
"
~
Q
Y
F
G
P
 

G
T
R
 

A
S
S
P
D
~
E
Q
Y
F
G
P
G
T
R
 

A
S
S
L
S
G
G
A
L
E
Q
Y
F
G
P
 
G
T
 

A
S
S
Q
Y
E
Q
Y
 F

G
P
G
T
R
L
T
V
 

A
S
 S
L
S
T
D
Y
E
Q
Y
F
G
P
 
G
T
R
 

A
S
S
L
~
E
Q
Y
F
G
P
G
T
R
L
 

A
S
S
L
~
G
D
~
Q
Y
F
G
P
 
G
T
R
 

A
S
S
 L
D
L
Y
 E
Q
Y
F
G
P
 G
T
R
L
 

A
S
S
L
Y
S
S
Y
E
Q
Y
F
G
P
G
T
R
 

A
S
S
L
~
E
Q
Y
F
G
P
G
T
R
L
 

A
S
 S
 L
P
~
.
D
E
Q
Y
F
G
P
 G

T
R
 

A
S
S
 L
~
Q
Y
F
G
P
G
T
R
L
 

A
S
 S
L
~
E
Q
Y
F
G
P
 

G
T
 

A
S
S
 L
G
~
F
E
Q
Y
F
G
P
G
T
R
L
T
 

A
S
S
L
~
E
Q
Y
F
G
P
 

G
T
 

A
S
S
P
~
Y
E
Q
Y
F
G
P
 

G
T
 

A
S
S
T
&
~
.
~
S
y
 E
Q
Y
F
G
P
 G
T
 

A
S
S
L
~
Y
E
Q
Y
F
G
P
G
T
R
 

A
S
 S
~
S
Y
E
Q
Y
F
G
P
 

G
T
 

A
S
S
P
~
D
~
Y
E
Q
Y
F
G
P
G
T
R
 

A
S
 S
L
K
A
E
Q
Y
F
G
P
 G

T
R
L
T
 

A
S
S
 L
W
~
Y
E
Q
Y
 

F
G
P
 G
T
 

A
S
S
L
~
Y
E
Q
Y
F
G
P
G
T
R
 

A
S
T
G
Y
E
Q
Y
F
G
P
G
T
R
L
T
V
 

S
JL

. 
Eo

~ 
I 

TH
Y

M
IC

 
TH

Y
M

IC
 

LY
M

P
H

 N
O

D
E

 
LY

M
P

H
 

N
O

D
E

 I
 

4+
8+

 
4+

8-
 

4+
 

8+
 

A
S
S
P
~
.
~
T
E
V
F
F
G
 

A
S
S
J
G
T
A
N
T
E
V
F
F
G
K
G
T
 

A
S
S
~
E
V
P
F
G
K
G
T
R
L
 

A
S
S
P
B
G
T
~
S
D
Y
T
F
G
S
G
 

A
S
S
L
~
Q
G
T
E
V
F
F
G
K
G
T
R
 

A
S
S
L
~
T
E
V
F
F
G
K
 

A
S
S
L
D
T
N
T
E
V
F
F
G
K
G
T
R
 

A
s
s
L
G
G
~
r
N
S
D
Y
T
F
G
S
G
T
 

A
S
S
L
~
T
E
V
F
F
G
K
G
T
R
 

A
S
S
N
~
%
~
N
T
E
V
F
F
G
K
G
T
 

A
S
S
L
W
D
R
D
S
D
Y
T
F
G
S
G
T
 

A
S
S
L
A
G
T
~
N
S
D
Y
T
F
G
S
 

A
S
J
R
~
R
~
E
V
F
F
G
K
G
T
R
L
 

A
S
S
L
~
N
T
E
V
F
F
G
K
G
 

A
S
S
L
~
(
~
)
S
D
Y
T
F
~
S
G
T
 

A
S
S
 L
A
G
~
I
~
S
N
E
R
L
F
F
G
Q
 

A
S
S
V
C
~
T
E
V
F
F
G
K
G
T
R
 

A
S
T
~
N
T
E
V
F
F
G
K
G
T
W
L
T
 

A
S
S
L
R
(
~
)
A
E
Q
F
R
G
P
G
T
R
 

A
S
S
R
D
I
Y
N
S
P
L
Y
F
A
A
P
T
 

A
S
S
L
G
T
T
N
T
E
V
F
F
G
K
G
T
 

A
S
S
L
~
G
B
S
D
Y
T
F
G
S
G
T
 

A
S
S
L
G
T
~
N
Y
A
E
Q
F
F
G
P
 

A
S
S
L
Y
g
~
N
S
P
L
Y
?
A
A
G
 

A
s
S
~
T
%
~
N
T
E
V
F
F
G
K
G
T
 

A
S
S
L
~
S
D
Y
T
F
G
S
G
T
 

A
S
S
L
Y
P
G
L
D
A
E
Q
F
F
G
P
G
 

A
S
S
P
D
R
L
Y
A
E
Q
F
F
G
P
G
T
 

A
S
S
L
Q
(
~
E
V
F
F
G
K
G
T
R
L
 

A
S
S
L
W
~
S
D
Y
T
F
G
S
G
T
 

A
S
F
J
A
E
Q
F
F
G
P
G
T
R
L
T
V
 

A
S
S
I
~
Y
A
E
Q
F
F
G
 

A
S
S
P
G
"
~
I
B
N
S
D
Y
T
F
G
S
G
T
 

A
S
S
L
~
K
N
S
D
Y
T
F
G
S
G
T
R
 

A
S
S
P
~
Y
A
E
Q
F
P
G
P
G
T
R
 

A
S
S
L
R
(
~
E
Q
F
F
G
P
 

A
S
~
N
S
D
Y
T
F
G
3
G
T
 

A
S
~
N
S
D
Y
T
F
G
S
G
T
R
 

A
S
S
L
T
E
Q
F
F
G
P
G
T
R
L
T
V
 

A
S
S
L
Y
W
~
Y
A
E
Q
F
F
G
P
G
 

A
S
S
L
~
S
D
Y
T
F
G
S
G
T
R
 

A
S
S
P
T
~
D
Y
T
F
G
S
G
T
R
 

A
S
S
g
D
N
Y
A
E
Q
F
F
G
P
G
T
R
 

A
S
S
H
R
D
I
