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Abstract: Metabotropic glutamate receptors (mGluRs) are G-protein-coupled receptors that exhibit
enormous diversity in their expression patterns, sequence homology, pharmacology, biophysical
properties and signaling pathways in the brain. In general, mGluRs modulate different traits of
neuronal physiology, including excitability and plasticity processes. Particularly, group I mGluRs
located at the pre- or postsynaptic compartments are involved in spike timing-dependent plasticity
(STDP) at hippocampal and neocortical synapses. Their roles of participating in the underlying
mechanisms for detection of activity coincidence in STDP induction are debated, and diverse findings
support models involving mGluRs in STDP forms in which NMDARs do not operate as classical
postsynaptic coincidence detectors. Here, we briefly review the involvement of group I mGluRs in
STDP and their possible role as coincidence detectors.
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1. Introduction

Glutamate is the major excitatory neurotransmitter of the central nervous system,
and its actions are mediated by the activation of a diverse family of receptors that can
be divided into two large sets comprising ionotropic glutamate receptors (the α-amino-3-
hydroxy-5-methyl-4-isoxazole propionate (AMPA)-, N-methyl-D-aspartate (NMDA)- and
kainate (KA)-type receptors) and metabotropic glutamate receptors (mGluRs). Although
the fast glutamate excitatory synaptic transmission is typically mediated by the ionotropic
ligand-gated glutamate receptors, the slower and long-lasting effects of glutamate are
generally mediated by mGluRs [1,2]. mGluRs are G-protein-coupled receptors (GPCRs)
that share common topology and exhibit enormous diversity in their expression patterns,
sequence homology, pharmacology, biophysical properties and signaling pathways among
the different receptor’s subtypes [2,3].

Based on these properties, mGluRs can be divided into three groups: group I, II
and III (mGluR I, mGluR II and mGluR III, respectively). mGluR I includes mGluR1
and mGluR5 receptors that are positively coupled to phospholipase C (PLC), whereas
mGluR II (comprising mGluR2 and mGluR3) and mGluR III (including mGluR4 and
mGluR6-8) are negatively coupled to the formation of adenylate cyclase-mediated cAMP [4].
The metabotropic nature of mGluR signaling was first discovered by the demonstration that
glutamate could stimulate the formation of inositol trisphosphate (IP3) production, thus
showing that glutamate, similar to other neurotransmitters such as acetylcholine, could
also trigger intracellular pathways by activating G protein-coupled receptors [5].

mGluRs modulate different aspects of neuronal physiology, particularly, excitability
and plasticity [1,4,6]. They are widely expressed throughout the brain and are found
at both pre- and postsynaptic sites of excitatory glutamatergic synapses. Their location
makes mGluRs ideally suited to modulate diverse processes and mechanisms of synaptic
transmission and plasticity (e.g., glutamate release and intracellular pathways underly-
ing postsynaptic forms of plasticity). Synaptic plasticity has been widely accepted as a
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possible functional substrate for memory encoding, information processing and neuronal
circuit refinement during development [7]. In a classical view, repetitive activation of
synapses drives synaptic changes that entail long-term potentiation (LTP) or long-term de-
pression (LTD) of the synaptic transmission. These forms of long-term changes of synaptic
strength studied in ex vivo and in vivo preparations depend on the pattern of stimulation
used [8–13]. For instance, high-frequency stimulation-induced LTP (HFS-LTP) has been
intensively studied and it is known to be NMDAR-dependent [5,14].

Under certain conditions, mGluRs can serve as co-triggers for the induction of NMDAR-
dependent LTP [15,16], possibly by facilitating the activation of NMDARs [6,17].
mGluR II is well known to be involved in LTD in the hippocampus [18–20] and mGluR III
has also been involved in plasticity [21,22]. Depending on the brain region, postsynaptic
cell type, and specific intracellular pathways, mGluR I is particularly known for inducing
LTD, which can be mediated by either mGluR1 or mGluR5 [23,24]. In addition to their role
in LTD, the activation of mGluR I potentiates NMDA-receptor-mediated currents [25,26],
and it can also depolarize several types of neurons through activation of a Ca2+-dependent
cation conductance [27,28].

