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Introduction
Sustained world-wide efforts in basic and translational cancer 
research are expanding the repertoire of treatment options 
available to cancer patients. Notwithstanding the great strides 
this expanding cancer armamentarium is enabling towards 
improving patient outcomes, the emergence of therapeutic 
resistance is often inevitable for most cancer patients1 and 
remains the ultimate barrier to achieving cancer cure.2 This 
persisting reality of cancer treatments is perpetuated by the 
inability of standard of care (SOC) to effectively and fully con-
sider the adaptive complexity of cancer3 and its underlying eco-
evolutionary,4-6 genetic,7-11 and immunological dimensions.12-16 
Indeed, the effective control of cancer as a time-varying non-
linear dynamical system cannot be achieved with predefined 
fixed schedules of therapeutic interventions.17,18 Combination 
therapies have long been accepted as appropriate strategies to 
optimize treatment outcome, delay the onset of resistance, and 
reduce the risk of minimal residual disease.19,20 On the other 
hand, adaptive therapy has been championed as an intuitively 
sound approach to address the evolutionary dynamics underly-
ing resistance.17,21-25 Adaptive combination therapy would fur-
ther expand the horizon of possible improvements in treatment 
outcomes.26,27 However, despite the tens of thousands of clini-
cal trials for combination therapy that are currently registered 
in ClinicalTrials.org, it is not clear how to safely and effectively 
combine multiple drugs. Furthermore, significant advances are 
needed to address the feasibility, accuracy, and reliability of 

continuous disease monitoring and treatment response predic-
tions to support adaptive therapy. Challenges to the develop-
ment of more effective cancer treatments may however be more 
amenable to clinically viable resolutions by unlocking the 
potential of the growing big multimodal data being collected 
about cancer and the meteoric rise of data-driven generative 
artificial intelligence (GenAI).28 Indeed, GenAI potential util-
ity in oncology is garnishing increasing attention.29,30 Notable 
explorations of GenAI applications to cancer care are many, 
including the use of large language models (LLM) such as 
ChatGPT as an assistant that can be queried about cancer by 
patients and health care practitioners,31-36 extraction of clinical 
information from medical reports,37-39 and clinical decision 
support for diagnosis and treatment recommendations.40-44 
Many of these studies explore the performance of pre-trained 
LLMs, such as ChatGPT, and often compare it against bench-
marks and human medical expertise.42,45-47 One particularly 
promising oncological application of GenAI is radiotherapy 
(RT) treatment planning, where dedicated LLM-enhanced 
algorithms have been developed to automatically delineate 
tumour volume targeted by radiotherapy.44,48 Given the path-
way that has already been chartered towards maturity and clin-
ical adoption of ML/AI (machine learning/artificial 
intelligence) assisted diagnosis of cancer,49 GenAI-augmented 
cancer diagnosis algorithms are expected to attract heightened 
research interests.50-52 On the other hand, assessment of LLMs 
used for treatment recommendations revealed that they are still 
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no match for human medical experts.53 Most of these explora-
tions were undertaken in the context of standard of care, where 
traditional fixed schedules of treatments are used. For the case 
of adaptive cancer therapy, OncoGPT, a transformer-based 
model, was proposed for the prediction of treatment response.28 
The training of OncoGPT is assumed to place patients on a 
phenotypic space, in accord with their phenotypic similarity. 
This provides a basis for the plausibility of one-step-ahead pre-
dictions of treatment response, by generalizing from the treat-
ment response trajectories of patients who underwent similar 
treatments.28 Notwithstanding GenAI potential to revolution-
ize cancer care,30,52,54 the use of LLMs faces challenges that are 
typical to ML/AI systems, including the lack of explainability, 
opacity, ethical concerns, and the need for large training data-
sets.55-57 In addition, LLMs have an intrinsic risk for hallucina-
tions,58 which in the context of oncology means that they may 
yield incorrect or clinically implausible outputs such as non-
sensical treatment recommendations.

