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Abstract

Mesenchymal stem cells (MSCs) exhibit tropism for sites of tissue injury and tumors. However, the influence of the
microenvironment on MSC phenotype and localization remains incompletely characterized. In this study, we begin to define
a macrophage-induced MSC phenotype. These MSCs secrete interleukin-6 (IL-6), CCL5, and interferon gamma-induced
protein-10 (CXCL10) and exhibit increased mobility in response to multiple soluble factors produced by macrophages
including IL-8, CCL2, and CCL5. The pro-migratory phenotype is dependent on activation of a c-Jun N-terminal kinase (JNK)
pathway. This work begins to identify the influence of macrophages on MSC biology. These interactions are likely to play an
important role in the tissue inflammatory response and may provide insight into the migratory potential of MSCs in
inflammation and tissue injury.
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Introduction

It is well established that mesenchymal stem cells (MSCs) exhibit

tropism for sites of tissue injury and the tumor microenvironment

[1]. While the migratory ability of MSCs is well documented, the

precise molecular mechanisms responsible for MSC homing to

specific in vivo targets remain incompletely characterized. A better

understanding of the MSC migratory process may identify

therapeutic targets for the treatment of neoplastic and inflamma-

tory disease and facilitate novel uses of MSCs such as targeted

drug-delivery and gene therapy [2–4].

The inflammatory response plays a major role in forming the

microenvironment of both injuries and tumors and the complex

interplay between cellular components within this milieu influ-

ences the pathophysiology of these conditions. The microenviron-

ment of tumor types such as breast cancer and high-grade gliomas

is characterized by a dense population of macrophages [5–9].

Tumor-associated macrophages (TAMs) promote tumor progres-

sion by stimulating angiogenesis, inducing tumor cell invasion and

metastasis, and conferring chemoresistant properties to tumor cells

[10,11]. Macrophages also play a pivotal role in normal wound

healing and tissue repair [12,13].

We tested the hypothesis that macrophages stimulate MSC

localization to tumors and sites of injury and influence their

molecular phenotype within the microenvironment. Our data

show that macrophages, through the release of soluble factors,

stimulate MSC motility and alter their cytokine secretion profile.

Macrophages promote MSC migration through the production of

soluble factors that activate the c-Jun NH2-terminal kinase (JNK)

signaling pathway. A single cytokine or chemokine does not elicit

the maximum MSC response. Our data suggest that the

interaction between macrophages and MSCs impacts the

inflammatory microenvironment.

Results

Macrophage-associated MSCs Up-regulate the
Expression of Pro-inflammatory Cytokines

Macrophages and MSCs are highly plastic cells that undergo

changes in phenotype based upon local environmental cues.

Both cell types are integral components of inflammation and are

likely to interact during processes such as wound healing and

solid tumor growth. In order to better define the impact of a

macrophage-rich microenvironment on MSC phenotype we first

identified changes in mRNA expression in response to culture in

macrophage conditioned medium. MSCs exhibit changes in

gene expression indicative of a pro-inflammatory phenotype,

with increased expression of CCL7, IL-8, CCL20, CXCL6,

CCL2 and CCL5 mRNA (Figure 1). We then determined

whether increases in mRNA expression were accompanied by

changes in cytokine secretion for five of the up-regulated genes

in addition to IL-6, a cytokine that is highly expressed by pro-

inflammatory MSC1 cells [14]. MSCs activated by macrophages

had increased secretion of IL-6, CXCL10, and CCL5. To
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produce macrophage-activated MSCs, cell-free macrophage

conditioned medium (CM) was harvested and added to MSC

cultures for 24 hours. IL-6 levels in the medium increased from

394.3 pg/mL to 31,213.3 pg/mL and levels of CXCL10 and

CCL5 were increased by 1.4- and 1.2-fold, respectively. Despite

an increase in mRNA expression, IL-8 and CXCL12 did not

show significant changes in secretion and CCL7 secretion was

decreased despite a marked elevation in mRNA levels (Figure 2).

