

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. Contents lists available at ScienceDirect



Metabolism Clinical and Experimental



journal homepage: www.metabolismjournal.com

# Correspondence

An updated meta-analysis on the relationship between obesity and COVID-19 mortality

Keywords: COVID-19 Obesity Meta-analysis Adjusted effect size Mortality

Recently, Huang et al. published an article titled "Obesity in patients with COVID-19: a systematic review and meta-analysis" in the journal of Metabolism [1]. The authors reported that coronavirus disease 2019 (COVID-19) patients with obesity were at high risk for death based on seven studies with multivariate analyses (odds ratio = 1.49, 95% confidence interval (CI): 1.20–1.85) [1]. This study was greatly interesting, but had limited sample sizes. In addition, several eligible studies [2–5] published before August 10, 2020 were not included. To our knowledge, a considerable number of emerging studies on this topic have been reported since Huang et al.'s study was published online. Therefore, the association between obesity and COVID-19 mortality is needed to be clarified by a meta-analysis based on updated data.

This meta-analysis was reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement [6]. We performed a comprehensive literature search in PubMed, Web of Science and EMBASE to identify all potential studies published between January 1, 2020 and June 7, 2021. The keywords were used: "COVID-19" or "SARS-CoV-2" or "coronavirus disease 2019" and "obesity" or "obese" or "body mass index" and "mortality" or "death" or "deceased". We included studies investigating the association between obesity and COVID-19 mortality by multivariable analyses. Preprints, reviews, duplicates, errata, comments, and studies with crude effect sizes were excluded.

The statistical analyses were done using R software (Version 3.6.3) [7]. The pooled effect size and 95% CI were estimated by a random-effects model [8,9]. I<sup>2</sup> statistic and Cochran's Q test were applied to evaluate statistical heterogeneity across studies [10–12]. Begg's test was used to assess publication bias [13]. Leave-one-out sensitivity analysis was performed to assess the stability of the results [14,15]. P < 0.05 was considered statistically significant.

The main characteristics of the included studies are summarized in Table 1. A total of 138 studies with 3,863,516 cases were included. Our results demonstrated that COVID-19 patients with obesity had a significantly higher risk for mortality compared to those without obesity (pooled effect size = 1.29, 95% CI: 1.24–1.35; Fig. 1A). Sensitivity analysis revealed that our results were stable and robust (Fig. 1B). Consistent findings were observed in the subgroup analyses by sample size, age, male percentage and setting. Begg's test indicated that there was no potential publication bias (P = 0.331).

Several limitations existed in this meta-analysis. First, most of the included studies were from Americas and Europe, thus the findings should be explained with caution in other regions (such as Asia and Africa). Second, although the pooled effect size was estimated on the basis of adjusted effect sizes, the adjusted factors are not fully consistent among the included studies. Third, most of the enrolled studies are retrospective studies, thus further meta-analysis with more prospective studies should be performed to verify our results.

In conclusion, this updated meta-analysis demonstrated that obesity was significantly associated with an increased risk for COVID-19 mortality. We hope that the updated findings will contribute to more accurate elaboration and substantiation of the data reported by Huang et al. [1].

## Funding

This study was supported by grants from the National Natural Science Foundation of China (No. 81973105), Key Scientific Research Project of Henan Institution of Higher Education (No. 21A330008), and Joint Construction Project of Henan Medical Science and Technology Research Plan (No. LHGJ20190679). The funders have no role in the data collection, data analysis, preparation of manuscript and decision to submission.

#### **CRediT authorship contribution statement**

Yadong Wang, Haiyan Yang and Huifen Feng conceptualized the study. Hongjie Hou, Jie Xu and Yadong Wang performed literature search and data extraction. Jie Xu, Ying Wang, Huifen Feng and Haiyan Yang analyzed the data. Yadong Wang wrote the manuscript. All the authors approved the final manuscript.

### **Declaration of competing interest**

All authors report that they have no potential conflicts of interest.

### Acknowledgements

We would like to thank Li Shi, Wenwei Xiao, Xuan Liang, Jian Wu, Peihua Zhang and Yang Li (All are from Department of Epidemiology, School of Public Health, Zhengzhou University) for their kind help in searching articles and collecting data, and valuable suggestions for analyzing data.

#### References

- Huang Y, Lu Y, Huang YM, Wang M, Ling W, Sui Y, et al. Obesity in patients with COVID-19: a systematic review and meta-analysis. Metab Clin Exp. 2020;113: 154378.
- [2] Deiana G, Azara A, Dettori M, Delogu F, Vargiu G, Gessa I, et al. Deaths in SARS-Cov-2 positive patients in Italy: the influence of underlying health conditions on lethality. Int J Environ Res Public Health. 2020;17:4450.
- [3] Hashemi N, Viveiros K, Redd WD, Zhou JC, McCarty TR, Bazarbashi AN, et al. Impact of chronic liver disease on outcomes of hospitalized patients with COVID-19: a multicentre United States experience. Liver Int. 2020;40:2515–21.

#### Table 1

General information of the included studies.