~
"
T
D
A
E
Q
F
F
G
P
 

A
S
S
L
Q
(
~
G
N
T
L
Y
E
G
E
G
S
 

A
S
S
L
G
N
T
L
Y
F
G
E
G
S
R
L
I
 

A
S
~
Y
A
E
Q
F
F
G
P
G
T
 

A
S
S
L
Y
L
G
N
Y
A
E
Q
F
F
G
P
G
 

A
S
S
~
D
~
G
N
T
L
Y
F
G
E
G
S
 

A
S
S
L
~
S
N
E
R
L
F
F
G
H
G
T
 

A
S
S
~
A
E
Q
F
F
G
P
G
 

A
S
S
 L
~
E
Q
F
F
G
P
 

A
S
S
R
~
Y
A
E
Q
F
F
G
P
G
 

A
S
S
G
T
G
S
N
E
R
L
F
F
G
H
G
T
 

A
S
S
R
D
N
Y
A
E
Q
F
F
G
P
G
T
R
 

A
s
s
P
N
D
R
D
C
.
A
E
Q
F
F
G
P
G
 

A
S
S
~
Y
A
E
Q
F
F
G
 

A
S
S
L
~
N
Q
A
Q
H
F
G
 

A
S
S
L
Y
L
~
T
Y
A
E
Q
F
F
G
 

A
s
S
R
D
N
Y
A
E
Q
F
F
G
P
G
T
R
 

A
S
S
P
K
~
C
~
Y
A
E
Q
F
F
G
P
 

A
S
S
L
S
~
I
N
Q
A
Q
H
F
G
E
G
T
 

A
S
S
L
T
~
Y
A
E
Q
F
F
G
P
G
 

A
S
S
L
~
Y
A
E
Q
F
F
G
P
G
 

A
S
S
~
D
~
A
E
Q
F
F
G
P
G
T
R
L
 

A
S
S
R
T
~
N
S
P
 

L
Y
F
A
A
G
 

A
S
S
Q
~
E
Q
F
F
G
P
G
T
R
 

A
S
S
L
~
Y
A
E
Q
F
F
S
P
G
 

A
S
S
~
G
~
N
Y
A
E
Q
F
F
G
P
G
T
 

A
S
S
L
~
G
T
C
N
S
P
L
Y
F
A
A
G
 

A
S
~
T
~
-
N
Y
A
E
Q
F
F
G
P
G
T
 

A
S
S
L
T
C
~
A
E
Q
F
F
C
P
G
 

A
S
S
~
I
~
E
Q
F
F
G
P
G
 

A
S
S
L
Y
G
Q
D
A
E
Q
F
F
G
P
G
H
 

A
S
S
L
~
E
Q
F
F
S
P
G
T
R
 

A
S
S
~
W
(
~
A
E
Q
F
F
G
P
 

A
S
S
L
~
E
Q
F
F
G
P
G
T
 

A
S
S
L
~
K
N
Y
A
E
Q
F
F
G
P
G
 

A
S
S
L
(
~
T
G
Q
L
Y
F
G
E
G
S
K
 

A
S
S
R
D
W
G
N
Y
A
E
Q
F
F
G
P
G
 

A
S
S
~
D
Y
A
E
Q
F
F
G
~
G
T
R
L
 

A
S
~
T
~
A
E
Q
F
F
G
P
G
T
 

A
S
S
P
D
S
A
E
T
L
Y
F
G
S
G
T
R
 

A
S
S
R
T
C
~
Y
A
E
Q
F
F
G
P
G
 

A
S
S
L
W
~
.
~
A
E
Q
F
F
G
P
C
T
 

A
S
S
L
Y
~
Y
A
E
Q
F
F
G
P
 

A
S
S
L
~
"
T
T
S
A
E
T
L
Y
F
G
S
 

A
S
S
L
Y
L
T
(
~
N
Y
A
E
Q
F
F
G
 

A
S
S
~
G
L
~
A
E
Q
F
F
G
P
G
 

A
S
S
L
D
N
Y
A
E
Q
F
F
G
P
G
T
R
 

A
S
S
L
Y
(
~
C
~
A
E
T
L
Y
F
 

A
S
~
D
A
E
Q
F
F
G
P
G
T
R
L
T
V
 

A
S
S
L
G
~
N
T
G
Q
L
Y
F
G
E
G
S
 

A
S
S
S
~
Y
Y
A
E
Q
F
F
G
P
G
T
 

A
S
S
P
~
G
C
~
D
A
E
T
L
Y
F
G
 

A
S
S
~
L
~
Y
A
E
Q
F
F
G
P
 

A
S
S
R
~
T
G
Q
L
Y
F
G
E
 

A
S
S
L
&
'
~
N
Y
A
E
Q
F
F
G
P
G
T
 

A
S
A
B
~
S
A
E
T
L
Y
F
G
S
 

A
S
S
P
T
C
~
T
G
Q
L
Y
F
C
E
C
 

A
S
S
L
~
I
N
T
G
Q
L
Y
F
G
 

A
S
S
L
W
~
Y
A
E
Q
F
F
G
P
G
 

A
S
S
L
Y
T
~
S
A
E
T
L
Y
F
G
S
 

A
S
S
L
Y
E
G
E
T
L
Y
F
G
S
G
T
R
 

A
S
S
Q
D
~
E
T
L
Y
F
G
S
G
 

A
S
S
P
D
W
G
N
T
C
Q
S
H
F
G
E
G
 

A
S
S
L
P
D
P
S
A
E
T
L
Y
F
G
S
G
 

A
S
S
Q
~
C
~
S
A
E
T
L
Y
F
G
S
 

A
S
F
~
T
G
~
C
~
A
E
T
L
Y
F
G
S
G
 

A
S
S
L
T
G
T
~
G
Q
L
Y
F
G
E
G
 

A
S
S
Q
T
C
~
N
T
L
Y
~
G
A
G
T
 

A
S
S
L
~
R
G
L
S
A
E
T
L
Y
F
G
 

A
S
S
P
S
E
T
L
Y
F
G
S
G
T
R
L
T
 

A
S
S
L
~
T
L
Y
F
G
S
G
T
R
L
T
 

A
S
S
L
D
R
N
T
L
Y
F
G
A
G
T
R
L
 

A
S
S
L
Y
L
~
S
A
E
T
L
Y
F
G
S
 

A
S
S
L
N
S
S
A
E
T
L