Macrophages Secrete Soluble Factors that Stimulate MSC
Migration

We then investigated the ability of soluble factors produced by

macrophages to induce MSC migration in vitro. Following an 18-

hour migration, conditioned medium from both the human

lymphoma cell line U937 differentiated to a macrophage

phenotype (dU937) and primary culture human macrophages

stimulated MSC migration (5.7- and 5.3-fold compared to control

medium) (Figure 3A).

The ability of dU937 macrophages to induce MSC migration

was compared with undifferentiated U937 cells (Figure 3B).

Conditioned medium from U937 cells cultured without PMA

(undifferentiated U937) stimulated a 2.9-fold increase in MSC

migration compared to control medium. dU937 CM promoted a

significantly higher level of MSC migration, inducing an 8.7-fold

increase over control medium-stimulated MSCs.

Macrophages Secrete an Array of Factors with the
Capacity to Induce Migration of MSCs, Including CCL5,
CCL2, and IL-8

In order to identify factors involved in stimulating MSC

chemotaxis, the cytokine profile of macrophage CM was

determined. Macrophages secrete IL-8 (1,162 pg/mL), CCL2

(150 pg/mL), CCL5 (71 pg/mL), VEGF (260 pg/mL), and

CXCL12 (643 pg/mL)(Figure 4A). Differentiated U937 cells

displayed a cytokine profile with a similar pattern consisting of

IL-8 (18,630 pg/mL), CCL2 (24,246 pg/mL), CCL3 (206 pg/

mL), CCL5 (1,156 pg/mL), VEGF (6,011 pg/mL), and CXCL12

(3,970 pg/mL)(Figure 4B).

CCL5, CCL2, and IL-8 are Chemotactic for MSCs
CCL5, CCL2, and IL-8 were present in increased levels in

both primary macrophage CM and dU937 CM when

compared with control medium. The ability of CCL5, CCL2,

and IL-8 to act as a stimulus for MSC migration was tested.

The addition of 10 ng/mL recombinant CCL5 induced a 39%

increase in MSC chemotaxis compared to control medium

Figure 1. Inflammatory cytokine gene expression by MSCs is affected by macrophage-secreted soluble factors. MSCs exposed to
macrophage CM for 24 hours express an altered inflammatory cytokine gene expression profile. Analysis of 84 key genes mediating the inflammatory
response was conducted using RT-PCR generating a heat map expressing log-fold changes. Gray boxes represent genes that were undetected in
either the control MSCs or the macrophage CM-stimulated MSCs (A). When stimulated by macrophage CM, MSCs increase the expression of
inflammatory factors such as, CCL7, IL-8, CCL20, CXCL6, CCL2, CCL5, CXCL1, and CXCL3. The changes ranged from 2.1 to 12.9-fold (B). These data can
also be visualized in a scatter plot, showing gene up-regulation as points scattered into the upper left quadrant (C).
doi:10.1371/journal.pone.0035036.g001
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(Figure 5A), while 5 ng/mL CCL2 recombinant protein

stimulated a 36% increase in MSC chemotaxis (Figure 5B).

The addition of 10 ng/mL IL-8 increased MSC chemotaxis

from 69.7+/210.4 to 118.5+/210.6 MSCs, a 1.7-fold increase

(Figure 5C). While CCL5, CCL2, and IL-8 all induce MSC

migration, the addition of any of these factors alone does not

replicate the 5- to 9-fold increase in MSC chemotaxis seen in

response to dU937 CM (604+/2 47.7 migrating MSCs).

We then investigated whether CCL5, CCL2, or IL-8 were

required for the induction of MSC migration. A neutralizing

antibody directed against CCL-5 attenuated, but did not

completely block the response of MSCs to macrophage CM.

The addition of 10 mg/mL anti-CCL5 reduced MSC chemotaxis

by 27% (Figure 5D), while 10 mg/mL anti-CCL2 did not

significantly reduce chemotaxis (Figure 5E). A neutralizing

antibody directed against IL-8 showed a trend toward reduced

MSC chemotaxis from 604+/2147.7 MSCs to 374+/2125.9,

however this was not statistically significant (Figure 5F).