| Author               | Cases   | Obesity (%)     | Age (years)         | Male<br>(%) | Study type                     | Country/region     | Definition of obesity | Effect size<br>(95% CI) |
|----------------------|---------|-----------------|---------------------|-------------|--------------------------------|--------------------|-----------------------|-------------------------|
| Klang E*             | 3406    | 1231 (36.1)     | $66 \pm 12.2$       | 75.6        | Retrospective study            | USA                | BMI ≥ 30              | 1.63 (1.0-2.65)         |
| Rottoli M            | 482     | 104 (21.6)      | $66.2 \pm 16.8$     | 62.7        | Retrospective study            | Italy              | BMI ≥ 30              | 2.35 (1.17-4.75         |
| Antwi-Amoabeng D     | 172     | 89 (51.7)       | 53 (33.5-68)        | 55.8        | Retrospective study            | USA                | BMI ≥ 30              | 10.55 (1.07-104.        |
| Deiana G             | 1223    | NA              | NA                  | 40.8        | Retrospective study            | Italy              | BMI ≥ 30              | 1.1 (0.4-2.9)           |
| Hashemi N            | 363     | NA              | $63.34 \pm 16.5$    | 55.4        | Retrospective study            | USĂ                | BMI ≥ 30              | 1.03 (0.51-2.09         |
| Pettit NN            | 238     | 146 (61.3)      | 58.5 ± 17           | 47.5        | Retrospective study            | USA                | BMI ≥ 30              | 1.7 (1.1-2.8)           |
| Shah P*              | 522     | 347 (66.5)      | 63 (50-72)          | 41.8        | Retrospective study            | USA                | BMI ≥ 30              | 1.79 (1.12–2.88         |
| leshad S             | 2541    | 1250 (52.3)     | $63.7 \pm 16.5$     | 51.1        | Retrospective study            | USA                | BMI ≥ 30              | 0.775 (0.624–0.9        |
|                      | 2215    | NA              | $60.5 \pm 14.5$     | 64.8        |                                |                    |                       |                         |
| upta S*              |         |                 |                     |             | Multicenter cohort study       | USA                | $BMI \ge 30$          | 1.2 (0.92–1.56)         |
| akeshbandi M         | 504     | 215 (43)        | 68 ± 15             | 52          | Retrospective study            | USA                | BMI ≥ 30              | 1.3 (1-1.7)             |
| ernandez-Galdamez DR | 211,003 | 41,344 (19.59)  | $45.7 \pm 16.3$     | 54.71       | Cross-sectional study          | Mexico             | BMI ≥ 30              | 1.42 (1.37–1.47         |
| erenguer J           | 4035    | 497 (13.8)      | 70 (56–80)          | 61          | Retrospective study            | Spain              | BMI ≥ 30              | 1.21 (1.01–1.44         |
| mazeedi S            | 1096    | 44 (4)          | $47 \pm 31.11$      | 81          | Retrospective study            | Kuwait             | BMI ≥ 30              | 0.223 (0.033-1.5        |
| osso M               | 834     | 55 (6.6)        | $78.2 \pm 9.8$      | 46.5        | Retrospective study            | Spain              | BMI ≥ 30              | 1.21 (0.6-2.45)         |
| artof SY*            | 6916    | 3171 (45.9)     | $49.1 \pm 16.6$     | 45          | Retrospective study            | USA                | BMI ≥ 30              | 1.95 (1.09-3.50         |
| arra-Bracamonte GM   | 142,690 | 28,432 (20)     | 45 (34.0-57.0)      | 56          | Dataset                        | Mexico             | BMI ≥ 30              | 1.264 (1.207–1.3        |
| ehia BR              | 7139    | 2044 (28.6)     | 68 (56–79)          | 51.3        | Retrospective study            | USA                | Obesity               | 0.97 (0.81–1.16         |
|                      |         | . ,             | . ,                 |             |                                |                    |                       | •                       |
| g JH*                | 10,482  | NA              | 65.38 ± 15.2        | 59.5        | Retrospective study            | USA                | BMI ≥ 30              | 1.05 (0.91–1.22         |
| zernichow S*         | 5795    | 1264 (21.8)     | 59.7                | 65.4        | Prospective study              | France             | BMI ≥ 30              | 2.3 (1.78–2.98)         |
| imkar A              | 327     | 113 (34.6)      | 71 (59–82)          | 55.7        | Retrospective study            | USA                | BMI ≥ 30              | 1.3 (0.1–14.9)          |
| ran N                | 764     | 276 (36.1)      | $65.29 \pm 14$      | 65.7        | Retrospective study            | USA                | BMI ≥ 30              | 1.06 (0.85-1.32         |
| iorgi Rossi P        | 2653    | 65 (2.7)        | 63.2                | 50.1        | Prospective study              | Italy              | Obesity               | 1.3 (0.6-2.9)           |
| iglie J              | 450     | 191 (42.4)      | 63.3                | 57.6        | NA                             | USA                | Obesity               | 1.1 (0.5–2.45)          |
| ied MW               | 11,721  | 1891 (16.1)     | 62                  | 53.4        | Retrospective study            | USA                | Obesity               | 1.07 (0.93–1.24         |
| ukherjee V           | 137     | 104 (77.6)      | 59.0 (51.0–70.0)    | 72.3        | Retrospective study            | USA                | BMI ≥ 30              | 0.7 (0.5–1.2)           |
|                      |         |                 | · · · ·             |             |                                |                    |                       |                         |
| arrillo-Vega MF      | 9946    | 2053 (20.82)    | $48.15 \pm 14.35$   | 57.84       | Dataset                        | Mexico             | Obesity               | 1.74 (1.35-2.26         |
| orgenthau AS         | 7337    | 1993 (27.2)     | $61.5 \pm 18.85$    | 55.2        | Retrospective study            | USA                | Obesity               | 1.5 (1.3–1.7)           |
| uriola M             | 377     | 30 (8.0)        | $71.8 \pm 13.4$     | 65.8        | Retrospective study            | Italy              | Obesity               | 1.329 (0.779-2.2        |
| liller J             | 3633    | 1758 (51.8)     | $58.4 \pm 18.1$     | 46.2        | Retrospective study            | USA                | Obesity               | 0.94 (0.71-1.24         |
| annou GN             | 10,131  | 78 (0.8)        | $63.6 \pm 16.2$     | 91          | Longitudinal cohort            | USA                | Obesity               | 1.66 (0.99–2.77         |
| eters SAE*           | NA      | NA              | NA                  | NA          | study<br>Prospective study     | UK                 | Obesity               | 1.95 (1.58–2.41         |
| achega JB            | 766     | 39 (5.1)        | 46 (34-58)          | 65.6        | Retrospective study            | Congo              | Obesity               | 2.3 (1.24-4.27)         |
| utierrez JP*         | 654,858 | 122,917 (18.77) | 46.07 (45.84–46.30) | 52.21       | Public data                    | Mexico             | Obesity               | 2.11 (1.74–2.56         |
|                      |         |                 | , ,                 |             |                                | USA                |                       | ,                       |
| allow PJ             | 21,676  | 3029 (14.0)     | $64.9 \pm 17.2$     | 52.8        | Retrospective study            |                    | Obesity               | 1.3 (1.15–1.47)         |
| nescu F*             | 3480    | 1767 (50.8)     | $64.5 \pm 17.0$     | 48.5        | Retrospective study            | USA                | BMI ≥ 30              | 0.91 (0.67–1.23         |