Y
F
G
S
G
T
 

A
S
S
L
D
S
A
E
T
L
Y
F
G
~
G
T
R
 

A
S
S
P
R
E
Q
N
T
L
Y
F
G
A
G
T
R
 

A
S
S
p
P
G
L
G
~
T
L
Y
F
G
S
G
 

A
S
S
L
W
~
A
E
T
L
Y
F
G
S
G
 

A
S
S
L
G
~
S
A
E
T
L
Y
F
G
S
G
 

A
S
S
L
P
S
Q
N
T
L
Y
F
G
A
G
T
R
 

A
S
S
P
D
W
~
S
A
E
T
L
Y
F
G
S
 

A
S
S
R
R
~
A
E
T
L
Y
F
G
5
 

A
S
S
P
S
S
A
E
T
L
Y
F
G
S
G
T
R
 

A
S
S
L
S
Q
N
T
L
Y
F
G
A
G
T
R
L
 

A
S
R
~
W
C
~
S
A
E
T
L
Y
F
G
S
 

A
S
S
D
R
G
A
E
T
L
Y
F
G
S
G
T
R
 

A
S
S
L
A
~
S
A
E
T
L
Y
F
G
S
G
T
 

A
S
S
L
Y
P
~
C
~
D
T
Q
Y
F
 

A
S
S
P
D
W
(
~
S
A
Z
T
L
Y
F
G
S
 

A
S
S
~
D
A
E
T
L
Y
F
G
S
G
 

A
S
S
P
T
C
~
s
 

A
S
S
L
R
L
~
Q
D
T
Q
Y
F
G
P
G
 

A
S
S
L
Y
C
.
G
Q
V
S
E
T
L
Y
F
G
S
 

A
S
S
~
A
E
T
L
Y
F
G
S
 

A
S
S
L
G
T
G
Z
G
A
E
T
L
Y
F
G
S
 

A
S
S
P
G
T
G
G
T
Q
D
T
Q
Y
F
G
P
 

A
S
S
L
Y
E
D
S
Q
N
T
L
Y
F
C
K
C
 

A
S
S
L
S
~
S
A
E
T
L
Y
F
G
S
G
 

A
S
S
L
~
G
~
G
A
E
T
L
Y
F
G
S
 

A
S
S
L
S
R
T
Q
D
T
Q
Y
~
G
P
G
S
 

A
S
S
L
~
E
N
T
L
Y
F
G
 

A
S
S
P
S
R
D
A
E
T
L
Y
F
G
S
G
T
 

A
S
S
L
Y
W
G
E
T
L
Y
F
G
S
G
T
R
 

A
S
S
L
~
T
Q
Y
F
G
P
G
T
R
 

A
S
S
L
Y
W
~
S
S
Q
N
T
L
Y
F
G
 

A
S
S
L
G
T
G
G
A
E
T
L
Y
F
G
S
G
 

A
S
S
L
~
T
L
Y
F
G
A
G
T
R
 

A
S
S
L
R
T
~
(
D
T
Q
Y
F
G
P
G
T
 

A
S
S
L
Y
S
S
S
Q
N
T
L
Y
F
G
A
G
 

A
S
S
L
Y
K
~
A
E
T
L
Y
F
G
S
G
 

A
S
S
P
~
Q
N
T
L
Y
F
G
A
 

A
S
S
B
/
~
T
Q
Y
F
G
P
G
T
R
 

A
S
S
L
L
C
~
S
Q
N
T
L
Y
F
G
A
 

A
S
S
P
D
~
I
A
E
T
L
Y
F
G
S
G
 

A
S
S
L
Y
T
G
S
Q
N
T
L
Y
F
G
A
G
 

A
S
S
L
P
G
~
%
Q
D
T
Q
Y
F
G
P
G
T
 

A
S
S
L
Y
P
R
A
D
Q
N
T
L
Y
F
G
A
 

A
S
S
I
~
S
Q
N
T
L
Y
F
G
A
G
 

A
S
S
Q
~
Q
N
T
L
Y
F
G
A
G
T
R
 

A
S
S
L
~
T
Q
Y
F
G
P
G
 

A
S
S
~
T
~
Q
N
T
L
Y
F
G
A
G
 

A
S
S
L
Y
~
S
Q
N
T
L
Y
F
G
 

A
S
S
L
F
~
2
~
N
T
L
Y
F
G
A
G
T
R
 

A
S
S
L
Y
P
~
G
Q
D
T
Q
Y
F
G
P
 

A
S
G
L
L
G
~
)
T
L
Y
F
G
A
G
T
R
L
 

A
T
%
'
R
G
T
S
Q
N
T
L
Y
F
G
A
G
T
 

A
S
S
L
A
S
Q
N
T
L
Y
F
G
A
G
T
R
 

A
S
S
P
T
D
N
Q
D
T
Q
Y
F
G
P
G
T
 

A
S
S
L
I
W
D
R
A
N
T
L
Y
F
G
A
G
 

A
S
S
P
T
G
~
Q
N
T
L
Y
F
G
A
G
T
 

A
S
S
L
Q
D
T
Q
Y
F
G
P
G
T
R
L
L
 

A
S
S
P
T
D
Q
D
T
Q
Y
F
G
P
G
T
G
 

A
S
S
L
G
T
~
Q
N
T
L
Y
F
G
 

A
S
S
~
S
Q
N
T
L
Y
F
G
A
 

A
S
S
L
~
S
N
Q
D
T
Q
Y
F
G
P
G
S
 

A
S
S
L
G
C
~
D
T
Q
Y
F
G
P
G
T
R
 

A
S
S
L
~
G
Q
D
T
Q
Y
F
G
P
G
T
 

A
S
S
L
Y
P
D
R
~
G
Q
N
T
L
Y
F
G
 

A
S
S
L
G
T
~
Q
D
T
O
Y
F
G
P
G
T
 

A
S
S
L
Y
T
~
N
Q
D
T
Q
Y
F
G
P
 

A
S
S
~
Q
D
T
Q
Y
F
G
P
G
T
R
 

A
S
S
L
~
D
T
Q
Y
F
G
P
G
T
R
L
 

A
S
S
L
~
N
Q
D
T
Q
Y
F
G
P
G
T
 

A
S
S
L
L
E
Q
D
T
Q
Y
F
G
P
G
T
R
 

A
S
S
L
Y
~
D
T
Q
Y
F
G
~
 

A
S
S
P
I
~
D
T
Q
Y
F
G
P
G
T