To highlight some concrete aspects of the application of 
generative artificial intelligence to advance the ongoing pro-
gress in adaptive therapy for prostate cancer,22,24,26,27,59-62 meta-
static castrate-sensitive prostate cancer (mCSPC) is selected as 
a study case for the use of OncoGPT.28 The proposed analysis 
spans GenAI model training and inferencing as well as mitiga-
tion strategies for the hallucination problem and its implica-
tions to clinical validation and integration. The analysis is 
prefaced with a short overview section on adaptive mCSPC 
therapy. This serves as a baseline for the proposed GenAI-
assisted adaptive therapy of mCSPC, detailed in the subse-
quent sections. Insights are shared in the discussion section 
about the potential, challenges, and limitations of the proposed 
GenAI-assisted approach to the treatment of mCSPC.

Adaptive Therapy of Metastatic Castrate-Sensitive 
Prostate Cancer
Depending on factors such as disease volume and side effects, 
mCSPC may be treated with androgen deprivation therapy 
(ADT), combination of ADT and androgen receptor-signal-
ling inhibitors (ARSI), or triplet therapy that includes ADT, 
ARSI, and docetaxel or radiotherapy.63-66 Each one of these 
treatment modalities may be appropriate to select for a specific 
class of mCSPC patients based on risk stratification. Ultimately, 
treatment response will, for all patients, be time-varying and 
nonlinear, accompanied with an often-inevitable emergence of 
drug resistance due to the adaptive complexity of cancer and its 
underlying eco-evolutionary, genetic, and immunological 
dimensions.3-16 Adaptive therapy has been argued to be the 
most sensible approach an oncologist would take to stay one 
step ahead of cancer’s adaptation and resistance by changing 
the timing and treatment doses based on continuously moni-
tored biomarkers.17,22,24,67 Adaptive therapy was explored for 
metastatic prostate cancer, where treatment response is assumed 
to be determined by the competition between 3 types of cancer 

cells: (1) androgen receptor positive (AR+), CYP17+ testos-
terone-producing cells (TP), (2) AR+, CYP17− cells that 
require androgens (T+), and (3) AR−, CYP17− androgen 
independent cells (T-).24,25,68 Based on this model, monitored 
prostate-specific antigen (PSA) and testosterone serum levels 
are used to guide the timing of intermittent ADT therapy in an 
adaptive androgen deprivation trial for mCSPC.24 Depending 
on monitored testosterone and PSA levels, luteinizing hor-
mone–releasing hormone (LHRH) antagonist, new hormonal 
agent (NHA) such as abiraterone, enzalutamide, or apaluta-
mide, or LHRH + NHA were used to target a 50% PSA 
reduction, after which all treatments are intermittently stopped 
before they are resumed on PSA or radiographic progression.24 
It is presumed that the monitoring of PSA and testosterone 
provides sufficient information about the fractions of TP, T−, 
and T+ cells in the tumour to support the evolutionary-based 
adaptive treatment strategy described above. This model is 
aligned with the notion that the cell is the correct level of 
abstraction to consider in understanding function,69,70 and it 
effectively integrates relevant genetic information (eg, expres-
sions of AR and CYP17 and their relevant signalling path-
ways) into observable phenotypes, in a way akin to 
coarse-graining abstraction of knowledge.71 The effectiveness 
of this adaptive treatment approach may be further enhanced 
by the use of GenAI models trained to learn patient treatment-
response maps that would support treatment adaption through 
the provision of treatment response predictions.

GenAI-Supported Adaptive Androgen Deprivation 
of mCSPC
The application of GenAI to the prediction of treatment 
response was explored in the context of a theoretical frame-
work for adaptive cancer therapy.28 The framework views can-
cer treatment as a problem of controlling cancer as a 
time-varying nonlinear system whose states are observable 
through repeated monitoring of treatment response biomark-
ers covering the genetic, immunological, and eco-evolutionary 
causal dimensions underlying cancer dynamics. To leverage the 
learning capabilities of transformers72 in adaptive therapy, 
treatments are represented by a sequence of therapeutic actions 
(controls) u u ui� �, , ,� , where u Ui ∈  is the control applied at 
the discrete instant of time identified by the non-negative inte-
ger i . U  is a finite set of therapeutic actions defined through 
the consideration of available drugs, and the quantization of 
drug doses and time intervals between consecutive therapeutic 
actions. Likewise, treatment response is also framed to take 
discrete states s s si� �, , ,� , where si  is the treatment response 
to the control ui  and s Si ∈ , with S  being a defined finite set 
of treatment responses, obtained through the quantization of 
biomarker signals of treatment response.