| nati S*              | 1965    | 805 (41.0)      | $70.1 \pm 12.5$     | 64.5        | Retrospective study            | France             | BMI ≥ 30              | 1.37 (0.76–2.46         |
| ınski MJ             | 4760    | 2482 (48.2)     | NA                  | 39.1        | Retrospective study            | USA                | Obesity               | 1.3 (1.03-1.63)         |
| e Souza CD           | 9807    | 13 (1.1)        | $70.21 \pm 8.37$    | 47.5        | Cross-sectional study          | Brazil             | Obesity               | 1.77 (0.84-3.74         |
| im TS*               | 10,861  | 4090 (37.7)     | 65 (54-77)          | 59.6        | Retrospective study            | USA                | Obesity               | 1.25 (0.95-1.65         |
| ilbrands LB          | 1073    | 247 (23)        | 65                  | 60.6        | ERACODA database               | 26 countries       | Obesity               | 1.87 (1.18-2.95         |
| unez-Gil IJ          | 1021    | NA              | 68 (52.0-79.0)      | 59.5        | Retrospective study            | 4 countries        | Obesity               | 1.52 (0.83–2.76         |
| uncz-on ŋ            | 1021    | 14/1            | 08 (32.0-75.0)      | 33,5        | Kellospeelive study            | (Ecuador, Germany, | Obesity               | 1.52 (0.65-2.70         |
| - t                  | e e = = | 200 (25)        | 64.1                | 50          | Determine the state            | Italy and Spain)   |                       | 1 10 (0 00 1            |
| oterucha TJ          | 887     | 309 (35)        | 64.1                | 58          | Retrospective study            | USA                | Obesity               | 1.16 (0.83–1.62         |
| arikh R              | 160     | 83 (51.9)       | 60.35               | 65.6        | Retrospective study            | USA                | Obesity               | 1.2 (0.6-2.6)           |
| olverino F           | 3179    | 218 (6.9)       | 69.0 (57-78)        | 68.3        | Retrospective study            | Italy              | Obesity               | 2.03 (1.3-3.17)         |
| and AR               | 495     | 241 (48.7)      | 68.00 (58.00-77.00) | 58.4        | Retrospective study            | USA                | BMI ≥ 30              | 0.788 (0.544-1          |
| ardo TD              | 261     | 109 (41.8)      | 58 (50–67)          | 67.4        | Retrospective study            | USA                | BMI ≥ 30              | 1.37 (1.07–1.74         |
| nevelli M            | 415     | 15 (3.6)        | $84.3 \pm 8.1$      | 52.8        | Retrospective study            | Italy              | Obesity               | 0.48 (0.25–0.92         |
| Alto M               | 94      | 31 (33.0)       | 64                  | 74.5        | Prospective study              | Italy              | Obesity               | 0.626 (0.171-2.2        |
|                      |         |                 |                     |             | · ·                            |                    |                       |                         |
| NI2R*                | 675     | 123 (22.7)      | 55.9                | 33.4        | Retrospective study            | France             | BMI ≥ 30              | 2.27 (1.14-4.49         |
| /abera A*            | 290     | 89 (30.7)       | $77.6 \pm 8.3$      | 51.7        | Retrospective study            | USA                | BMI ≥ 30              | 0.67 (0.32–1.4)         |
| euffer C             | 1045    | 351 (33.6)      | $66.3 \pm 16.0$     | 58.6        | Prospective study              | France             | BMI ≥ 30              | 1.4 (0.7–2.5)           |
| guwaihes AM          | 439     | 178 (42.2)      | 55 (19-101)         | 68.3        | Retrospective study            | Saudi Arabia       | Obesity               | 1 (0.6-1.6)             |
| intea Stoian A       | 432     | 56 (12.96)      | 66.97 ± 13.07       | 65          | NA                             | Romania            | Obesity               | 1.305 (0.843-2.0        |
| efan G               | 37      | 11 (30)         | 64 (55-71)          | 51          | Retrospective study            | Romania            | Obesity               | 1.38 (0.25–7.58         |
| urillo-Zamora E      | 66,123  | NA              | NA                  | 60.7        | Retrospective study            | Mexico             | Obesity               | 1.08 (1.05–1.1)         |
|                      |         |                 |                     |             |                                |                    |                       |                         |
| ng SF*               | 984     | 20 (4.5)        | 74 (63–83)          | 54.3        | Retrospective study            | UK                 | Obesity               | 0.43 (0.09-2.05         |
| urieta HS            | 27,961  | NA              | 75 (70–85)          | 48.8        | Retrospective study            | USA                | Obesity               | 1.1 (1.05–1.16)         |
| ndon DJ              | 8928    | 631 (7.1)       | $58.0 \pm 18.8$     | 46.2        | Cross-sectional study          | USA                | Obesity               | 1.39 (1.11–1.73         |
| m SY                 | 4057    | 1159 (28.57)    | 40                  | 42.5        | NA                             | Korea              | Obesity               | 1.71 (1.1-2.66)         |
| stment MC*           | 25,925  | 12,672 (48.9)   | $60.4 \pm 17.0$     | 89.8        | Retrospective study            | USA                | Obesity               | 1.05 (0.81-1.37         |
| nini S               | 379     | 24 (6.3)        | $61.67 \pm 15.60$   | 72.03       | Longitudinal cohort            | Italy              | Obesity               | 5.13 (1.81–14.5         |
| chwartz KL           | 56,606  | 722 (1.3)       | 31                  | 48.4        | study<br>Cross-sectional study | Canada             | Obesity               | 1.66 (1.19–2.3)         |
| Y                    | 202     | 92 (45.5)       | 58 (49-69)          | 54          | Retrospective study            | USA                | BMI ≥ 30              | 1.45 (0.5–4.2)          |
| ejía F               | 369     | 157 (42.55)     | 59 (49-68)          | 65.31       | Retrospective study            | Peru               | Obesity               | 0.99 (0.72–1.35         |
|                      |         |                 | . ,                 |             |                                |                    |                       | ,                       |
| ena JE*              | 323,671 | 58,517 (18.1)   | 40.12               | 52.2        | Retrospective study            | Mexico             | Obesity               | 1.52 (1.06-2.18         |
| uerra Veloz MF       | 447     | 29 (6.5)        | $55.06 \pm 22.55$   | 42.5        | Retrospective study            | Spain              | Obesity               | 1.3 (0.41-4.12)         |
| m SW                 | 2254    | 426 (28.5)      | 58.0 (42.0-70.0)    | 35.8        | Retrospective study            | Korea              | Obesity               | 1.92 (0.97-3.77         |
| artos-Benítez FD     | 38,324  | 8014 (20.9)     | $46.9 \pm 15.7$     | 58.3        | Retrospective study            | Mexico             | Obesity               | 1.53 (1.38-1.7          |
|                      |         |                 |                     | 55.2        | Retrospective study            | USA                | BMI ≥ 30              | 1.28 (0.68-2.46         |
| obbs ALV*            | 502     | 257 (51.6)      | 62 (49–71)          | JJ.Z        | Reliospective study            |                    |                       | 1.20 (0.00-2.40         |