R
 

A
S
S
L
~
Q
D
T
Q
Y
F
G
p
G
T
R
 

A
S
S
L
~
L
V
Q
D
T
Q
Y
?
G
P
G
 

A
S
S
~
D
T
Q
Y
F
G
P
G
 

A
S
S
L
~
&
~
F
D
T
Q
Y
F
G
P
G
T
 

A
S
S
L
~
T
Q
Y
F
G
P
G
T
R
 

A
S
S
L
L
D
Q
D
T
Q
Y
F
G
P
G
T
G
 

A
S
S
R
~
T
G
V
N
Q
D
T
Q
Y
F
G
P
 

A
S
S
L
Y
T
(
~
D
T
Q
Y
F
G
P
G
 

A
S
S
P
~
Q
D
T
Q
Y
F
G
P
 

A
S
S
L
Y
~
D
T
Q
Y
F
G
P
C
 

A
S
S
L
A
&
"
4
~
D
T
Q
Y
F
G
P
G
T
 

A
S
S
L
~
G
G
Q
D
T
Q
Y
F
G
P
 

A
S
S
L
&
'
I
~
.
D
T
Q
Y
F
G
P
G
T
R
 

A
S
S
H
D
S
G
C
~
Q
D
T
Q
Y
F
G
P
G
 

A
S
S
G
R
C
~
G
O
T
Q
Y
F
G
P
G
 

A
S
S
L
P
N
Q
D
T
Q
Y
F
G
P
G
T
R
 

A
S
S
L
~
D
T
Q
Y
F
G
P
G
T
 

A
S
S
L
Y
~
N
Q
D
T
Q
Y
F
G
P
G
 

A
S
S
~
T
(
~
&
F
N
Q
D
T
Q
Y
F
G
 

A
S
S
L
Y
N
Q
D
T
Q
Y
F
G
P
G
T
G
 

A
S
S
L
Y
~
Q
D
T
Q
Y
F
G
 

A
S
S
L
~
R
D
T
Q
Y
F
G
P
G
T
R
 

A
S
S
L
G
D
T
Q
Y
F
G
P
G
T
R
L
L
 

A
S
S
P
~
Q
D
T
Q
Y
F
G
P
 

A
S
S
L
~
Q
D
T
Q
Y
F
G
F
G
T
R
 

A
S
S
L
~
E
Q
Y
F
G
P
G
T
R
L
T
 

A
S
S
L
L
W
G
Q
D
T
Q
Y
F
G
P
G
T
 

A
S
S
F
D
I
N
Q
D
T
Q
Y
F
G
P
G
T
 

A
S
S
R
T
~
D
T
Q
Y
F
G
P
G
T
R
L
 

A
S
S
L
E
D
S
Y
E
Q
Y
F
G
P
G
T
R
 

A
S
S
L
G
G
~
Q
D
T
Q
Y
F
G
P
G
T
 

A
S
S
L
T
~
Q
D
T
Q
Y
F
G
P
G
 

A
S
S
P
r
~
'
G
G
Q
D
T
Q
Y
F
G
P
G
 

A
S
S
P
(
~
E
Q
Y
F
G
P
G
T
R
 

A
S
S
L
V
C
~
Q
D
T
Q
Y
F
G
P
G
 

A
S
S
L
~
I
N
Q
D
T
Q
Y
F
G
P
 

A
s
s
P
G
Q
(
~
Q
D
T
Q
Y
F
G
P
G
 

A
S
S
R
S
Y
E
Q
Y
F
G
P
G
T
R
L
T
 

A
S
S
L
P
C
~
E
Q
Y
F
~
P
 

A
S
S
F
D
I
N
Q
D
T
Q
Y
F
G
P
G
T
 

A
S
S
L
Y
C
~
T
Q
Y
F
G
p
G
T
R
 

A
S
S
Q
D
~
D
E
Q
Y
F
G
P
G
T
R
L
 

A
S
S
L
W
T
C
~
&
Y
E
Q
Y
F
G
P
G
T
 

A
S
S
L
Y
~
Y
E
Q
Y
F
G
P
G
T
R
L
 

A
S
S
L
~
Q
D
T
Q
Y
F
G
P
G
T
R
 

A
S
S
L
W
4
~
E
Q
Y
F
G
P
G
T
 

A
S
S
L
P
P
~
R
S
Y
E
Q
Y
F
G
P
G
 

A
S
S
L
y
~
T
~
Y
E
Q
Y
F
G
P
 

A
S
S
A
T
~
I
N
Q
D
T
Q
Y
F
G
P
G
 

A
s
S
P
D
T
S
Y
E
Q
Y
F
G
P
G
T
R
 

A
S
S
~
S
Y
E
Q
Y
F
G
P
G
T
 

A
S
S
L
Y
A
D
E
Q
Y
F
G
P
G
Y
R
L
 

A
S
S
L
~
G
G
D
D
T
Q
Y
F
G
P
G
 

A
s
s
L
P
Y
~
Q
Y
F
G
P
G
T
R
L
T
 

A
S
S
L
Y
E
Q
Y
F
G
P
G
T
R
L
T
V
 

A
S
S
R
D
~
E
Q
Y
F
G
P
G
T
R
L
 

A
S
S
L
R
D
E
Q
Y
F
G
P
G
T
R
L
T
 

A
S
S
L
D
Q
A
E
O
Y
F
G
P
G
T
R
L
 

A
S
S
~
Y
E
Q
Y
F
G
P
G
T
R
L
 

A
S
~
S
Y
E
Q
Y
F
G
P
G
T
R
L
T
 

A
S
S
L
T
D
Y
E
Q
Y
F
G
P
C
T
B
L
 

A
S
S
L
~
S
Y
E
Q
Y
F
G
P
G
T
R
 

A
S
S
L
T
E
Q
Y
F
G
P
G
T
R
L
T
V
 

A
S
S
L
P
~
S
Y
E
Q
Y
F
G
P
G
 

A
S
S
L
Q
~
Q
Y
F
G
P
G
T
R
A
 

A
S
S
L
T
C
~
G
Y
E
Q
Y
F
G
P
G
T
R
 

A
S
S
L
Y
~
Q
Y
F
G
P
G
 

A
S
S
L
~
G
T
~
S
y
E
Q
Y
F
G
P
 

A
S
~
T
G
Y
E
Q
Y
F
G
P
G
T
R
A
H
 

A
S
S
Q
T
G
Y
S
Y
E
Q
Y
F
G
P
G
T
 

A
S
S
P
T
G
~
D
E
Q
Y
F
G
P
G
T
R
 

A
S
S
L
~
S
Y