Some conceptual controversies exist regarding the role of mGluR I and the type of
synaptic plasticity it involves (see Jones, 2017; [29] for review). Notably, this group of
metabotropic receptors was proposed as a crucial player in the mechanisms underlying
the detection of activity coincidence in the form of synaptic plasticity that depends on
the precise temporal coincidence and order of pre- and postsynaptic activities: the spike
timing-dependent plasticity (STDP) [30–32]. STDP has been found in all of the species
in which it has been studied (from insects to humans) [33]. Different forms of STDP
have been described depending on the specific cell and synapse type [34–40], the state of
the network [41], neuromodulatory agents [42,43] and the developmental stage [44,45] in
which the study was carried out, and it is believed that STDP endows a supporting role to
memory formation and maintenance [9,30]. Here, we review and discuss the involvement of
mGluR I in STDP and its role as a coincidence detector.

2. The STDP Phenomena and mGluRs Involvement

STDP is a form of synaptic plasticity in which the coincidence of pre- and postsynaptic
activities (spiking) within a few milliseconds dictates a long-lasting potentiation (t-LTP)
or depression (t-LTD) of synaptic transmission depending on the order of the spiking
occurrence. In excitatory synapses, when the presynaptic firing precedes the postsynaptic
spiking (“pre-post”), t-LTP is induced, whereas when the order is the inverse (“post-pre”),
t-LTD is induced [30,33] (Figure 1). However, there are exceptions according to the recent
advances in the field (i.e., post-pre protocol induces t-LTP in the hippocampal area CA1
of mice at postnatal days 35–42 (P35-P42) [44], Figure 1B) (see also Feldman, 2012; [30]
for review).

Different forms of STDP were found in diverse brain areas, including the hippocam-
pus [34,44,46], diverse cortical synapses [36,45,47–49], the cerebellum [38], the spinal cord [50],
the striatum [37] and the amygdala [51] among others, and mGluR I is involved in t-LTP
and t-LTD at different synapses in some of the these regions, covering different functions.
Thus, in the somatosensory cortex, postsynaptic mGluR I participates in the production and
release of eCB, which acts as a retrograde signaling molecule [47]; in neocortical synapses
onto interneurons, where it participates in t-LTD [52]; in the substantia gelatinosa, it regulates
the polarity of STDP [50] and in corticostriatal synapses, it acts as a coincidence detector
for t-LTD [37]. In the cerebellum, mGluR I participates in the induction of t-LTP but not
t-LTD [38]. Recently, it has been observed that eyeblink conditioning, a form of Pavlovian
learning that engages discrete areas of the cerebellar cortex and deep cerebellar nuclei, is
impaired in mGluR1 knockout mice. Moreover, administration of the mGluR1/5 agonist
DHPG into the lobulus simplex region of the cerebellar cortex promotes eyeblink conditioning
in rats, which indicates that cerebellar mGluR1 plays a role in cerebellar-dependent associative
learning [53]. mGluRs have been also found to be involved in STDP in the hippocampus,
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where they seem to gate NMDAR-mediated t-LTP [54], participate postsynaptically in the
induction of a presynaptic form of t-LTD by promoting the production and release of eCB
that acts as a retrograde signaling molecule [34,44] or presynaptically participate in a newly
discovered form of presynaptic t-LTD [44]. Whether t-LTD and t-LTP occur at the same time
on the same synapse, the underlying pathways involved in their expression remain to be fully
determined. Additionally, whether these forms of STDP share the same or distinct pools of
Ca2+ in the same dendritic spine is still puzzling and deserves further research.
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Figure 1. Schematic summarizing the role of mGluR I in different forms of STDP, showing that two
different large sets of STDP forms could be proposed according to the underlying mechanism for
coincidence detection: (A) In a classic model of Hebbian STDP, postsynaptic NMDARs are the main
coincidence detectors (providing strong and brief Ca2+ signals) that drive postsynaptic forms of t-
LTP and could also involve postsynaptic VGCCs, postsynaptic mGluRs and IP3R-mediated increase
in postsynaptic Ca2+ [30,33,34,47,50]. This model does not fully support the mechanism underlying
postsynaptic NMDAR-dependent t-LTD at horizontal layer 2/3-layer 2/3 synapses of the primary
somatosensory cortex [36]. Consequently, more research needs to be performed. In turn, other findings
support the proposed model involving the mGluR-VGCC-IP3R pathway in presynaptic forms of t-LTD
as shown in B and t-LTP as shown in C as representative examples. In these studies, presynaptic forms
of STDP either involve non-postsynaptic and likely presynaptic NMDARs and eCBs as retrograde
signal driving to t-LTD, as represented in B, [34,47] or NO retrograde signal driving to NMDAR-
independent t-LTP, as represented in C [44]. In addition, astrocytes release D-serine for t-LTD at P13-P21
(B) and ATP/adenosine for t-LTP at P35-42 (C). The presence and involvement of astrocytic mGluRs in
diverse forms of STDP should not be discarded and deserve further experimental efforts. Note that at
hippocampal area CA1, a developmental switch occurs: when the postsynaptic activity precedes the
presynaptic activity (∆t < 0) at P13-21, presynaptic t-LTD is induced (B) whereas presynaptic t-LTP is
induced by the same protocol at older ages (P35-P42) (C) with astrocytes commanding the closing and
opening of these plasticity windows [44,46]. Such general models represented in (A–C) are constantly
evolving and, therefore, must be revisited considering future advances. (-): decrease in glutamate release
in the presynaptic form of t-LTD, (+): pathways that are activated, (?): mechanistic insights that are yet
to be demonstrated.
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3. Group I mGluR Involvement in the Coincidence Detection for STDP