Activation of JNK is Required for the Stimulation of MSC
Migration by Macrophages

Because individual external stimuli could not maximally

induce MSC migration, we investigated the role of second

messenger pathways in this response. P38 MAPK, MAPK/ERK,

and SAPK/JNK pathways are involved in chemotaxis in a

number of systems [15–19]. We characterized the impact of

inhibition of these signaling pathways on macrophage-induced

MSC chemotaxis. Increased migration of MSCs was seen in

response to macrophage CM compared to control medium

(2,216+/2212, n = 3) and (471+/26, n = 3), respectively. Che-

motaxis was unaffected by ERK or p38 inhibition (Figure 6A

and 6B). However, JNK inhibition significantly reduced the

migration of MSCs in response to dU937 CM to 987 (+/23.5,

n = 3), a 55% decrease (Figure 6C and 6D). Trypan blue staining

verified that the effect on cell migration was not due to changes

in cell viability (Figure 6E). None of the inhibitors used

significantly decreased MSC viability at 25 mM.

Figure 2. Macrophage-secreted soluble factors induce IL-6 and CXCL10 secretion by MSCs. Macrophages and MSCs have distinct
cytokine secretion profiles that are variable and significantly dependent on the soluble factors and cells in their local environment. Both macrophages
and MSCs are highly plastic and assume unique phenotypes when activated by paracrine factors. MSCs cultured in macrophage-conditioned medium
for 24 hours assume a pro-inflammatory phenotype with increased secretion of IL-6 and CXCL10. Resting MSCs secrete 394 pg/mL and an
undetectable amount of IL-6 and CXCL10, respectively. Upon activation by macrophage-conditioned medium, MSCs increased their secretion of IL-6
to 31,213 pg/mL and CXCL10 to 13,906 pg/mL. This represents a 56-fold increase in IL-6 (p,0.0001) and a 1.4-fold increase in CXCL10 (p,0.003). In
addition, MSCs minimally increased the secretion of CCL5 by 1.2-fold from 287 pg/mL to 345 pg/mL (p ,0.02).
doi:10.1371/journal.pone.0035036.g002
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Macrophage-secreted Soluble Factors Induce
Phosphorylation of JNK1/2/3 and c-Jun

In order to verify that JNK was activated in MSCs treated with

dU937 CM we determined the levels of phosphorylated-JNK1/2/

3 and downstream targets. Both phosphorylated-JNK1/2/3

(Figure 7A) and phosphorylated-c-Jun (Figure 7B) were increased

after 30 minutes and returned to control levels by 2 hours.

Phosphorylated-ATF-2 levels were not increased at 30 minutes,

but rather decreased and remained reduced after 1 hour

(Figure 7B) suggesting that MSC migration in response to

macrophages may be mediated through c-Jun.

Discussion

MSCs were first isolated as adherent cells cultured from bone

marrow and are non-phagocytic, exhibit a fibroblast-like pheno-

type, and are able to differentiate into adipose, tendon, muscle,

bone, and cartilage in vitro [20]. They can be activated and

mobilized under the appropriate conditions and localize to solid

tumors and injury sites [21–29]. Within the injury microenviron-

ment, MSCs differentiate to a myofibroblast phenotype and

participate in important aspects of wound healing including

regulation of the immune response, inhibition of scarring and

fibrosis, angiogenesis, and enhancement of mitosis of stem and

progenitor cells during tissue repair [30–32]. Additionally, a

growing body of evidence suggests that carcinoma-associated

fibroblasts (CAF) are derived from MSCs [33]. MSCs differentiate

into a CAF phenotype within the tumor microenvironment and

support solid tumor growth and metastasis [33,34].

While the ability of MSCs to localize to sites of tissue damage

and adopt specific phenotypes based on microenvironmental cues

has been well established, the mechanisms responsible for these

aspects of MSC biology are not well characterized. Macrophages

are a major component of the inflammatory response in both

injury and neoplasm, two cases in which MSC localization and

integration is important.