E
Q
Y
F
G
P
G
T
R
 

A
S
S
L
~
S
Y
E
Q
Y
F
G
P
G
T
R
 

A
S
S
L
Y
~
G
S
Y
E
Q
Y
F
G
P
G
 

A
S
S
L
~
Q
Y
F
G
P
G
T
R
A
 

A
S
S
~
D
~
E
Q
Y
 

F
G
P
G
T
 

A
S
S
L
Y
E
~
Z
T
~
E
Q
Y
F
G
P
G
 

A
S
S
L
~
Y
E
Q
Y
F
G
P
G
T
R
L
 

A
S
S
L
W
C
~
Y
E
Q
Y
F
G
P
G
T
 

A
S
S
L
C
~
S
Y
E
Q
Y
F
G
P
G
T
 

A
S
S
P
T
~
Y
E
Q
Y
F
G
P
G
T
R
 

A
S
S
L
Y
~
L
D
E
Q
Y
F
G
P
G
 

A
s
 S
P
G
L
~
Q
Y
F
G
P
G
T
R
 

A
s
s
~
G
T
G
V
E
Q
Y
~
G
P
G
T
R
 

A
S
S
L
W
(
~
E
Q
Y
F
G
P
G
T
R
L
 

A
S
S
L
R
~
T
Q
Y
F
G
P
G
T
R
 

A
S
S
L
S
~
Z
Q
Y
F
~
P
G
T
 

A
S
S
L
~
Y
E
Q
Y
F
G
P
 

A
S
S
L
~
Y
E
Q
Y
F
G
P
G
T
R
L
 

A
S
S
L
Y
L
G
Y
Z
Q
Y
F
G
P
G
T
R
 

A
S
S
L
P
G
E
Q
Y
F
G
P
G
T
R
L
T
 

A
S
S
L
T
G
E
Q
Y
F
G
P
G
T
R
L
T
 

A
S
S
L
T
C
~
E
Q
Y
F
G
P
G
T
R
 

A
S
I
T
G
~
E
Q
Y
F
G
P
G
T
R
 

A
Z
S
L
E
T
E
S
Y
E
Q
Y
F
G
P
G
T
 

F
ig

ur
e 

2.
 

Pr
ot

ei
n 

se
qu

en
ce

s. 
A

m
in

o 
ac

id
 s

eq
ue

nc
es

 a
re

 d
ed

uc
ed

 f
ro

m
 t

he
 n

uc
le

ot
id

e 
se

qu
en

ce
s 

an
d 

di
sp

la
ye

d 
in

 t
he

 s
ta

nd
ar

d 
on

e-
le

tt
er

 c
od

e.
 B

ol
d 

le
tt

er
s 

in
di

ca
te

 a
m

in
o 

ac
id

s 
sp

ec
ifi

ed
 b

y 
th

e 
N

, 
D

, 
an

d 
N

 b
as

es
; n

or
m

al
 c

ha
ra

ct
er

s c
or

re
sp

on
d 

to
 V

- o
r 

J-
en

co
de

d 
am

in
o 

ac
id

s. 
T

he
 n

uc
le

ot
id

e 
se

qu
en

ce
s 

fr
om

 w
hi

ch
 th

es
e 

se
qu

en
ce

s 
ar

e d
er

iv
ed

 h
av

e b
ee

n 
gi

ve
n 

ac
ce

ss
io

n 
nu

m
be

rs
 X

61
75

6-
X

61
76

4 
in

 t
he

 E
M

B
L

/G
en

B
an

k 
D

at
a 

Li
br

ar
ie

s. 



A ALL SEQUENCES 

14 
13 

14 

D R G 
'G % ' A  

'G "T "G "G 
i a i i  ii i 
GGGACAGGGGGC 

B B6 

11~ THYMIC 4+8+ 

10 

o 1~ 
SJL 

11s~1 THYMIC 4+8+ 
12 
14 ~ 1~ 

0 10 20 

SJL.E  

10141zls14~lss e79 LTHYMIC, 4+8+1 , 

0 10 20 

iiL__T"YM'c4+8 

5 . , 

0 10 20 

111213141510 ~ 78 ~ I B B==.__,. THYMIC 4+8- 

o 1~ 

r+ 

0 10 20 

:4 s ~m LYMPH NODE 4+ 

12 
11 
10 

0 10 2O 

Is L LYMPH NODE 8+ is LYMPH NODE 8+ 
~ 13 14 

12 12 
11 

~ 1o I i 

8 ~ 
0 10 20 0 10 20 

Figure 3. Lengths of the CDR.3 loops. Each histogram plots the number 
of sequences vs. the size of the CDR3 loops, deduced from the data sets. 
The definition of the CDR3 loop is based on the homology of TCRB 
chains with Igs (21-23, 35). Following reference 21, CDR3 starts down- 
stream from the conserved Set at position 94, and ends immediately up- 
stream from the conserved Phe at position 108 (numbering according to 
reference 21); thus . . . .  CAS*-CDR.3~FGXG . . . 