A mechanism for detection of the pre- and postsynaptic activities and their correlated
timings appears crucial for codifying the spiking coincidence that drives
STDP [30,33]. In a classical view, postsynaptic NMDARs are the receptors acting as co-
incidence detectors [5,6,30] (Figure 1A) and their contribution to STDP has been largely
documented from either pre- or postsynaptic synaptic compartments [31,33,34,39,47–49].
However, presynaptically located NMDARs do not likely hold the role of coincidence
detectors in NMDAR-dependent forms of STDP [55]. This evidence suggests the exis-
tence of different mechanisms of STDP that are mediated by different coincidence detec-
tors [34,36,39,40,47,56–60] (Figure 1). Therefore, two different heterogeneous classes of
STDP could be proposed: one class that involves NMDARs as the primary coincidence
detectors [34,36,39,40,47,56–59] (Figure 1A) and another class that does not require NM-
DARs, or they do not codify the coincidence [34,39,40,44,46,47,60–63], and includes pre- or
postsynaptic mGluRs (Figure 1B,C). Accordingly, irrespective of NMDAR involvement,
as previously mentioned, it is known that STDP requires other players including mGluRs
and retrograde messengers such as endocannabinoids (eCBs) or NO and involve astro-
cytes [34,39,40,44,46,47,60–63] (Figure 1B,C). Moreover, mGluRs could be proposed as
relevant players in the coincidence detection mechanisms for STDP where NMDARs are
not involved in such mechanisms.

In this regard, unlike ionotropic glutamate receptors, mGluRs are thought to operate
within a larger timescale [6]. Thus, it turns out to be more intriguing how mGluRs can
efficiently contribute as detectors of coincident activity that takes place in a time window
of a few milliseconds (i.e., 5–10 ms) during few repetitive pairings (i.e., <100 times) as it
happens for STDP [30,33]. However, even though GPCRs such as mGluRs are supposed
to signal over a timescale of seconds to minutes, mGluR signaling has been suggested to
also occur faster and with a timescale similar to that observed for ionotropic glutamate
receptors [6]. This notion is supported by conformational studies showing large-scale,
activation-associated mGluR1 inter-subunit changes on a millisecond timescale [64].

Consequently, most of the coincidence detector models propose mGluR-voltage-gated
Ca2+ channel (VGCC)-IP3R signaling as a principal postsynaptic coincidence detector.
In addition, phospholipase C (PLC) and IP3Rs have been proposed for serving well as
molecular coincidence detectors. This pathway entails a strong Ca2+ dependence that can
synergistically contribute to eCB signaling, thus driving some forms of t-LTD [30,47,65]. In
fact, these models find support in several forms of STDP that depend on changes in the
cytosolic Ca2+ dynamics involving Ca2+ influx through VGCCs and/or Ca2+ mobilization
from internal stores [34,37,38,44,47,50,52,66–69] (Figure 1). Moreover, there is evidence that
in the spine machinery, the release of Ca2+ from internal stores and Ca2+ transients through
VGCCs are likely to provide highly localized and input-specific Ca2+ signals to induce
synaptic plasticity [65,67].