In this work we show that macrophage-secreted soluble factors

alter the gene expression and cytokine secretion profiles of MSCs.

Macrophages also induce MSC migration and influence the

Figure 3. Macrophages induce MSC migration through the release of soluble factors. To determine the chemotactic potential of
macrophages for MSCs the CM from primary culture macrophages and the dU937 macrophage cell line was harvested and used as the stimulus in a
standard Boyden Chamber migration assay. Following an 18-hour migration, MSCs show increased motility and migration towards macrophage-like
CM and primary macrophage CM when compared with control medium. Compared to control levels, the number of migrating MSCs is 5.7-fold
greater towards dU937 CM (*p,0.003, n = 3) and 5.3-fold greater towards primary macrophage CM (**p,0.01, n = 3), respectively (A). A separate
experiment was conducted to characterize the ability of dU937 macrophages alto induce MSC chemotaxis. When compared to control, the soluble
factors secreted by the dU937 macrophage cell line induce an 8.7-fold increase in MSC migration while U937-secreted factors increased MSC
migration 2.9-fold (B). dU937 macrophage cells induce a significantly higher amount of MSC migration than the undifferentiated cells (*p,0.03,
n = 3).
doi:10.1371/journal.pone.0035036.g003
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polarization of MSCs to a motile phenotype with increased secretion

of IL-6 and IP-10.

Previous work has demonstrated functional interaction between

MSCs and macrophages. Macrophages were initially broadly

divided into M1 (classically activated macrophages) and M2

(alternatively activated macrophages) subtypes with subsequent

expansion into a wide range of different phenotypes that are

dictated by the local environment [35]. Co-culture of human

monocyte-derived macrophages with MSCs led to increased cell

surface CD206 expression and changes in cytokine production by

the macrophages in response to stimuli including LPS, interferon

gamma, and ionomycin and PMA. Mesenchymal stem cell

educated macrophages had increased levels of IL-10 and IL-6

production and decreased levels of IL-12 and TNF-alpha in

response to stimuli [36]. This constellation of markers suggests that

MSCs induce a novel macrophage phenotype with characteristics

of alternatively activated macrophages. In a murine model, bone

marrow-derived MSCs suppressed the production of TNF-alpha,

IL-6, and interferon gamma and increased production of IL-10 by

LPS-stimulated peritoneal macrophages [37], again corresponding

to a subtype of macrophages within the M2 spectrum [35]. It is

possible that these differences in the response of macrophages to

MSCs under various experimental conditions mimic the spectrum

of macrophage response in diverse microenvironments in vivo.

Thus there is accumulating data demonstrating changes in

macrophage phenotype in response to MSCs. We present work

that focuses on changes in MSC phenotype in response to

macrophages.

Two distinct MSC populations, MSC1 and MSC2, have been

described and are induced by activation of toll-like receptor

(TLR)-4 and TLR-3, respectively [38]. The priming of human

MSCs with the TLR-4 agonist lipopolysaccharide (LPS) leads to a

pro-inflammatory phenotype with increased secretion of IL-6 and

IL-8 that was not able to suppress T-cell activation in culture.

Stimulation of TLR-3 with poly(I:C; double-stranded RNA) led to

elevated secretion of CCL5 and CXCL10 (interferon-gamma

inducible protein-10) by MSCs with less significant increases in IL-

6 and IL-8 production. MSCs stimulated with poly(I:C; double

stranded RNA) also inhibited T-cell activation in culture. MSC1

and MSC2 polarizations are likely two cellular profiles among an

array of in vivo possibilities. Macrophage-associated MSCs assume

a unique phenotype with some characteristics that more closely

resemble MSC2 cells with increased CXCL10 and CCL5

secretion. However IL-6 secretion was also elevated 56-fold over

control levels. Messenger RNA levels were increased for CCL7,

IL-8, and CCL2 in macrophage-associated MSCs, however they

were not secreted at increased levels.