#### Table 1 (continued)

| Author                                       | Cases            | Obesity (%)               | Age (years)                   | Male<br>(%) | Study type                                                | Country/region                       | Definition of<br>obesity | Effect size<br>(95% CI) |
|----------------------------------------------|------------------|---------------------------|-------------------------------|-------------|-----------------------------------------------------------|--------------------------------------|--------------------------|-------------------------|
| Eskandar EN                                  | 4711             | NA                        | 63.4                          | 53.3        | Retrospective study                                       | USA                                  | BMI ≥ 30                 | 1.09 (1-1.2)            |
| Lohia P                                      | 1871             | 879 (47.0)                | 66 (54-75)                    | 51.6        | Retrospective study                                       | USA                                  | BMI ≥ 30                 | 1.23 (0.98-1.54)        |
| Apea VJ                                      | 1996             | 384 (19.2)                | 63.4                          | 60.6        | Prospective study                                         | UK                                   | BMI ≥ 30                 | 1.42 (1.09-1.85)        |
| Meizlish ML                                  | 2785             | NA                        | NA                            | 50.1        | Retrospective study                                       | USA                                  | Obesity                  | 1.356 (1.101–1.6)       |
| Mayer MA                                     | 23,844           | 5181 (21.7)               | $49.93 \pm 19.4$              | 42.3        | Retrospective study                                       | Spain                                | Obesity                  | 1.08 (0.91–1.27)        |
| Lopez Zuniga MA                              | 318              | 48 (15.2)                 | $64.9 \pm 14.1$               | 58.5        | Prospective study                                         | Spain                                | Obesity                  | 1.238 (0.393-3.9        |
| Marjot T                                     | 932              | 248 (27)                  | 59 (48-68)                    | 67          | Retrospective study                                       | Three<br>multinational<br>registries | Obesity                  | 1.07 (0.69–1.65         |
| Balfanz P                                    | 125              | 44 (35)                   | 66                            | 70          | Retrospective study                                       | Germany                              | Obesity                  | 1.3 (0.29–5.74)         |
| Olivas-Martínez A                            | 800              | 357 (44.8)                | $51.9 \pm 13.9$               | 61          | Prospective study                                         | USA                                  | Obesity                  | 1.62 (1.14-2.32         |
| Yoshida Y                                    | 776              | 409 (53.1)                | $60.5 \pm 16.1$               | 47.3        | Retrospective study                                       | USA                                  | Obesity                  | 1.33 (0.87-2.03         |
| Geriatric Medicine<br>Research Collaborative | 5711             | 1092 (19.1)               | 74 (54–83)                    | 55.2        | Cohort study                                              | 12 countries                         | BMI ≥ 30                 | 1.03 (0.86–1.24         |
| Crouse AB                                    | 604              | 371 (61.4)                | 53.02                         | 45          | Retrospective study                                       | USA                                  | Obesity                  | 1.21 (0.66–2.21         |
| limberlake DT                                | 275              | 102 (37.1)                | 57.9                          | 77.1        | Retrospective study                                       | USA                                  | Obesity                  | 1.07 (0.53–2.14         |
| Cedano J                                     | 132              | 59 (45)                   | 63 (53–71)                    | 59          | Retrospective study                                       | USA                                  | BMI ≥ 30                 | 2.92 (1.07-8.01         |
| Girardin JL                                  | 4210             | 1660 (39.4)               | 61.9                          | 58.1        | Retrospective study                                       | USA                                  | Obesity                  | 1.19 (1.04–1.37         |
| e Borgne P                                   | 1023             | 258 (34.1)                | 69.0 (58.0–79.0)              | 58.9        | Retrospective study                                       | France                               | Obesity                  | 1.366 (0.74–2.5         |
| Rossi AP                                     | 95               | 34 (35.8)                 | $62.46 \pm 11.81$             | 82.1        | NA                                                        | Italy                                | Obesity                  | 5.3 (1.26–22.34         |
| Gavioli EM                                   | 437              | 69 (16)                   | 67 (56–79)                    | 48          | Retrospective study                                       | USA                                  | Obesity                  | 2.08 (1.14-3.78         |
| Dai CL*                                      | 54,645           | 19,763 (41.9)             | $47.8 \pm 19.2$               | 47.4        | Retrospective study                                       | USA                                  | Obesity                  | 1.22 (0.96–1.53         |
| Gupta YS*                                    | 180              | 68 (40)                   | 68 (59-80)                    | 54          | Retrospective study                                       | USA                                  | BMI > 30                 | 3.36 (1.53-7.34         |
| Navaratnam AV                                | 91,541           | 7920 (8.7)                | 71.52                         | 55.4        | Retrospective study                                       | UK                                   | Obesity                  | 1.476 (1.383–1.5        |
| Merzon E                                     | 112              | 44 (39.3)                 | $62.89 \pm 14.67$             | 55.4        | Retrospective study                                       | Israel                               | Obesity                  | 0.75 (0.04–12.4         |
| lamoner W                                    | 101              | 22 (21.7)                 | $57.89 \pm 15.8$              | 54.4        | Prospective study                                         | Brazil                               | Obesity                  | 1.28 (1.04–11.5         |
| Aoun M                                       | 231              | 52 (22.5)                 | $61.46 \pm 13.99$             | 55.4        | Retrospective study                                       | Lebanon                              | Obesity                  | 0.88 (0.41-1.88         |
| Porta-Etessam J                              | 5399             | NA                        | $64.27 \pm 16.93$             | 59.2        | NA                                                        | Spain                                | Obesity                  | 1.12 (0.91–1.39         |
| .i WX                                        | 1249             | 353 (28.3)                | 36 (27-50)                    | 61.9        | Retrospective study                                       | China                                | $BMI \ge 30$             | 1.69 (1.12-3.57         |
| Suresh S                                     | 1989             | 1031 (52)                 | $63.82 \pm 16.55$             | 50          | Retrospective study                                       | USA                                  | Obesity                  | 1.1 (0.83-1.44)         |
| Sonmez A                                     | 9213             | 870 (9.4)                 | 61                            | 43.3        | Retrospective study                                       | Turkey                               | Obesity                  | 2.36 (1.18-4.74         |
| barra-Nava I                                 | 416,546          | 79,635 (19.1)             | 46.1                          | 53.1        | Retrospective study                                       | Mexico                               | Obesity                  | 1.39 (1.35–1.42         |
| Bloom CI*                                    | 65,653           | 6007 (9.1)                | 75.7                          | 56.3        | Prospective study                                         | UK                                   | Obesity                  | 1.46 (0.88-2.42         |
| Giacomelli A                                 | 520              | 92 (17.7)                 | 61 (50-72)                    | 76          | Prospective study                                         | Italy                                | Obesity                  | 2.17 (1.1-4.31)         |
| Argoty-Pantoja AD*                           | 412,017          | 77,566 (18.8)             | 45.3                          | 53.2        | Longitudinal analysis                                     | Mexico                               | Obesity                  | 1.53 (0.83-2.81         |
| Satman I                                     | 18,658           | 1024 (5.5)                | 53                            | 44          | Retrospective study                                       | Turkey                               | Obesity                  | 2.83 (1.45-5.53         |
| Grivas P                                     | 4966             | 1704 (34)                 | 66 (56-76)                    | 49          | Retrospective study                                       | USA                                  | Obesity                  | 1.09 (0.88-1.35         |
| Wu X                                         | 1091             | 285 (26.1)                | 59 (49-67)                    | 46.7        | Retrospective study                                       | China                                | Obesity                  | 1.74 (0.73-4.21         |
| Muñoz-Rodríguez JR                           | 12,126           | 2100 (18.8)               | 66.4                          | 53.3        | Prospective study                                         | Spain                                | Obesity                  | 1.3 (1.1–1.5)           |
| Mehta HB*                                    | 137,119          | 37,318 (27.2)             | 76                            | 34          | Retrospective study                                       | USA                                  | BMI > 30                 | 0.92 (0.88-0.97         |
| Schavemaker R                                | 1099             | 324 (29.5)                | $64.77 \pm 10.91$             | 73          | Cohort study                                              | UK                                   | Obesity                  | 1 (0.72–1.38)           |
| Bonifazi M                                   | 263              | 51 (19.4)                 | 45.3 (40.4-48.4)              | 62.4        | Retrospective study                                       | Italy                                | $BMI \ge 30$             | 0.79 (0.27-2.27         |
| Mulhem E                                     | 3219             | 1642 (51.0)               | 65.2 (52.6-77.2)              | 49          | Retrospective study                                       | USA                                  | Obesity                  | 1.25 (1.01-1.56         |
| Kurtz P                                      | 4188             | NA                        | 63 (49-76)                    | 64          | Prospective study                                         | Brazil                               | Obesity                  | 1.11 (0.99–1.24         |
| Sallis R*                                    | 48,440           | 24,831 (51.3)             | $47.5 \pm 16.97$              | 38.1        | Retrospective study                                       | USA                                  | BMI ≥ 30                 | 1.29 (0.62-2.72         |
| Mendizabal M                                 | 2211             | 383 (17.3)                | 54.3 ± 17.3                   | 60.6        | Prospective study                                         | 11 Latin American<br>countries       | Obesity                  | 1.7 (1.3–2.3)           |
| Alwafi H                                     | 706              | 88 (12.5)                 | $48.0\pm15.6$                 | 68.5        | Retrospective study                                       | Saudi Arabia                         | BMI ≥ 30                 | 0.25 (0.06-1.01         |
| Baggio JAO                                   | 59,659           | 138 (0.2)                 | 41                            | 44.6        | Retrospective study                                       | Brazil                               | Obesity                  | 3.22 (1.87–5.54         |
| Vera-Zertuche JM                             | 15,529           | 3215 (20.7)               | $46.6 \pm 15.5$               | 57.8        | Retrospective study                                       | Mexico                               | Obesity                  | 2.37 (1.96-2.86         |
| Nikniaz Z                                    | 317              | 76 (24.0)                 | 65.09 ± 13.29                 | 51.4        | Prospective study                                         | Iran                                 | Obesity                  | 2.72 (1.13-7.44         |
| Ayala Gutierrez MDM                          | 13,940           | 2711 (19.4)               | 67.3                          | 57.1        | Retrospective study                                       | Spain                                | Obesity                  | 1.33 (1.17-1.51         |
| Cereda E*                                    | 222              | 68 (30.6)                 | $58.6 \pm 11.2$               | 77.9        | Prospective study                                         | Italy                                | BMI ≥ 30                 | 2.06 (1.17-3.63         |
| Cummins L                                    | 1781             | 481 (27.1)                | 51.74                         | 55.2        | Retrospective study                                       | UK                                   | Obesity                  | 1.15 (0.86-1.55         |
| Castro MC                                    | 176,559          | NA                        | NA                            | NA          | Retrospective study                                       | Brazil                               | Obesity                  | 1.07 (1.04–1.1)         |
| Guerson-Gil A*                               | 3499             | 1472 (42.1)               | 65 (55-76)                    | 55.27       | Retrospective study                                       | USA                                  | BMI ≥ 30                 | 1.45 (1.09–1.91         |
| Gray WK*                                     | 117,438          | 10,426 (8.9)              | 70.5                          | 54.6        | Retrospective study                                       | UK                                   | Obesity                  | 1.18 (0.81–1.72         |
| Song J                                       | 5621             | 1260 (22.4)               | 50.21                         | 41.2        | Retrospective study                                       | Korea                                | Obesity                  | 0.883 (0.751–1.0        |
| Dres M*                                      | 1199             | NA                        | 74 (72–78)                    | 73          | Prospective study                                         | France                               | BMI ≥ 30                 | 0.9 (0.69–1.16)         |
| Bravata DM*                                  | 13,510           | 5940 (44.0)               | 67.58                         | 90.8        | Observational cohort study                                | USA                                  | BMI ≥ 30                 | 0.88 (0.64–1.21         |
| /erna EC                                     | 1070             | 184 (17.2)                | 60                            | 52.5        | Retrospective study                                       | USA                                  | Obesity                  | 0.9 (0.76–1.06)         |
| Ku W                                         | 1131             | 320 (28.3)                | 36 (26–50)                    | 61          | Retrospective study                                       | China                                | Obesity                  | 1.75 (1.21–4.32         |
| Celejewska-Wojcik N                          | 116              | 43 (37.1)                 | 61 (51-70)                    | 78.4        | Prospective study                                         | Poland                               | Obesity                  | 1.14 (0.65–2.01         |
| Goncalves DA                                 | 182,700          | 6470 (3.5)                | NA                            | 56.6        | Retrospective study                                       | Brazil                               | Obesity                  | 1.411 (1.309–1.5        |
| Heldman MR                                   | 102,700          | 365 (34.7)                | 57.4                          | 62.2        | Multicenter cohort study                                  | USA                                  | Obesity                  | 1.8 (1.2–2.5)           |
| Aminian A*                                   | 2839             | 1357 (47.8)               | $57.4 \pm 20.1$               | 46.4        | Retrospective study                                       | USA                                  | BMI ≥ 30                 | 0.94 (0.45–1.97         |
| Robles-Perez E                               | 70,531           | 9906 (14.0)               | NA                            | 43.2        | Retrospective study                                       | Mexico                               | Obesity                  | 2.05 (1.67–2.6)         |
| Henein MY                                    | 213              | 122 (57.3)                | $49.6 \pm 12$                 | 43.2<br>NA  | Retrospective study                                       | Egypt                                | Obesity                  | 3.403 (1.902–4.6        |
| Marciniak SJ*                                | 85,006           | NA                        | $49.0 \pm 12$<br>NA           | NA          | Prospective study                                         | UK                                   | Obesity                  | 1.05 (0.96–1.15         |
| Wander PL*                                   | 85,006<br>35,879 | NA<br>15,147 (52)         | $60.3 \pm 17.0$               | NA<br>89    | Retrospective study                                       | USA                                  |                          | 1.05 (0.96–1.15         |
| Framunt B*                                   | 35,879<br>2380   | 15,147 (52)<br>929 (39.0) | $60.3 \pm 17.0$<br>70 (61–79) | 89<br>63.5  | Retrospective study<br>Retrospective/Prospective<br>study | France                               | BMI ≥ 30<br>BMI ≥ 30     | 0.85 (0.57–1.27         |
|                                              |                  |                           |                               |             | Prospective study                                         |                                      |                          |                         |