In Table 5, we have grouped amino acids according to the 
frequency at which they are encoded in the D segments of 
V~17 + TCRs, and have weighed each one's occurrence ac- 
cording to the number ofcodons that specify it. Proline, glu- 

D W G G 

G L G G Figure 4. Coding potential of 
. . . . . .  the D/~ segments. The translation 
G 'T G G A of D/31 (top) and D32 (bottom) 

. . . . . . . .  segments is shown, in all reading 
GGGACTGGGGGGGC frames. 

tamic acid, tryptophan, and aspartic acid seem to be selected 
for; conversely, isoleucine, tyrosine, methionine, cysteine, leu- 
cine, and alanine appear to be selected against. In general, 
there is a preference for charged and polar residues over 
hydrophobics. 

Discuss ion 

General Properties of V~17 + TCRs 
We have sequenced >600 transcripts that specify TCRs 

carrying the Va17 variable region. From this large data base, 
certain conclusions can be drawn about the "typical" junc- 
tional region of Va17 + TCRs. Some of the conclusions are 
particularly interesting in light of past observations on Ig 
receptors. 

J/~ Usage. V~17 + TCRs do not randomly use joining 
segments. Perhaps most striking is the finding that JB2s are 
used about four times as often as J31s. This preference is evi- 
dent with both expressed and nonexpressed transcripts, indi- 
cating that it is independent of repertoire selection events. 
One explanation may lie in the structure of the individual 
recombination signals: all of the heptamer and nonamer signals 
5' of the J31 segments are separated by 13 nucleotides (22), 
while those 5' of the J32s are all 12 nucleotides apart (23). 
This difference, though small, may render the JB1 segments 
less recognizable by the recombination machinery. In fact, 
it has already been shown that just such a single nucleotide 
difference can measurably reduce the ability of an artificial 
substrate to undergo recombination in pre-B cells (24). 

A preference for J/32s was foretold by previous reports that, 
no matter which V3 segment they carry, TCR cDNAs bearing 
J32 fragments are isolated more frequently from recombinant 
libraries (25), and TCR genes with rearranged J32 fragments 
are detected more frequently on Southern blots (26). Intrig- 
uingly, skewed J3 usage was not observed in fetal T lympho- 
cytes (27), but we have seen it in neonatal T cells (27a). 

More novel is the observation that the J32s, themselves, 
are subject to uneven usage: JB2.1, J/32.5, and J32.6 being 
particularly favored. Again, this nonrandom use of joining 
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Table 4. Amino Acid Frequency in NDN-encoded Stretches 

G A S T L I V M F Y W H R K D E Q N C P 

31.3 2.7 4.9 6.5 2.7 0 2.7 0 1.1 0 4.9 2.7 1.9 1.1 3.2 3.8 4.3 1.1 1.1 

31.6 2.9 4.0 8.6 3.4 0 2.9 0 1.7 1.1 4.0 1.7 12.6 1.1 12.1 2.3 1.7 0.6 0.6 
32.1 3.4 4.3 7.7 3.4 0.8 2.5 0.8 3.0 0.4 2.1 2.1 11.1 1.7 7.2 2.6 4.3 2.1 0 
32.8 3.4 5.2 9.1 2.8 2.4 1.0 0.7 2.4 1.0 1.4 2.1 7.7 2.1 8.0 2.4 4.5 1.0 0.3 
30.1 5.1 4.7 7.6 6.2 1.1 3.3 0 0.7 0 8.3 1.1 6.9 0.7 8.3 3.6 2.9 2.2 0 

32.3 2.9 3.6 8.0 2.9 1.8 2.5 0 1.5 0.3 2.9 1.5 10.2 1.8 8.7 2.5 5.8 1.5 0 
36.8 4.0 4.9 10.7 2.7 0.4 2.2 1.3 1.3 0.4 4.4 0.8 7.5 0.8 8.8 2.7 4.0 0.8 0 
32.5 3.8 4.2 9.0 6.1 0 1.4 0 0.5 0 1.4 0.9 9.0 1.4 12.3 3.3 3.3 0.5 0 
28.8 4.2 4.0 5.7 5.4 0.8 2.5 0.3 2.5 0.6 5.3 0.6 8.5 0.6 9.3 2.8 1.4 0.3 0 

14.0 Va17b B6 

6.9 Thymic 4+8 + 
7.7 Thymic 4 +8- SJL 
9.1 Lymph node 4 + 
7.2 Lymph node 8 + 

9.1 Thymic 4 +8 + 

4.9 Thymic 4+8 - SJL.Ecr 
10.8 Lymph node 4 + 
5.9 Lymph node 8 + 

segments is true of Va17b TCRs, indicating that it is not 
dictated (entirely) by selection events. Rather, one is led to 
consider influences from the accessibility of chromatin, the 
efficiency of individual recombination signals, or the capacity 
of different segments to partake in secondary rearrangements. 

An extensive study of human Ig heavy chain CDR3 regions 

Table 5. Amino Acid Usage in the N D N  Stretch 

No. of occurrences 
No. of occurrences in stretch (all 
in D (Fig. 5) V~17a sequences) 

Weighed no. 
of occurrences 

0 P 176 44 
S 98 16 
E 64 32 
V 52 13 
F 40 20 
H 32 16 
K 28 14 
N 25 12 
I 21 7 
Y 10 5 
M 8 8 
C 2 1 

1 R 205 34 
L 90 15 
W 88 88 
q 79 39 

2 D 193 96 
T 177 44 
A 82 20 

has recently been published (27). Over 100 sequences were 
produced from the PBL of six individuals, making no selec- 
tion for particular heavy chains. The six possible J segments 
were also used distinctly nonrandomly in these receptors, JH4 
being found in over half the sequences and JH1 and JH2 in 
<2%. 

N Nucleotide Addition. On average, V~17+TCRs carry 
three N nucleotides per sequence; they may have as few as 
zero or as many as 14. The likelihood of finding N nucleo- 
tides is the same at the VD and DJ junctions, but the base 
composition at each seems to differ. There is an elevated GC 
content at the VD joint (with a marked enrichment in Cs), 
but the four bases occur more or less equally at the DJjoint. 