In addition to changes in the expression and secretion of soluble

signaling molecules, MSCs also exhibited increased mobility in

response to macrophage-derived factors. A number of cytokines

Figure 4. Identification of soluble factors produced by macrophages. Unstimulated macrophages generated from human peripheral blood
monocytes secrete IL-8, CCL2, and CCL5 (A) and do not secrete detectable amounts of IL-6 or MIP-1a. dU937 macrophages secrete increased levels of
IL-8, CCL2, CCL20, CCL5, VEGF, and CXCL12 when compared with both control medium and undifferentiated U937 CM (B). All samples were analyzed
in triplicate. *p,0.05.
doi:10.1371/journal.pone.0035036.g004
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and chemokines induce MSC migration [39] and signals for MSC

migration are likely to vary depending on local conditions. Recent

evidence demonstrates that Akt, ERK, and p38 signaling pathways

may be involved in CXCL12-mediated MSC migration. The

ERK and p38 signaling pathways have been implicated in the

mobilization of MSCs in response to an array of factors including

CXCL12 and hepatocyte growth factor[40–43]. The JNK

signaling pathway has been shown to be involved in the migration

of astrocytes [44], tumor cells [45], smooth muscle cells [46,47],

neutrophils [48] and recently in MSC chemotaxis [49,50]. Our

work demonstrates that macrophages induce MSC migration

through the production of a constellation of soluble factors.

Individually, CCL2, CCL5, and IL-8 stimulate MSC migration.

This system has significant redundancy, as no single factor tested

could induce maximal MSC migration. However, a common

molecular thread for the interaction between macrophages and

MSCs appears to be activation of JNK. Small molecule inhibitors

targeting the ERK, p38, and JNK transcription factors were used

to determine specific pathways involved in MSC chemotaxis.

While the individual blockade of several cytokine receptors failed

to significantly impair MSC migration, inhibition of JNK

activation drastically reduced the response of MSCs to macro-

phages. This is distinct from other studies of MSC migration,

which have focused on signaling through the ERK, p38 and Akt

pathways [51]. Based on these results we suggest that targeting

JNK in MSCs may represent a unique avenue to manipulating

their response to the inflammatory microenvironment. Studies to

characterize JNK-induced MSC chemotaxis to other stimuli and

the investigation of JNK-inhibited MSC localization to injury

models in vivo are currently underway.

Our data suggest that macrophages induce a migratory MSC

phenotype with increased secretion of CXCL10, CCL5, and IL-6.

While this work provides a framework for understanding the

impact of macrophages on MSC phenotype, other classes of

macrophages may have differential effects on MSC biology.

Further exploration of the interaction between macrophages and

MSCs in different microenvironments will lead to a more

complete understanding of the mechanisms of MSC response

during processes such as tissue repair and tumor growth and will

provide the framework for targeted gene and drug delivery, tissue

regeneration, and novel targets for promotion or inhibition of

MSC chemotaxis.

Figure 5. Stimulation of mesenchymal stem cells by CCL5, CCL2, and IL-8 secretion induces migration. To determine the role of
macrophage-secreted CCL5, CCL2 (MCP-1), and IL-8 in MSC migration, the level of migration in response to recombinant proteins was analyzed. CCL5
(A), CCL2 (B), and IL-8 (C) significantly increased the number of migratory MSCs in a standard Boyden chamber chemotaxis assay. To further
characterize the role of CCL5, CCL2, and IL-8 in macrophage-induced MSC migration, neutralizing antibodies targeting these factors were added to
macrophage CM prior to migration. While each individual factor induced MSC migration, only CCL5 inhibition reduced MSC migration in response to
macrophage CM (D, E, F).
doi:10.1371/journal.pone.0035036.g005
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Materials and Methods

Primary Culture Human Macrophages
Buffy coats were prepared by the New Brunswick Affiliated