Note: The age (years) was expressed as mean  $\pm$  standard deviation (SD) and median (interquartile range, IQR). BMI, body mass index; CI, confidence interval; NA, not available; UK, United Kingdom; USA, the United States of America. \* indicates the combined effect size and 95% CI were used.

| udy                                                                          | Odds Ratio        | OR 95%-CI Weight                                                               | B<br>study                                                              | Odds Ratio<br>IV, Random, 95% CI                            | Odds Ratio<br>IV, Random, 95% CI |
|------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------|
| nazeedi S                                                                    | ·                 | 0.22 [0.03; 1.51] 0.0%                                                         | Omitting Almazeedi S<br>Omitting Alwafi H                               | 1.29 [1.24, 1.35]<br>1.29 [1.24, 1.35]                      |                                  |
| vafi H<br>ng SF*                                                             |                   | 0.25 [0.06; 1.03] 0.1%<br>0.43 [0.09; 2.05] 0.1%                               | Omitting Ling SF*<br>Omitting Canevelli M                               | 1.29 [1.24, 1.35]<br>1.29 [1.24, 1.35]                      |                                  |
| nevelli M<br>Alto M                                                          |                   | 0.48 [0.25; 0.92] 0.3%<br>0.63 [0.17; 2.29] 0.1%                               | Omitting D'Alto M                                                       | 1.29 [1.24, 1.35]                                           |                                  |
| abera A*                                                                     |                   | 0.67 [0.32; 1.40] 0.3%                                                         | Omitting Nyabera A*<br>Omitting Mukherjee V                             | 1.29 [1.24, 1.35]<br>1.30 [1.24, 1.35]                      |                                  |
| kherjee V<br>rzon E                                                          |                   | • 0.75 [0.04; 13.25] 0.0%                                                      | Omitting Merzon E<br>Omitting Aeshad S                                  | 1.29 [1.24, 1.35]<br>1.30 [1.24, 1.35]                      |                                  |
| shad S<br>and AR                                                             |                   | 0.78 [0.62; 0.96] 1.1%<br>0.79 [0.54; 1.14] 0.7%                               | Omitting Saand AR                                                       | 1.30 [1.24, 1.35]                                           |                                  |
| nifazi M<br>amunt B*                                                         |                   | 0.79 [0.27; 2.29] 0.1%<br>0.85 [0.57; 1.27] 0.7%                               | Omitting Bonifazi M<br>Omitting Tramunt B*                              | 1.29 [1.24, 1.35]<br>1.29 [1.24, 1.35]                      |                                  |
| un M                                                                         |                   | 0.88 [0.41; 1.88] 0.3%                                                         | Omitting Aoun M<br>Omitting Bravata DM*                                 | 1.29 [1.24, 1.35]<br>1.29 [1.24, 1.35]                      |                                  |
| avata DM*<br>ng J                                                            | 쿺                 | 0.88 [0.64; 1.21] 0.9%<br>0.88 [0.75; 1.05] 1.3%                               | Omitting Song J                                                         | 1.30 [1.24, 1.35]                                           |                                  |
| es M*<br>rna EC                                                              | 로                 | 0.90 [0.69; 1.17] 1.0%<br>0.90 [0.76; 1.06] 1.3%                               | Omitting Dres M*<br>Omitting Verna EC                                   | 1.30 [1.24, 1.35]<br>1.30 [1.24, 1.35]                      |                                  |
| escu F*                                                                      |                   | 0.91 [0.67; 1.23] 0.9%                                                         | Omitting Ionescu F*                                                     | 1.29 [1.24, 1.35]                                           |                                  |
| hta HB*<br>Ier J                                                             |                   | 0.92 [0.88; 0.97] 1.6%<br>0.94 [0.71; 1.24] 1.0%                               | Omitting Mehta HB*<br>Omitting Miller J                                 | 1.30 [1.24, 1.35]<br>1.29 [1.24, 1.35]                      |                                  |
| Istrom B<br>hinian A*                                                        | <u>+</u>          | 0.94 [0.56; 1.57] 0.5%<br>0.94 [0.45; 1.97] 0.3%                               | Omitting Ahlstrom B<br>Omitting Aminian A*                              | 1.29 [1.24, 1.35]<br>1.29 [1.24, 1.35]                      |                                  |
| hia BR                                                                       | <u>+</u>          | 0.97 [0.81: 1.16] 1.3%                                                         | Omitting Yehia BR                                                       | 1.30 [1.24, 1.35]                                           |                                  |
| jía F<br>uwaihes AM                                                          |                   | 0.99 [0.72; 1.36] 0.9%<br>1.00 [0.61; 1.63] 0.5%                               | Omitting Mejía F<br>Omitting Alguwaihes AM                              | 1.29 [1.24, 1.35]<br>1.29 [1.24, 1.35]                      |                                  |
| navemaker R<br>nder PL*                                                      |                   | 1.00 [0.72; 1.38] 0.8%<br>1.01 [0.76; 1.35] 0.9%                               | Omitting Alguwaihes AM<br>Omitting Schavemaker R<br>Omitting Wander PL* | 1.29 [1.24, 1.35]                                           |                                  |
| shemi N                                                                      | <u> </u>          | 1.03 [0.51; 2.09] 0.3%                                                         | Omitting Hashemi N                                                      | 1.29 [1.24, 1.35]<br>1.29 [1.24, 1.35]                      |                                  |
| iatric Medicine Research Collaborative                                       | 茎                 | 1.03 [0.86; 1.24] 1.2%<br>1.05 [0.91; 1.22] 1.4%                               | Omitting Geriatric Medicine Research Collaborative<br>Omitting Ng JH*   | 1.29 [1.24, 1.35]<br>1.29 [1.24, 1.35]                      |                                  |
| stment MC*<br>rciniak SJ*                                                    | 麦                 | 1.05 [0.81; 1.37] 1.0%<br>1.05 [0.96; 1.15] 1.5%                               | Omitting Eastment MC*                                                   | 1.29 [1.24, 1.35]                                           |                                  |
| an N                                                                         |                   | 1.06 [0.85; 1.32] 1.1%                                                         | Omitting Marciniak SJ*<br>Omitting Biran N                              | 1.29 [1.24, 1.35]<br>1.29 [1.24, 1.35]                      |                                  |
| d MW<br>jot T                                                                |                   | 1.07 [0.93; 1.24] 1.4%<br>1.07 [0.69; 1.65] 0.6%                               | Omitting Biran N<br>Omitting Fried MW                                   | 1.29 [1.24, 1.35]                                           |                                  |
| berlake DT                                                                   | <u></u>           | 1.07 [0.53; 2.15] 0.3%                                                         | Omitting Marjot T<br>Omitting Timberlake DT                             | 1.29 [1.24, 1.35]<br>1.29 [1.24, 1.35]                      |                                  |
| stro MC<br>illo-Zamora E                                                     |                   | 1.08 [1.05; 1.11] 1.6%                                                         | Omitting Castro MC<br>Omitting Murillo-Zamora E                         | 1.30 [1.24, 1.35]<br>1.30 [1.24, 1.35]                      |                                  |
| rer MA<br>andar EN                                                           | 百                 | 1.08 [0.91; 1.28] 1.3%<br>1.09 [1.00; 1.19] 1.5%                               | Omitting Mayer MA                                                       | 1.29 [1.24, 1.35]                                           |                                  |
| as P                                                                         | <u></u>           | 1.09 [0.88; 1.35] 1.1%                                                         | Omitting Eskandar EN<br>Omitting Grivas P                               | 1.29 [1.24, 1.35]<br>1.29 [1.24, 1.35]                      |                                  |
| ana G<br>glie J                                                              |                   | 1.10 [0.41; 2.96] 0.2%<br>1.10 [0.50; 2.43] 0.2%                               | Omitting Deiana G                                                       | 1.29 [1.24, 1.35]                                           |                                  |
| eta HS<br>esh S                                                              | <u></u>           | 1.10 [1.05; 1.16] 1.6%<br>1.10 [0.84; 1.45] 1.0%                               | Omitting Seiglie J<br>Omitting Izurieta HS                              | 1.29 [1.24, 1.35]<br>1.29 [1.24, 1.35]                      |                                  |
| tz P                                                                         |                   | 1.11 [0.99; 1.24] 1.4%                                                         | Omitting Suresh S<br>Omitting Kurtz P                                   | 1.29 [1.24, 1.35]<br>1.29 [1.24, 1.35]                      |                                  |