Considering the critical importance of clinical feasibility of 
future GenAI applications to cancer treatment, the Phase 1b 
Adaptive ADT trial24 is taken as a baseline for the setup of this 
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case study. In particular, the objective of the case study is to 
demonstrate, at least theoretically, how OncoGPT28 can be 
used to support adaptive ADT for the treatment of mCSPC. 
Although there are no limits on the number and type of bio-
markers that can be used to define treatment response, for the 
purpose of anchoring this case study with respect to the men-
tioned clinical trial, PSA and testosterone are the only response 
biomarkers required to be monitored in addition to RECIST 
(response evaluation criteria in solid tumours)73 assessments. 
Likewise, LHRH agonist/antagonist drugs and NHA are 
assumed to be the main types of drugs under consideration. To 
define the set of possible treatment responses (disease states), 
serum PSA is quantized into 30 possible discrete levels. The 
PSA range from 0 to 4 ng/mL is quantized into 20 distinct 
levels each representing a 0.2 ng/mL wide interval. For exam-
ple, level 1 represents the range (0-0.2 ng/mL) while level 2 
represents the range (0.2-0.4 ng/mL) and so on. The range 
(4-10 ng/mL) is divided into 5 equally wide intervals repre-
senting levels 21 to 25, respectively, while the PSA range (10-
110 ng/mL) is divided into 4 equally wide intervals representing 
levels 26 to 29, respectively. PSA values that are higher than 
110 ng/mL are represented by level 30. This quantization 
scheme attempts to achieve a monitoring resolution that rec-
ognizes PSA ranges that are clinically relevant for PSA screen-
ing.74 Testosterone may be quantized into 20 discrete levels 
representing the intervals between the following possible tes-
tosterone values in nmol/L: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9, 1.1, 
1.3, 1.5, 1.7, 2, 5, 10, 15, 20, 25, 30, and 35 nmol/L. Here too, 
the quantization scheme is intended to provide a monitoring 
resolution that reflects clinical practice regarding salient ranges 
of testosterone levels for patients undergoing ADT.75 
Considering the 4 possible RECIST disease states leads to 
2400 (30 × 20 × 4) possible treatment responses. Advances in 
the analysis of tumour circulating DNA (ctDNA) using liquid 
biopsy (LB) are expected to enable the use of additional bio-
markers of treatment response,76,77 further enhancing the reso-
lution of treatment response monitoring. For instance, 
abundance of ctDNA, AR amplification, and alterations of 
PTEN, RB1, P53, and DNA damage repair (DDR) genes, 
including BRCA1/2, ATM, and CDK12, may be monitored 
using LB to serve as biomarkers of mPC treatment response.77-81 
In addition, cytokines such as interleukin IL-6, IL-5, IL-8, 
IL-10, IL-23, tumour necrosis factor (TNF)-α, and interferon 
(INF)-γ may also be monitored using LB82 as biomarkers of 
the immune dimension of treatment response. Given the criti-
cal involvement of AR amplification in mCRPC,83 the prog-
nostic nature of ctDNA detection,84 and the role of IL-8 in 
promoting the infiltration of myeloid-derived suppressor cells 
(MDSCs),85 it is also possible to include the abundance of 
ctDNA, the amplification of AR, and IL-8 level as additional 
LB monitored biomarkers of mCSPC treatment response. 
Assuming 3 quantization levels that could be assigned to each 

one of these potential biomarkers (ie, Low, Medium, and 
High), this would bring the size of the set of disease states to 
21 600.

The second step in defining the GenAI model is the discre-
tization of therapeutic control. Relugolix86 and abiraterone 
with prednisone87 will be the example for LHRH and NHA 
drugs under consideration, respectively. Given the Food and 
Drug Administration (FDA)-recommended dosage of relugo-
lix,88 the dosage of this LHRH antagonist will be discretized 
into 7 different levels separated by an interval of 60 mg, where 
doses of 0 and 360 mg are mapped to levels 1 and 7, respec-
tively. Likewise, given FDA abiraterone dosage recommenda-
tions,89 the dosage of this NHA drug is discretized into 5 levels 
separated by an interval of 250 mg and were 0 and 1000 mg 
corresponding to levels 1 and 5, respectively. The dosage of 
prednisone will be tied to that of abiraterone, where 0, 1.25, 2.5, 
3.75, and 5 mg would be administered for dosage levels 1, 2, 3, 
4, and 5 of abiraterone, respectively. As a result of the above 
discretization of LHRH antagonist and NHA drugs, the total 
number of possible controls is 35 (7 × 5). Notice that no-treat-
ment is represented by a zero value of drug doses.