Particularly, Ca2+ from VGCCs considerably facilitates mGluR-dependent PLC ac-
tivation, acting independently as a co-agonist of IP3Rs to promote IP3-dependent Ca2+

release [70]. Thus, in this model, a Ca2+ influx through VGCCs during each postsynaptic
action potential (spike) could transiently trigger mGluR-IP3 signaling [67,71,72]. This could
provide an adequate timing for the presynaptic spiking to drive mGluR signaling and
release enough Ca2+ to trigger Ca2+-dependent eCB synthesis and release that ultimately
leads to LTD. A similar mechanism has been proposed for short-term synaptic depression
with the involvement of VGCCs and mGluR I activation that synergistically drives eCB
release [70,73]. This model appears essentially the same as the two-coincidence detector
model for STDP that was previously proposed by Karmarkar and Buonomano (2002).
Additionally, small increases of IP3, which are not sufficient to stimulate release directly,
can enhance the Ca2+ sensitivity of the IP3Rs, thereby transforming the cytoplasm into
an excitable medium able to produce Ca2+ waves [65,74]. For example, inhibiting the
hydrolysis of IP3 greatly enhances the sensitivity of neurons to synaptic stimulation [65].
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As indicated above, mGluR I also mediates a form of cortical t-LTD that is independent
of postsynaptic NMDARs and is presynaptically expressed [47]. This form of t-LTD,
induced at layer 4 to layer 2/3 synapses in the primary somatosensory cortex, involves
postsynaptic mGluRs and retrograde eCB signaling, suggesting a common signaling motif
that is in line with the proposed roles of mGluR I in the models of coincidence detection.
More recently, in the hippocampus, a presynaptic form of hippocampal t-LTD shows similar
properties to that previously described in the neocortical synapses during development
(12-18 postnatal days). This form of t-LTD is presynaptic, requires postsynaptic mGluR5,
eCB type 1 receptors (CB1R), postsynaptic Ca2+, astrocytic signaling (D-serine release) and
non-postsynaptic NMDA receptors at Schaffer collateral-CA1 synapses [34]. Hence, the
described mechanism matches with the above-mentioned class of STDP (Figure 1A).

Notably, this form of hippocampal t-LTD switches from depression to potentiation
(t-LTP) across a wide range of spike timings as young mice mature towards the fifth
postnatal week [44]. Interestingly, this form of t-LTP is also expressed presynaptically and
requires the activation of mGluR5, but not NMDARs. In addition, the required activation
of mGluR5 appears to reside presynaptically. At these synapses, presynaptic mGluRs have
been described to bidirectionally modulate glutamate release [75]. Moreover, glial cells
are also thought to express mGluRs that probably contribute to the influence of synaptic
plasticity [76,77]. In turn, mGluRs located in the astrocytes appeared not to be involved in
this particular form of t-LTP.

4. Concluding Remarks

Cooperative and correlated activity within neuronal circuits underlie information
processing through the formation of neuronal network ensembles and short- and long-
lasting plastic changes that are associated with and/or underlie higher cognitive processes
such as memory formation and recall [13,78,79]. In the case of STDP, cumulative evidence
suggests that either pre- or postsynaptic mGluR I may drive t-LTP and t-LTD, acting as a key
component of non-classical postsynaptic NMDAR-based detection of activity coincidence.
Thus, group I mGluRs have emerged as potent modulators/drivers of significant aspects
of neuronal circuit functioning including STDP. Additionally, growing evidence posits
mGluRs as suitable drug targets to treat neurological disorders such as anxiety, Parkinson’s
disease, autism spectrum disorders, Alzheimer’s disease, fragile X syndrome and drug
abuse [4,29,80,81] where STDP has been or could be found impaired. However, despite
the great advances in studying the functional role of mGluRs in neuronal circuits and, in
particular, in STDP, more research is needed to cover missing mechanistic insights that
probably depend on the current experimental and technical limitations. In this regard, a
direct demonstration of the functional presence of mGluRs at the presynaptic compartment
could be achieved by paired recordings of connected pyramidal neurons while blocking the
metabotropic signaling just in the presynaptic neuron, as it was previously performed to
demonstrate the functional presence of NMDARs driving t-LTD in layer 4–layer 2/3 of the
mouse barrel cortex [39,56]. As well, the occurrence of t-LTD and t-LTP at the same synapse
involving presynaptic NMDARs, mGluRs and mGluRs located in the astrocytes could be
unveiled by performing the above-mentioned arduous approach. Development of caged
mGluR I antagonists that could be uncaged locally would allow for specific determinations
of mGluR involvement in STDP at cellular and subcellular compartments.
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