| ta-Etessam J<br>ejewska-Wojcik N                                             |                   | 1.12 [0.91; 1.38] 1.2%<br>1.14 [0.65; 2.00] 0.4%                               | Omitting Porta-Etessam J                                                | 1.29 [1.24, 1.35]                                           |                                  |
| nmins L<br>erucha TJ                                                         |                   | 1.15 [0.86; 1.54] 0.9%<br>1.16 [0.83; 1.62] 0.8%                               | Omitting Celejewska-Wojcik N<br>Omitting Cummins L                      | 1.29 [1.24, 1.35]<br>1.29 [1.24, 1.35]                      |                                  |
| y WK*                                                                        |                   | 1.18 [0.81; 1.72] 0.7%                                                         | Omitting Cummins L<br>Omitting Poterucha TJ<br>Omitting Gray WK*        | 1.29 [1.24, 1.35]                                           |                                  |
| ardin JL<br>ota S*                                                           |                   | 1.19 [1.04; 1.37] 1.4%<br>1.20 [0.92; 1.56] 1.0%                               | Omitting Girardin JL                                                    | 1.29 [1.24, 1.35]<br>1.29 [1.24, 1.35]                      |                                  |
| ikh R<br>enguer J                                                            |                   | 1.20 [0.58; 2.50] 0.3%<br>1.21 [1.01; 1.44] 1.3%                               | Omitting Gupta S*<br>Omitting Parikh R                                  | 1.29 [1.24, 1.35]<br>1.29 [1.24, 1.35]                      |                                  |
| so M                                                                         |                   | 1.21 [0.60; 2.45] 0.3%                                                         | Omitting Berenguer I                                                    | 1.29 [1.24, 1.35]                                           |                                  |
| use AB<br>CL*                                                                |                   | 1.22 [0.97; 1.54] 1.1%                                                         | Omitting Posso M<br>Omitting Crouse AB                                  | 1.29 [1.24, 1.35]<br>1.29 [1.24, 1.35]                      |                                  |
| ia P<br>ez Zuniga MA                                                         |                   | 1.23 [0.98; 1.54] 1.1%<br>1.24 [0.39; 3.90] 0.1%                               | Omitting Dai CL*<br>Omitting Lohia P                                    | 1.29 [1.24, 1.35]<br>1.29 [1.24, 1.35]                      |                                  |
| n TS*                                                                        | 1                 | 1.25 [0.95; 1.65] 1.0%                                                         | Omitting Lopez Zuniga MA                                                | 1.29 [1.24, 1.35]                                           |                                  |
| hem E<br>ra-Bracamonte GM                                                    |                   | 1.26 [1.21; 1.32] 1.6%                                                         | Omitting Kim TS*<br>Omitting Mulhem E                                   | 1.29 [1.24, 1.35]<br>1.29 [1.24, 1.35]                      |                                  |
| obs ALV*<br>noner W                                                          |                   | 1.28 [0.67; 2.45] 0.3%<br>1.28 [0.38; 4.26] 0.1%                               | Omitting Parra-Bracamonte GM<br>Omitting Hobbs ALV*                     | 1.29 [1.24, 1.35]<br>1.29 [1.24, 1.35]                      |                                  |
| is R*                                                                        |                   | 1.29 [0.62: 2.70] 0.3%                                                         | Omitting Hobbs ALV*<br>Omitting Zamoner W                               | 1.29 [1.24, 1.35]<br>1.29 [1.24, 1.35]                      |                                  |
| keshbandi M<br>nkar A                                                        |                   | 1.30 [1.00; 1.69] 1.0%<br>1.30 [0.11; 15.87] 0.0%                              | Omitting Sallis R*<br>Omitting Nakeshbandi M                            | 1.29 [1.24, 1.35]<br>1.29 [1.24, 1.35]                      |                                  |
| rgi Rossi P<br>Iow PJ                                                        | -                 | 1.30 [0.59; 2.86] 0.2%<br>1.30 [1.15; 1.47] 1.4%                               | Omitting Nimkar A                                                       | 1.29 [1.24, 1.35]                                           |                                  |
| nski MJ                                                                      | ÷                 | 1.30 [1.03; 1.64] 1.1%                                                         | Omitting Giorgi Rossi P                                                 | 1.29 [1.24, 1.35]<br>1.29 [1.24, 1.35]                      |                                  |
| erra Veloz MF<br>fanz P                                                      |                   | 1.30 [0.41; 4.12] 0.1%<br>1.30 [0.29; 5.78] 0.1%                               | Omitting Mallow PJ<br>Omitting Lunski MJ                                | 1.29 [1.24, 1.35]                                           |                                  |
| ñoz-Rodríguez JR<br>ntea Stoian A                                            | *                 | 1.30 [1.11; 1.52] 1.3%<br>1.30 [0.84; 2.02] 0.6%                               | Omitting Guerra Veloz MF<br>Omitting Balfanz P                          | 1.29 [1.24, 1.35]<br>1.29 [1.24, 1.35]                      |                                  |
| uriola M, et al                                                              | - <u>+</u>        | 1.33 [0.78; 2.27] 0.5%                                                         | Omitting Muñoz-Rodríguez JR<br>Omitting Pantea Stoian A                 | 1.29 [1.24, 1.35]<br>1.29 [1.24, 1.35]                      |                                  |
| shida Y<br>Ia Gutierrez MDM                                                  | 100               | 1.33 [0.87; 2.03] 0.6%<br>1.33 [1.17; 1.51] 1.4%                               | Omitting Lauriola M, et al                                              | 1.29 [1.24, 1.35]                                           |                                  |
| izlish ML<br>Borgne P                                                        | <u>+</u>          | 1.36 [1.10; 1.67] 1.2%<br>1.37 [0.74; 2.52] 0.4%                               | Omitting Yoshida Y<br>Omitting Avala Gutierrez MDM                      | 1.29 [1.24, 1.35]<br>1.29 [1.24, 1.35]                      |                                  |
| nati S*                                                                      | - <u>+</u>        | 1.37 [0.76; 2.46] 0.4%                                                         | Omitting Ayala Gutierrez MDM<br>Omitting Meizlish ML                    | 1.29 [1.24, 1.35]                                           |                                  |
| ardo TD<br>Ifan G                                                            |                   | 1.37 [1.07; 1.75] 1.1%<br>1.38 [0.25; 7.60] 0.1%                               | Omitting Le Borgne P<br>Omitting Smati S*                               | 1.29 [1.24, 1.35]<br>1.29 [1.24, 1.35]                      |                                  |
| ndon DJ<br>rra-Nava I                                                        |                   | 1.39 [1.11; 1.74] 1.1%<br>1.39 [1.36; 1.43] 1.6%                               | Omitting Filardo TD<br>Omitting Stefan G                                | 1.29 [1.24, 1.35]<br>1.29 [1.24, 1.35]                      |                                  |
| euffer C                                                                     | - 10              | 1.40 [0.74; 2.65] 0.4%                                                         | Omitting Lundon DJ                                                      | 1.29 [1.24, 1.35]                                           |                                  |
| ncalves DA<br>mandez-Galdamez DR                                             |                   | 1.41 [1.31; 1.52] 1.5%<br>1.42 [1.37; 1.47] 1.6%                               | Omitting Ibarra-Nava I<br>Omitting Kaeuffer C                           | 1.29 [1.23, 1.35]<br>1.29 [1.24, 1.35]                      |                                  |
| a VJ                                                                         |                   | 1.42 [1.09; 1.85] 1.0%<br>1.45 [0.50; 4.20] 0.1%                               | Omitting Goncalves DA<br>Omitting Hernandez-Galdamez DR                 | 1.29 [1.23, 1.35]<br>1.29 [1.23, 1.35]                      |                                  |
| erson-Gil A*                                                                 |                   | 1.45 [1.10; 1.92] 1.0%                                                         | Omitting Apea VJ                                                        | 1.29 [1.24, 1.35]                                           |                                  |
| om CI*<br>varatnam AV                                                        |                   | 1.46 [0.88; 2.42] 0.5%<br>1.48 [1.38; 1.58] 1.6%                               | Omitting Li Y<br>Omitting Guerson-Gil A*                                | 1.29 [1.24, 1.35]<br>1.29 [1.23, 1.35]                      |                                  |
| genthau AS<br>nez-Gil IJ                                                     |                   | 1.50 [1.31; 1.72] 1.4%<br>1.52 [0.83; 2.77] 0.4%                               | Omitting Bloom CI*                                                      | 1.29 [1.24, 1.35]                                           |                                  |