Although therapeutic control is assumed to be applied daily 
through the administration of ADT + NHA drugs, the moni-
toring of PSA and testosterone and the assessment of imaging 
progression may be done once every few weeks. Blood tests, 
MRI (magnetic resonance imaging), and CT (computed tomog-
raphy) routinely used in clinical setting would be the main meth-
ods used for biomarker monitoring. However, advances in LB 
and disease monitoring instrumentation, including portable 
devices, are expected to enable a more frequent sampling of 
treatment response. Meanwhile, the discrepancy between the 
frequency of drug administration and that of disease monitoring 
can be bridged through the use of estimated treatment responses 
regularly calibrated with the monitored treatment response as an 
injection of ground truth as illustrated in Figure 1.

The ground truth injection consists in using the recently 
monitored treatment response, ie, si��  to adjust the estimated 
treatment response sequence s s si N i i  � � ��, � �  prior to provid-
ing it as an input to OncoGPT. N � �  is the length of the 
treatment response history under consideration. One simple 
approach to implement this ground truth injection is to aug-
ment the elements of the estimated response sequence by � � �v s si i� ��� � . Note that v  is a vector whose components are 
equal to the differences between the corresponding compo-
nents of treatment response and its estimate. The adjustment 
moves the sequence of estimated states in the direction of v  
towards the ground truth (ie, the last monitored treatment 
response) with a displacement equal to the magnitude of v . 
The magnitude of the adjustment may also be modulated using 
a forgetting function to attenuate the impact of new monitored 
treatment responses on past, temporally distant estimations of 
treatment response. The adaptive therapeutic strategy of the 
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proposed GenAI-assisted treatment of mPC may be selected 
from the many possible adaptive control approaches proposed 
in the litterature,18 based on their robustness and the feasibility 
of their clinical integration. Adaptive PID (proportional-inte-
gral-derivative) control embody time-proven, widely used real-
world control strategy90-93 and would hence be an adequate fit 
for the real-world clinical context. Planning the trajectory of 
desired treatment response used as the daily setpoint si  for an 
adaptive controller would necessarily be informed by expert 
clinical knowledge about the dynamics of treatment response. 
Given a desired treatment duration of M  days, an initial dis-
ease state s0 , and a target final disease state sM , the desired 
treatment response si��  at time i ��  may be set to the disease 
state closest, in Euclidean distance, to s

M i
s si M i

�
�

�� �� . In 

other words, since sM  and si  are vectors, the next desired 
treatment response is set to be one step worth �

M i
s sM i�

�� �  
closer towards the final desired response. The planning of the 
desired treatment response trajectory may be improved through 
the consideration of treatment response dynamics and plan-
ning strategies available from other application domains.94

OncoGPT Training on mCSPC Treatment Response 
Data
OncoGPT uses the original encoder-decoder transformer 
architecture,72 with the sequences of controls (treatments) and 
disease states (treatment responses) as inputs to the encoder 
and decoder, respectively. The encoder and decoder are con-
structed using deep neural networks, ie, neural networks with 
large number of hidden layers.95 Both controls and disease 
states as well as their respective positions within their respec-
tive sequences are represented by embeddings, which are vec-
tors of values. Embeddings are ultimately multiplied by 
weights to be learned through training using a dataset consist-
ing of pairs d u si i

N
i i

N
 � � � �� ��

�

�

�

�

�

�

�,  of control sequences and 

corresponding sequences of treatment response. The sequence 
length N is the duration of one patient-treatment cycle, which 
would be chosen to account for the longitudinal causal 
dependencies between treatments and responses. N may be set 
to 256 days representing a 9-month-long patient-treatment 
cycle as a clinically plausible cycle duration. The training con-
sists in adjusting the weights so as to minimize a so-called loss 
function which represent a measure of how far is the output of 
the transformer from the desired treatment response expected 
for a treatment provided as input. The weights are adjusted by 
minimizing the loss function using optimizers such as gradi-
ent descent,96 and the backpropagation algorithm,97 which 
backpropagates the error between the actual and desired out-
put to the hidden layers of the network to adjust their weights. 
These weights represent the actual learning achieved by the 
transformer.