Human Ig heavy chains show a somewhat different profile 
of N additions (e.g., 27; and Fig. 5 A). First of all, more 
Ns are added per sequence: an average of 6.2 and a maximum 
of 50. Second, at both the VD and DJjunctions the N addi- 
tions are GC rich, but G and C are represented roughly equally. 
These variations can not be attributed to particularities of 
the V017 + TCR or of the human IgH data bases because 
a smaller set of V~5 + TCR (28) and murine IgH (29) se- 
quences show similar differences. 

Since the distinct profile of N nucleotide additions is char- 
acteristic of Vo17a TCRs as a whole and of unselectable 
V~17b TCRs, it is difficult for one to invoke a contribution 
from repertoire selection events. Rather, some feature of the 
recombination machinery must be responsible. It is not known 
with certainty what enzyme(s) is (are) responsible for the 
addition of N nucleotides to either TCR or Ig gene segments. 
Nevertheless, several facts point to terminal deoxynucleotidyl 
transferase (TdT). 1 For example, this is the only enzyme 
presently known to be capable of template-independent nucleo- 
tide additions (30). In addition, there seems to be a good 
correlation between the cell subsets that express TdT and those 
that support rearrangement events, including N nucleotide 

14 G 708 118 
1 Abbreviation used in this paper: TdT, terminal deoxynucleotidyl transferase. 
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A (N Nucleotide Additions) 

Average :15 of 
N additions 

Range 

Base 
Composition 

V1317+ TCRs IgH chains 

3 6.2 

0-14 0-50 

VD DJ VD DJ 

G 19.6 
A 17.0 
T 15.6 
C 48.1 
G+C 67.7 

31.2 G 28.3 33.5 
28.1 A 19.8 20.2 
23.8 T 21.5 18.4 
16.7 C 30.3 27.8 
47.9 G+C 58.6 61.3 

B (CDR3 LENGTH ) 

lil I" ToR ,gH ~ ~o 

= 0  " 

l o j  lo ' 
3-8 9"13 14-18 19-23 ~.23 O' 3-8 9-13 14-18 19-23 )23 
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@, 

Figure 6. A typical CDR3 
loop in a V~17 + TCR.B chain. 
The diagram depicts a typical 
CDR3 loop, 10 amino acids in 
length. The shading indicates the 
most frequent (80% or greater) 
origin of each amino acid, and 
hence the degree of its variability. 
The dichotomy between VNDN- 
and J-derived faces tends to be 
preserved in shorter or longer 
CDR3 loops simply by addition 
or of removal amino acids on both 
sides. The boundaries of CDR3 
and of framework regions (FR3, 
FR4) are defined as above. Thin 
horizontal lines indicate the 
hydrogen bonds that may hold the 
stem of the CDR3 loop, as hy- 
pothesized by Chothia et al. (35). 

Figure 5. Comparison ofTCR ~ and IgH CDR3 regions. (.4) N nucleo- 
tide addition. The panel compares the average number, range, and base 
composition of N nucleotide additions in TCR B chain sequences (this 
paper) and IgH chains (from reference 26). (B) CDR3 length. Frequency 
histograms of CDR3 lengths, defined as in Fig. 4, for V~17 + TCR B 
chains (this paper) and IgH chains (from reference 26). 

addition (31, 32). Finally, when an expressible TdT cDNA 
was introduced into a pre-B cell line, the frequency of N 
nucleotides added to a plasmid substrate increased, though 
not to the anticipated level (33). According to Alt and Balti- 
more (34), TdT prefers to polymerize dGTP. This would be 
consistent with the elevated GC content of N additions at 
the TCR VD junction and both IgH junctions. Given the 
contribution of Cs to this over-representation at the TCR 
VD junction, one is led to suggest that, in this case, N nucleo- 
tides are polymerized from the 3' end of the antisense strand 
of D rather than from the 5' end of the sense strand of V. 
Why this asymmetry is not observed at the IgH junction 
is mysterious and, together with the observation that the TCR 
DJ junction is not GC rich at all, prompts one to hypothe- 
size that there are cell type-specific components to the recom- 
bination machinery. Certainly, transfected TCR segments can 
recombine in cells of the B cell lineage (32), but it is not 
known whether the products are, in detail, like those that 
are produced in T cells. 

CDR3 Lengths and Structure. Vt317 + TCRs have a rather 
narrow distribution of CDR3 lengths: average, 10; range, 
6-15. As illustrated in Fig. 5 B, this distribution is much 

tighter than what was observed with IgH chains: long CDR3 
loops (>13 amino acids), which are very common in Igs, are 
virtually absent in V017a + TCRs. These differences follow 
from their distinct profiles of N nucleotide addition, but also 
depend on the relative degree of exonuclease nibbling. The 
J segments actually contribute limited variability, because of 
their homology and skewed usage. The narrower histogram 
of TCR CDR3 lengths seems logical given that TCRs are 
obliged to interact with MHC molecules carrying peptide 
antigens, while Igs interact with antigens as diverse as small 
haptens and large globular proteins. Thus, one is tempted 
to suggest an active size selection, either during differentia- 
tion or throughout evolution. The former possibility seems 
unlikely, however, because V~17b TCRs also have a tight 
distribution of CDR3 lengths. 

Perhaps reflecting this restrained variability, the V017 + 
TCRs show a fairly well conserved structural feature in the 
CDR3s. If one plots the CDR3 amino acids onto the loop 
structure suggested by Chothia et al. (35), one sees that one 
side of the loop consists of amino acids contributed by the 
V and the NDN stretches, while the other is composed, in 
the vast majority of sequences, of amino acids encoded by 
the J segment (Fig. 6). Consequently, one side of the loop 
(and in particular, positions (3, 4, and 5) would seem to be 
much more variable than the other; perhaps the two sides 
interact with distinct components of the MHC molecule/pep- 
tide antigen duplex. Not surprisingly, this feature is not evi- 
dent in the CDR3s of IgH chains. 
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Selection of  Va17 TCRs 

The sequences that we have generated derive from nine 
different sorted populations. Three of them can be consid- 
ered unselected: the C57B1/6 cells because Va17b transcripts 
do not give rise to cell surface protein, and the thymus 
CD4+CD8 § cells from E- and E § mice because they have 
low levels of TCR (and were sorted as such) and are gener- 
ally considered to be an immature, pre-selection subset (36, 
37). The other six populations have undergone selection of 
various types and allow us to view the effects of selection 
forces on the repertoire. 