| a JE*                                                                        |                   | 1.52 [1.06; 2.18] 0.8%                                                         | Omitting Navaratnam AV<br>Omitting Morgenthau AS                        | 1.29 [1.23, 1.34]<br>1.29 [1.23, 1.34]                      |                                  |
| tos-Benítez FD<br>oty-Pantoja AD*<br>as-Martínez A                           | - imi             | 1.53 [0.83; 2.82] 0.4%                                                         | Omitting Nunez-Gil IJ<br>Omitting Pena JE*                              | 1.29 [1.24, 1.35]<br>1.29 [1.23, 1.35]                      |                                  |
| as-Martínez A<br>ng E*                                                       |                   | 1.62 [1.14; 2.31] 0.8%<br>1.63 [1.00; 2.65] 0.5%                               | Omitting Martos-Benítez FD                                              | 1.29 [1.23, 1.34]                                           |                                  |
| nou GN                                                                       |                   | 1.66 [0.99; 2.78] 0.5%                                                         | Omitting Argoty-Pantoja AD*<br>Omitting Olivas-Martínez A               | 1.29 [1.24, 1.35]<br>1.29 [1.23, 1.34]                      |                                  |
| wartz KL<br>/X                                                               |                   | 1.69 [0.95; 3.02] 0.4%                                                         | Omitting Klang E*<br>Omitting Ioannou GN                                | 1.29 [1.23, 1.35]<br>1.29 [1.23, 1.35]                      |                                  |
| it NN<br>Idizabal M                                                          |                   | 1.70 [1.07; 2.71] 0.6%<br>1.70 [1.28; 2.26] 0.9%                               | Omitting Schwartz KL                                                    | 1.29 [1.23, 1.34]                                           |                                  |
| ISY<br>rillo-Vega MF                                                         |                   | 1.71 [1.10; 2.66] 0.6%                                                         | Omitting Li WX<br>Omitting Pettit NN                                    | 1.29 [1.24, 1.35]<br>1.29 [1.23, 1.35]                      |                                  |
| X                                                                            |                   | 1.74 [1.34; 2.25] 1.0%<br>1.74 [0.72; 4.18] 0.2%                               | Omitting Mendizabal M                                                   | 1.29 [1.23, 1.34]                                           |                                  |
| V<br>Souza CD                                                                |                   | 1.75 [0.93; 3.31] 0.4%<br>1.77 [0.84; 3.73] 0.3%                               | Omitting Kim SY<br>Omitting Carrillo-Vega MF                            | 1.29 [1.23, 1.34]<br>1.29 [1.23, 1.34]                      |                                  |
| h P*<br>dman MR                                                              |                   | 1.79 [1.12; 2.87] 0.5%                                                         | Omitting Wu X<br>Omitting Xu W                                          | 1.29 [1.24, 1.35]<br>1.29 [1.24, 1.35]                      |                                  |
| rands LB                                                                     |                   | 1.80 [1.25; 2.60] 0.7%<br>1.87 [1.18; 2.96] 0.6%                               | Omitting de Souza CD                                                    | 1.29 [1.24, 1.35]                                           |                                  |
| of SY*                                                                       |                   | 1.92 [0.97; 3.79] 0.3%<br>1.95 [1.09; 3.49] 0.4%                               | Omitting Shah P*<br>Omitting Heldman MR                                 | 1.29 [1.23, 1.34]<br>1.29 [1.23, 1.34]                      |                                  |
| ers SAE*                                                                     |                   | 1.95 [1.58; 2.41] 1.2%                                                         | Omitting Hilbrands LB                                                   | 1.29 [1.23, 1.34]<br>1.29 [1.23, 1.35]                      |                                  |
| verino F<br>bles-Perez E                                                     | -                 | 2.03 [1.30; 3.17] 0.6%<br>2.05 [1.64; 2.56] 1.1%                               | Omitting Kim SW<br>Omitting Tartof SY*                                  | 1.29 [1.23, 1.34]                                           |                                  |
| eda E*<br>ioli EM                                                            |                   | 2.06 [1.17; 3.63] 0.4%<br>2.08 [1.14; 3.79] 0.4%                               | Omitting Peters SAE*<br>Omitting Polverino F                            | 1.28 [1.23, 1.34]<br>1.29 [1.23, 1.34]                      |                                  |
| ierrez JP*                                                                   | -                 | 2.11 [1.74; 2.56] 1.2%                                                         | Omitting Robles-Perez E                                                 | 1.28 [1.23, 1.34]                                           |                                  |
| comelli A<br>2R*                                                             |                   | 2.27 [1.14: 4.50] 0.3%                                                         | Omitting Cereda E*<br>Omitting Gavioli EM                               | 1.29 [1.23, 1.34]<br>1.29 [1.23, 1.34]                      |                                  |
| rnichow S*<br>chega JB                                                       |                   | 2.30 [1.24; 4.27] 0.4%                                                         | Omitting Gutierrez JP*<br>Omitting Giacomelli A                         | 1.28 [1.23, 1.34]<br>1.29 [1.23, 1.34]                      |                                  |
| toli M                                                                       |                   | 2.35 [1.17; 4.73] 0.3%                                                         | Omitting FAI2R*                                                         | 1.29 [1.23, 1.34]<br>1.29 [1.23, 1.34]<br>1.28 [1.23, 1.34] |                                  |
| imez A<br>a-Zertuche JM                                                      | -                 | 2.36 [1.18; 4.73] 0.3%<br>2.37 [1.96; 2.86] 1.2%                               | Omitting Czernichow S*<br>Omitting Nachega JB                           | 1.28 [1.23, 1.34]<br>1.29 [1.23, 1.34]                      |                                  |
| niaz Z<br>man I                                                              |                   | 2.72 [1.06; 6.98] 0.2%<br>2.83 [1.45; 5.53] 0.3%                               | Omitting Rottoli M                                                      | 1.29 [1.23, 1.34]                                           |                                  |
| dano J                                                                       |                   | 2.92 [1.07; 7.99] 0.2%                                                         | Omitting Sonmez A<br>Omitting Vera-Zertuche JM                          | 1.29 [1.23, 1.34]<br>1.28 [1.23, 1.33]                      |                                  |
| ngio JAO<br>bta YS*                                                          |                   | 3.36 [1.53; 7.36] 0.3%                                                         | Omitting Nikniaz Z                                                      | 1.29 [1.23, 1.35]                                           |                                  |
| nein MY<br>gues X                                                            |                   | 3.40 [2.17; 5.35] 0.6%<br>3.71 [1.45; 9.50] 0.2%                               | Omitting Satman I<br>Omitting Cedano J                                  | 1.29 [1.23, 1.34]<br>1.29 [1.23, 1.35]                      |                                  |
| ini S                                                                        |                   | 5.13 [1.81; 14.52] 0.2%                                                        | Omitting Baggio JAO<br>Omitting Gupta YS*                               | 1.28 [1.23, 1.34]<br>1.29 [1.23, 1.34]                      |                                  |
| ssi AP<br>wi-Amoabeng D                                                      |                   | <ul> <li>5.30 [1.26; 22.32] 0.1%</li> <li>10.55 [1.07; 104.23] 0.0%</li> </ul> | Omitting Henein MY                                                      | 1.28 [1.23, 1.34]                                           |                                  |
|                                                                              |                   | 1.29 [1.24; 1.35] 100.0%                                                       | Omitting Nogues X<br>Omitting Lanini S                                  | 1.29 [1.23, 1.34]<br>1.29 [1.23, 1.34]                      |                                  |
| dom effects model                                                            |                   |                                                                                |                                                                         |                                                             | 1                                |
| adom effects model<br>erogeneity: $l^2$ = 86%, $\tau^2$ = 0.0296, $p < 0.01$ |                   | 1                                                                              | Omitting Rossi AP<br>Omitting Antwi-Amoabeng D                          | 1.29 [1.23, 1.35]                                           |                                  |
| progeneity: $I^2 = 86\%$ , $\tau^2 = 0.0296$ , $p < 0.01$                    | 1 0.2 0.5 1 2 5 1 | 10                                                                             | Omitting Rossi AP<br>Omitting Antwi-Amoabeng D<br>Total (95% CI)        | 1.29 [1.23, 1.35]<br>1.29 [1.24, 1.35]<br>1.29 [1.24, 1.35] |                                  |