Hospitals Blood Center (UMDNJ, New Brunswick, NJ) from

peripheral blood samples donated by healthy volunteers. Each

sample contained an average of 50 mL of blood. Mononuclear

cells were isolated using a BD CPT Vacutainer tubes (8 mL per

tube) (BD, Franklin Lakes, NJ). The resulting mononuclear cells

were re-suspended in Roswell Park Memorial Institute (RPMI)

medium containing 10% fetal bovine serum (FBS)(F0926 - Sigma

Aldrich, St. Louis, MO) and 1% penicillin-streptomycin. Cell

density was measured using an automated cell counter and cells

were plated at a density of 8.06105 cells/cm2. Cells were allowed

to adhere overnight and the medium was changed the following

day. The cells were incubated at 37uC/5% CO2 for 7 days to

allow for differentiation of monocytes into macrophages,

receiving fresh medium every 3 days. Differentiated monocyte-

derived macrophages exhibited increased production of IL-6, IL-

8, and TNF-alpha when treated with lipopolysaccharide (LPS)

(Figure S1A). In addition, they express low levels of CD204,

which is increased by treatment with IL-4 and IL-13 (Figure

S1B).

Primary Culture Mesenchymal Stem Cells
Human bone marrow-derived mesenchymal stem cells (MSCs)

harvested from pooled normal human donors were purchased

from Lonza (Lonza, Walkersville, MD). Cellular identity was

verified by flow cytometry and as well as the ability to differentiate

into osteogenic, chondrogenic and adipogenic lineages as

previously described [52]. Cells expressed CD105, CD166,

CD29, and CD44 and were negative for CD14, CD34 and

CD45. MSCs from two separate lots were used in this study.

MSCs were expanded in Mesenchymal Stem Cell Growth

Medium (Lonza, Walkersville, MD). For experiments using MSCs,

cells were cultured in MEM-alpha medium (Invitrogen, Carlsbad,

CA) containing 10% FBS and 1% penicillin-streptomycin. Fresh

medium was added every 3–4 days and cultures were split to a

lower density, using 1:1 trypsin-EDTA 0.25% (2.5g/L trypsin and

0.2 g/L EDTA 4Na in Hanks’ Balanced Salt Solution)(Sigma-

Aldrich, St. Louis, MO):phosphate-buffered saline (PBS), once

they achieved 80% confluence. All experiments were conducted

with passage 3 cells.

Differentiation of U937 Cells to dU937 Macrophages
U937 cells (ATCC, Manassas, VA) were plated at the desired

density in RPMI medium containing 10% FBS, 1% penicillin-

Figure 6. Macrophage-secreted soluble factors induce MSC migration by activating the c-Jun NH2-terminal kinase (JNK) signaling
pathway. MSCs were pre-incubated for 1 hour in control medium or control medium containing 25 mM ERK or p38 inhibitor. Neither ERK nor p38
inhibition influenced MSC migration in response to dU937 CM (A, B). MSCs were incubated in 25 mM JNK inhibitor for 1 hour prior to migration assay.
JNK inhibition decreased MSC migration by 55% (*p, 0.006, n = 3)(C, D). The MSCs were incubated with the inhibitors for 18 hours after which MSC
viability was calculated using trypan blue staining. JNK, p38, and ERK inhibitors did not significantly decrease MSC viability (E).
doi:10.1371/journal.pone.0035036.g006
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streptomycin, and 20 nM phorbol-myristate acetate (PMA)

(Sigma-Aldrich, St. Louis, MO). Cells were differentiated for

4 days and then used for experiments.

Immunoblotting
Cells were trypsinized to remove adherent cells from the tissue

culture flask. The cell pellets were washed with PBS and re-

suspended in 150 mL 1x radioimmunoprecipitation assay (RIPA)

buffer with protease inhibitors. Each sample was sonicated for 10–

15 seconds to shear the DNA and reduce sample viscosity. The

samples were cooled on ice for 30 minutes, and centrifuged at

14,000 RPM for 20 minutes at 4uC. A Bradford Assay determined

protein concentration and lysates were separated on an 8% SDS-

polyacrylamide gel. Proteins were transferred to a nitrocellulose

membrane for 1 hour. The nitrocellulose membrane was washed

with 1x Tris Buffered Saline (TBS) for 5 minutes followed by

incubation in blocking buffer for 1 hour at room temperature. The

membrane was washed 3 times for 5 minutes each in TBS/T (1x

TBS + 0.1% Tween-20) was buffer. The membrane was incubated

in primary antibody (at the appropriate dilution) overnight at 4uC
with gentle agitation. The membrane was washed 3 times for