E -  and E + Mice. Almost all T cells carrying Vc317a + 
TCRs are capable of responding to the E complex plus an 
unidentified B cell ligand (14). To avoid autoreactive cells, 
E + mice eliminate V~317 + T cells from their repertoire (17). 
But this is never complete, so that when one compares E- 
with E + mice, one sees a reduction from 8-10% V~17 + T 
cells in the peripheral CD4 + compartment to 2%. A ques- 
tion that has interested us is whether the remaining cells have 
distinctive junctional region features. 

Of  all the parameters analyzed, only J region usage consis- 
tently shows variability between E- and E § mice. Two J~s 
are involved. J~1.1 is highly enriched in the Vt317 + CD4 
single-positive cells of E- mice, suggesting a positive selec- 
tion event mediated by one of the SJL MHC  molecules, prob- 
ably A' since it is the CD4 § , not the CD8 + , cells that are 
involved. An increased level of JBl.1 is not seen in the corre- 
sponding cells of E + mice, implying that cells expressing 
this J~3 undergo efficient E-mediated negative selection. Jf32.5, 
on the other hand, is highly enriched in the V~17 + CD4 
single-positive cells of E +, but not E- ,  mice. Fully one-third 
of the peripheral CD4 § s express this J segment. This result 
suggests that cells expressing J~32.5 are preferentially posi- 
tively selected by the E molecule, are more resistant to nega- 
tive selection, or both. 

Such influences by MHC-mediated selection events were 
not really expected. The dogma has been that particular VBs 
are negatively selected irrespectively of oe chain and junctional 
region contributions. This assertion is consistent with the 
mapping of TCR residues involved in negative selection medi- 
ated by MHC molecules in conjunction with various super- 
antigens (16, 38, 39) but is not supported by the observation 

that only partial intrathymic clonal deletion is observed in 
mls-positive transgenic mice that express only the/3 chain 
from an mls-reactive done (40, 41, and K. Signorelli, un- 
published results). 

CD4 + and CD8 + Cells. T cells expressing CD4 and 
CD8 are selected by different MHC molecules in the thymus 
(class II vs. class I) and recognize foreign antigens in the con- 
text of different MHC molecules on APC (again, class II vs. 
class I). Robey et al. (42) have recently reported that ectopic 
expression of CD4 on peripheral CD8 + lymphocytes enables 
at least some of them to react allogeneically across an MHC 
class II difference, suggesting that some TCRs selected on 
class I molecules have the potential to interact with class II 
molecules. Nonetheless, we have questioned whether junc- 
tional region sequences somehow predicate the class I/class 
II restriction dichotomy. 

Some dissimilarities do emerge from a comparison of the 
Vr + TCRs of peripheral CD4 + and CD8 + cells. (a) Al- 
though, in general, CDR3 lengths show a relatively tight 
distribution, the greatest variation was observed between 
lymph node CD4 + and CD8 § cells (9.3 vs. 10.7 residues on 
average). Long CDR3 loops (>--12) are significantly more fre- 
quent in CD8 than in CD4 cells (27% vs. 13% of sequences). 
(b) Interesting differences become apparent when we plot the 
frequency of individual amino acids or of amino acid groups 
at each position in the CDR3 loop (Fig. 7). Positions 1 and 
2 are dominated by leucine and serine residues contributed 
by the 3' end of the Va17 segment; proline (contributed by 
P or N nucleotides) is also quite frequent at position 2. Posi- 
tions 3, 4, and 5 (as noted above) are far more variable. The 
most striking difference between sequence sets is the frequent 
presence of tryptophan in the CDR3s of CD8 + cells and 
its virtual absence in those of CD4 + cells. Close to one-third 
of the class I-restricted TCRs carry a tryptophan at posi- 
tions 3, 4, or 5 of the CDR3. This observation should be 
considered in light of the nature of Trp, the bulkiest of amino 
acids, usually found buried in hydrophobic cores. Other differ- 
ences are more subtle. Polar amino acids and glycine are quite 
frequent in the CDR3s of CD4 + cells; charged residues are 
preferentially acidic at all positions. Polar amino acids and 
glycine are less prevalent in the CDR3s of CD8 + cells, par- 
ticularly at position 3. The distribution of charged amino 
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Figure  7. Amino acid frequencies at 
individual positions in CDR3. Each 
horizontal bar depicts the frequency of 
amino acids or classes thereof at each 
of the first five positions of CDR3, 
within sequences derived from CD4 + 
or CD8 + lymph node cells. For greater 
representativity, we pooled data from 
SJL and SJDEoe mice (for CD4; n = 
113, for CDS, n = 140). The differ- 
ences we observe between sequences 
from CD4 + or CD8 + cells at posi- 
tions 3 and 4 are statistically significant 
(x 2, p < 0.01). 
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adds shows a distinct profile: while positive or negative charges 
are equally represented at positions 3 and 5, there is a very 
strong bias for negative charges at position 4. 

At present, we can only speculate whether these differ- 
ences between class I- and class II-restricted TCRs will prove 
general, and not solely restricted to V~17 + 3 chains. A pre- 
liminary search of the literature suggested that the differen- 
tial use of Trp might indeed be general (although there were 
some exceptions, such as in reference 43). We do not know 
whether any of the differences are related to requirements 
for contacts with class I vs. class II molecules, or with poten- 
tiaUy different types of peptides presented by these molecules. 

Implications 
The repertoire of Vr + T cells actually used in the pe- 

ripheral immune system is much smaller than the theoretical 
repertoire calculated by assuming entirely random operation 
of the recombination machinery and random export of ma- 
ture cells from the thymus. J region usage is skewed, as is 
D region usage. The appearance of P nudeotides is nonrandom, 
as is the addition of N nucleotides. The overall length of the 
VDJ junctional region seems rather tightly controlled. We 
assume that these observations are not peculiar to Va17 + 
TCRs, and actually have preliminary evidence to support this 
assumption from V36 junctional region sequences (U. 
Hartwig and M. Bogue, unpublished results). Estimates of 
repertoire size may need to be adjusted accordingly. 
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