Georgia. Ann Med. 2020;52:354-60.

#### Yadong Wang

Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou 450016, Henan Province, China

[5] Arshad S, Kilgore P, Chaudhry ZS, Jacobsen G, Wang DD, Huitsing K, et al. Treatment with hydroxychloroquine, azithromycin, and combination in patients hospitalized with COVID-19. Int J Infect Dis. 2020;97:396–403.

[4] Shah P. Owens J. Franklin J. Mehta A. Heymann W. Sewell W. et al. Demographics.

comorbidities and outcomes in hospitalized Covid-19 patients in rural Southwest

- [6] Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009; 151:264–9 [W64].
- [7] Balduzzi S, Rucker G, Schwarzer G. How to perform a meta-analysis with R: a practical tutorial. Evid Based Ment Health. 2019;22:153–60.
- [8] DerSimonian R, Laird N. Meta-analysis in clinical trials revisited. Contemp Clin Trials. 2015;45:139–45.
- [9] Wang Y, Feng R, Xu J, Hou H, Feng H, Yang H. An updated meta-analysis on the association between tuberculosis and COVID-19 severity and mortality. J Med Virol. 2021;DOI: https://doi.org/10.1002/jmv.27119.
- [10] Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in metaanalyses. Bmj. 2003;327:557–60.
- [11] Yang H, Xu J, Shi L, Duan G, Wang Y. Correspondence on 'Prevalence and clinical outcomes of COVID-19 in patients with autoimmune diseases: a systematic review and meta-analysis'. Ann Rheum Dis. 2021;DOI: https://doi.org/10.1136/annrheumdis-2020-219821.
- [12] Xu J, Xiao W, Shi L, Wang Y, Yang H. Is cancer an independent risk factor for fatal outcomes of coronavirus disease 2019 patients? Arch Med Res. 2021;DOI: https:// doi.org/10.1016/j.arcmed.2021.05.003:2670.
- [13] Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.
- [14] Kang X, Dong L, Yang T, Wang Z, Huang G, Chen X. Clinical and radiographic outcomes of upper thoracic versus lower thoracic upper instrumented vertebrae for adult scoliosis: a meta-analysis. Braz J Med Biol Res. 2018;51:e6651.
- [15] Hou H, Li Y, Zhang P, Wu J, Shi L, Xu J, et al. Smoking is independently associated with an increased risk for COVID-19 mortality: a systematic review and meta-analysis based on adjusted effect estimates. Nicotine Tob Res. 2021;DOI: https://doi. org/10.1093/ntr/ntab112.

Jie Xu Ying Wang Hongjie Hou Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China

#### Huifen Feng

Department of Infectious Diseases, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China Corresponding author at: Department of Infectious Diseases, the Fifth Affiliated Hospital of Zhengzhou University, No. 3 of Kangfuqian Street, Erqi District, Zhengzhou 450052, China *E-mail address:* huifen.feng@163.com

Haiyan Yang

Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China

9 June 2021

Fig. 1. (A) The forest plot demonstrated the significant relationship between obesity and the increased risk for mortality among patients with coronavirus disease 2019 (COVID-19) on the basis of 138 eligible studies with a total of 3,863,516 cases reporting adjusted effect estimates and (B) Leave-one-out sensitivity analysis indicated that our results were stable and robust. \* indicates the combined effect size and 95% CI were used.