5 minutes each in TBS/T. The membrane was incubated with

HRP-conjugated secondary antibody (1:2,000) and HRP-conju-

gated anti-biotin antibody (1:1,000) (Cell Signaling Technology,

Danvers, MA) in blocking buffer for 1 hour at room temperature

with gentle agitation. Again, the membrane was washed 3 times

for 5 minutes each in TBS/T. The membrane was incubated in

Pierce ECL western blotting substrate (Thermo Scientific, Rock-

ford, IL) with gentle agitation for 1 minute at room temperature.

Excess developing solution was drained, the membrane was

wrapped in plastic wrap and exposed to x-ray film.

Conditioned Medium (CM) Preparation
We define conditioned medium as post-culture supernatant

without any additional supplements. For the generation of

macrophage CM, either monocyte-derived macrophages or

differentiated U-937 cells were cultured at 80% confluence in

RPMI medium with 10% FBS. The medium was changed, again

using RPMI+10% FBS. After 24 hours of incubation, medium

was collected from the cell culture and centrifuged for 5 minutes at

1200 rpm. After centrifugation, the CM was filtered using a

0.45 mm pore size vacuum-assisted filter unit (Millipore, Teme-

cula, CA). In all experiments where CM was used in further cell

culture, CM was used immediately after being harvested.

Cytokine ELISA
Conditioned medium was harvested from the cell culture and

filtered through a cellulose acetate membrane with 0.45 mm pore

Figure 7. Macrophages induce activation of the c-Jun NH2-terminal kinase pathway in MSCs. To validate the macrophage-induced
activation of the c-Jun NH2-terminal kinase (JNK) signaling pathway in MSCs, protein levels of phosphorylated downstream components were
assessed by immunoblotting. Exposure to CM from dU937 macrophages induced activation of JNK1, 2, 3 after 15 minutes (A). An increase in the
expression of phospho-c-Jun and decrease in the expression of ATF-2 was observed after a 30-minute treatment with dU937 CM (B). These results
suggest that in addition to its control of cellular differentiation, proliferation, and apoptosis, the AP-1 transcription factors may also play a role in
cellular chemotaxis (C).
doi:10.1371/journal.pone.0035036.g007
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size (Corning, New York, NY). Harvested CM was stored at

280uC overnight prior to analysis. All samples, including controls,

contained FBS. The cytokine profile of each sample was analyzed

using the Bio-Plex suspension array system (Bio-Rad Laboratories,

Hercules, CA). The beads were mixed with the samples and

incubated to react with the specific analytes. The addition of an

analyte-specific biotinylated detection antibody and a fluorescently

labeled reporter molecule, streptavidin-PE, completed the sand-

wich immunoassay. The Bio-Plex array reader aligned the beads

single file through a flow cell where two lasers individually excited

the beads. Digital signal processors and the Bio-Plex Manager

software recorded the fluorescent signals and quantitated the

amount of analyte captured in each sample. All samples were

assayed in triplicate. Conditioned medium samples displayed in

Figure 2 were analyzed by the Cytokine Core Laboratory at the

University of Maryland (Baltimore, MD).