Response to mCSPC treatment is defined based on the 3 
required biomarkers, namely, PSA, testosterone, and RECIST, 
augmented with IL-8 level, AR amplification, and ctDNA 
abundance as additional biomarkers. The discretization of 
these biomarkers leads to 21 600 possible disease states. On the 
other hand, therapeutic control based on the combination of 
LHRH antagonist (relugolix) and NHA (abiraterone) drugs is 
discretized into 35 possible controls, which include one no-
treatment control. The numbers of possible controls and dis-
ease states for the specific application of OncoGPT to prostate 
cancer is far below the size of the vocabularies supported by 
LLMs such as CroissantLLM,98 suggesting that the required 
size of the training dataset would be relatively modest. Given 
the inherent privacy challenges to the collection and curation 
of clinical data, the study case will explore the implementation 
and deployment of OncoGPT in the confine of a single health 
care organization. For example, assuming the average number 
of prostate cancer patients treated yearly in a major cancer cen-
tre to be 15 000, one may estimate that the records for at least 

Figure 1.  GenAI-supported adaptive androgen deprivation therapy for metastatic sensitive prostate cancer.
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150 000 treatment cycles accumulated over a decade span 
would be available to train/retrain OncoGPT at any point in 
time. Treatment data size that could be curated to train 
OncoGPT for prostate cancer may reach millions of records 
through data sharing agreements under the umbrellas of con-
sortiums such as the Prostate Cancer Clinical Trial Consortium 
(PCCTC). In addition, synthetic training data may be gener-
ated using clinically parameterized mathematical models of 
tumour dynamics such as the Lotka-Voltera model.18 However, 
an even more promising approach to the curation of training 
data would be the use of patient-derived xenografts (PDXs), 
which are known to yield an accurate replication of treatment 
response.99

Given the different types of ADT drugs that have been 
used in prostate cancer treatment (eg, degarelix, abarelix, relu-
golix, leuprorelin/leuprolide, goserelin, and triptorelin), the 
curation of treatment data would involve discretizing the dos-
age of these drugs into levels as illustrated earlier for the 
examples of relugolix and abiraterone. Furthermore, as radio-
therapy and chemotherapy (eg, docetaxel) may also be used in 
addition to ADT and NHA,63 their dosage need to be also 
discretized into appropriate levels as part of the curation of 
treatment data. On the other hand, data for treatment 
response biomarkers are expected to be sparse and incomplete 
in treatment records being collected over long periods of time 
and across multiple institutions. In such cases, other recorded 
clinical and genetic treatment response variables may be used 
to estimate missing biomarker data towards the curation of a 
reasonably complete dataset for the training of OncoGPT.

Discussion
Predictions of treatment response based on curated treatment 
datasets are predicated on the assumption that these data 
embody the phenotypic diversity of the patient population. 
Furthermore, the tuning of OncoGPT into instances personal-
ized to individual patients or groups of patients will require the 
curation of additional datasets covering patients that share 
some degree of phenotypic similarity which may be defined 
based on genomic, immunological, and eco-evolutionary bio-
markers.28 The collection and curation of quality treatment 
datasets in sufficient quantity to meet the needs of OncoGPT 
training face numerous challenges related to privacy, consent, 
and data ownership. These may likely be overcome within the 
respective confines of clinical and research institutions where 
compliance with protocols and quality control standards of 
data collection, curation, and use can be maintained and verifi-
ably assured. Like any other deep-learning-based AI model, 
OncoGPT has limitations regarding transparency, bias, gener-
alizability across health care communities, and performance 
drift.100 In this respect, assuming the existence of data sharing 
frameworks among multiple cancer centres that enable the 
access to quality data in sufficient quantity to train OncoGPT, 
its deployment should be contingent on the local curation of 
training data to validate and regularly tune it for the target 