Transwell Migration Assay
The assay was run as previously described [53]. A migratory

stimulus (cells or CM) was plated into the well of a 24-well notched

tissue culture plate (BD Falcon, San Jose, CA) in a total volume of

700 mL of culture medium. For primary macrophages, the cells

were isolated from human peripheral blood samples (as described

above) and plated directly into the 24-well plate and allowed to

differentiate for 7–10 days prior to performing the experiment. For

dU937 cells, U937 cells were plated in 20 nM phorbol 12-

myristate 13-acetate (PMA) directly in the 24-well notched plate

and allowed to differentiate for 4 days before performing the

migration assay. When CM medium was used as a migratory

stimulus, 700 mL was added into the 24-well notched plate and the

migration assay was run immediately. Control base medium was

RPMI+10% FBS, as used to culture macrophages. Once the

stimulus was prepared, cell culture inserts (BD Falcon, San Jose,

CA), containing an 8 mm pore size uncoated polyethylene

membrane, were added to each well. 7.56103 human MSCs

were added to the upper chamber of the cell culture insert in

500 mL of minimum essential medium (MEM)-a supplemented

with 10% FBS and 1% penicillin-streptomycin. The tissue culture

plates were then incubated at 37uC/5% CO2 for 18 hours. MSCs

were allowed to migrate through the membrane towards the

stimulus during this incubation. After 18 hours, the assay was

terminated by aspirating the medium out of the top and bottom

chambers, washing the insert with PBS, removing non-migrated

cells out of the top chamber using a cotton swab, and fixing and

staining the cells in the membrane with crystal violet. The number

of MSCs that migrated was quantified manually using an inverted

microscope.

The human c-Jun N-terminal kinase (JNK) 1, 2, and 3 inhibitor,

SP 600125 (Tocris Bioscience, Ellisville, MO), p38/MAPK

inhibitor, SB 203580 (Tocris Bioscience, Ellisville, MO) and

MAPK/ERK inhibitor, PD 98059 (Millipore, Temecula, CA)

were used to analyze the role of these signaling systems in MSC

migration. Small molecule inhibitors were added at a concentra-

tion of 25 mM to the MSC culture medium for 1 hour prior to

MSC harvesting and transwell migration study. In addition,

inhibitors were added with the MSCs to the upper chamber of the

transwell migration assay at the same concentration.

RT-PCR
RNA was isolated from cell cultures using the Qiagen RNeasy

Mini Kit (Qiagen, Valencia, CA). RNA quality was assessed by

UV spectrophotometry, checking the RNA concentration and

purity. cDNA was synthesized using the RT2 First Strand Kit

(SABiosciences, Frederick, MD). Pathway-focused gene expression

analyses were conducted on the samples using RT2 Profiler PCR

Arrays (SABiosciences, Frederick, MD). The Human Inflamma-

tory Cytokines and Receptors PCR array (PAHS-011 - SABios-

ciences) profiled the expression of 84 key genes involved in

mediating immune cascade reactions during inflammation. Data

was analyzed with the SABiosciences RT2 Profiler Web-Based

PCR Array Data Analysis software, which automatically performs

the DDCt fold-change calculations from the uploaded raw

threshold cycle data.

Cell Viability
To assess cell viability a Vi-Cell cell viability analyzer (Beckman

Coulter) was used for cell counting. To test the viability of MSCs

after macrophage association, MSCs cultured in macrophage CM

were compared with MSCs cultured in control media (Figure S2).

Statistical Analysis
Student’s t-test was performed to compare results. A p value

,0.05 was considered statistically significant. Data are presented

as mean 6 standard deviation.

Supporting Information

Figure S1 Macrophages respond to activating stimuli
by increasing secretion of soluble factors and increasing
expression of appropriate markers. Lipopolysaccharide

(LPS) stimulation of the macrophage population induced increased

secretion of multiple soluble factors including IL-6, TNF-a, CCL3,

CCL5, and CXCL12 (A). Activation of macrophages with IL-4

and IL-13 increased the level of CD204 expression (B). These

results suggest that the macrophages used in this study responded

appropriately, as described in the literature, to multiple activation

factors.

(TIF)

Figure S2 Cellular viability of MSCs is unaffected by
stimulation with macrophage conditioned medium.
Culturing of MSCs in dU937 conditioned medium did not alter

cell viability when compared with MSCs cultured in control

medium (RPMI supplemented with 10% FBS).

(TIF)
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