population.100 Beyond these data-related challenges lies the 
fundamental question of how to mitigate hallucination, which 
is an unwelcome and inevitable feature of LLMs.101 Among 
the many techniques of hallucination mitigation that have been 
proposed,102 fine-tuning OncoGPT using a loss function spe-
cific to treatment response predictions and a high-quality 
treatment dataset may be most appropriate as this would be 
task-specific. However, irrespective of the mitigation method 
being used, it is critical to have an estimation of the effect of 
hallucination on the accuracy and reliability of treatment 
response predictions. Another equally important question is 
how potential metrics of accuracy and reliability would be used 
in the clinical validation of GenAI-supported cancer therapy. 
The accuracy of disease state predictions may be defined using 

the Euclidian distance between observed and predicted disease 

states given by MSE
N

s s
i

N
i i� �

��
�

�
� ��  for a disease state tra-

jectory si i
N� � ��

 corresponding to one treatment cycle, and where 
   is the Euclidean norm. Disease state trajectories reflect the 
dynamics of disease progression being controlled through ther-
apy, supporting hence the clinical pertinence of this accuracy 
metric. In particular, E would quantify the extent to which 
OncoGPT have learned the dynamics of treatment response 
for the phenotypic classes of mCSPC patients on which it was 
trained. Phenotypic classification of training datasets may be 
carried out based on the status of genetic alterations affecting 
the PI3K and androgen receptor pathways, and DNA damage 
repair, given their clinical relevance to the treatment of mPC 
patients.77 As treatment response predictions are generated 
within the context of an adaptive closed-loop involving the 
patient, assessing the predictive performance of OncoGPT 
would be normally carried out as part of the analysis of clinical 

trial results. The prediction accuracy of OncoGPT may be 

defined as A M
A

i i� ��
, A

K
MSEi j ij� �� , where M  is 

the number of patients in the clinical trial, K  is the number of 
treatment cycles per patient while MSEij  is the prediction 
error for the jth treatment cycle of the ith patient. The reliabil-
ity of treatment response prediction would also need to be 
assessed as an essential step towards clinical validation. Given 
the definition of reliability for measurements,103 the reliability 
of treatment response predictions may be defined as the frac-
tion of variance of disease state predictions that can be ascribed 

to the true variance of treatment response, namely: R
s

s
�

� �

� �
�

�


, 

where � s� � , � s� �  are the variances of monitored and predicted 

treatment responses across all patients, respectively. As disease 
states are multi-dimensional variables, the variances � s� �  and 
�

s� �  may be computed as the means �
L i i

s� � ��  and 
1

L i i

s� � ��


 of variances for the L  components of monitored 
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and predicted treatment responses, respectively. Accuracy and 
reliability metrics as defined above would be instrumental in 
improving trust in the performance of OncoGPT’s support for 
adaptive therapy to improve treatment outcomes. On the other 
hand, the guidance issued by the FDA on the clinical evalua-
tion of software as a medical device (SaMD)104 provides an 
appropriate 3-pronged framework (ie, valid clinical association, 
analytical validation, clinical validation) for undertaking the 
clinical validation of GenAI-supported adaptive therapy sys-
tems. In particular, the metrics of accuracy and reliability 
defined above would be used to establish analytical validity, ie, 
that the predicted treatment response is what would be techni-
cally expected. Ultimately, clinical trials would be needed to 
establish the validity of clinical association between predicted 
treatment response and disease state as well as to clinically vali-
date the performance of GenAI-assisted adaptive therapy with 
respect to clinical end-points such as time to progression, dis-
ease free survival, and overall survival.

Conclusions
GenAI-assisted adaptive androgen deprivation therapy is 
explored for the treatment of metastatic prostate cancer. 
OncoGPT is integrated in the treatment loop to predict 
treatment response. Both treatment and treatment response 
are discretized to yield finite sets of disease states and thera-
peutic controls to serve as the vocabularies underlying the 
sequences of controls and disease states used as inputs and 
outputs of OncoGPT, respectively. Disease states and thera-
peutic controls are defined based on biomarkers and drugs 
typically used in the treatment of mPC, respectively. The 
study case addresses the various steps and issues related for-
mulation, training, integration, and assessment of OncoGPT-
tailored application to adaptive androgen deprivation therapy 
for mPC. These include training data curation, model fine-
tuning, and the exploration of treatment response accuracy 
and reliability as critical instrument in mitigating the risk of 
hallucination and improving trust in the use of GenAI to 
assist in improving cancer treatment outcomes.
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