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Simple Summary: Hürthle cell carcinoma (HCC) represents 3–4% of thyroid carcinoma cases. It
is characterized by its large, granular and eosinophilic cytoplasm, due to an excessive number of
mitochondria. Hürthle cells can be identified only after fine needle aspiration cytology biopsy
or by histological diagnosis after the surgical operation. Published studies on HCC indicate its
putative high aggressiveness. In this article, current knowledge of HCC focusing on clinical features,
cytopathological features, genetic changes, as well as pitfalls in diagnosis are reviewed in order to
improve clinical management.

Abstract: Hürthle cell carcinoma (HCC) represents 3–4% of thyroid carcinoma cases. It is considered
to be more aggressive than non-oncocytic thyroid carcinomas. However, due to its rarity, the
pathological characteristics and biological behavior of HCC remain to be elucidated. The Hürthle
cell is characterized cytologically as a large cell with abundant eosinophilic, granular cytoplasm,
and a large hyperchromatic nucleus with a prominent nucleolus. Cytoplasmic granularity is due to
the presence of numerous mitochondria. These mitochondria display packed stacking cristae and
are arranged in the center. HCC is more often observed in females in their 50–60s. Preoperative
diagnosis is challenging, but indicators of malignancy are male, older age, tumor size > 4 cm, a solid
nodule with an irregular border, or the presence of psammoma calcifications according to ultrasound.
Thyroid lobectomy alone is sufficient treatment for small, unifocal, intrathyroidal carcinomas, or
clinically detectable cervical nodal metastases, but total thyroidectomy is recommended for tumors
larger than 4 cm. The effectiveness of radioactive iodine is still debated. Molecular changes involve
cellular signaling pathways and mitochondria-related DNA. Current knowledge of Hürthle cell
carcinoma, including clinical, pathological, and molecular features, with the aim of improving clinical
management, is reviewed.
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1. Introduction

Oncocytic tumors are found in various organs, including salivary glands, lacrimal
glands, pancreas, liver, kidney, thyroid, parathyroid and pituitary glands. Thyroid neo-
plasms composed of oncocytic cells are called Hürthle cell tumors. These are also known as
oncocytic/oxyphilic follicular cell tumors and used to be classified as a variant of follicular
thyroid tumors. In the latest WHO classification [1], Hürthle cell tumors are identified
as a special type of tumor derived from thyroid follicles, and distinguished from thyroid
follicular tumors. Hürthle cell tumors can be benign or malignant. Hürthle cell tumors
with capsular and/or vascular invasion, lymph nodes metastasis, or distant metastasis are
Hürthle cell carcinoma (HCC). HCC represents 3–4% of thyroid carcinoma cases [2,3]. HCC
has been considered as a more aggressive form of carcinoma compared to non-oncocytic
thyroid carcinomas. Due to its rarity and conflicting information from previous studies,
the pathological characteristics and biological behavior of HCC remain to be elucidated. In
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fact, most studies reporting on the biological features of thyroid differentiated tumors have
included HCC as a part of follicular thyroid cancer or have failed to adequately separate
malignant Hürthle cell tumor from benign tumor. Thus, studies especially focusing only
on pure HCC are few [4]. There is still no consensus on the optimal treatment method
for HCC, and the postoperative effect of radioactive iodine treatment is unclear. In this
article, current knowledge of HCC, including clinical, pathological, and molecular features,
is reviewed, with the aim of improving clinical management.

2. Nomenclature and Definition

Historically, the name “Hürthle” was first reported in 1894 by Karl Hürthle. Originally,
it was used to refer to an ultimobranchial body derived from C cells (parafollicular cells)
in the thyroid of dogs. Then, in 1898, Max Ashkanazy first described oncocytic follicular-
derived cells in patients with Graves’ disease as the current Hürthle cells (Ashkanazy cells).
The term Hürthle cell has been appended to the cells described by Ashkanazy, and the
name has continued to be used until today [5].

Hürthle cells are characterized cytologically as large cells with abundant eosinophilic,
granular cytoplasms, and large hyperchromatic nuclei with prominent nucleoli. The cyto-
plasm of a Hürthle cell is swollen due mainly to the presence of numerous mitochondria.
The mitochondrial protein has affinity to bind with eosin. Therefore, Hürthle cells are
also called oxyphilic cells. Hürthle cell lesions in the thyroid are composed of cells with
this classic histology, but not all oncocytic cells in the thyroid are true Hürthle cells [5].
Cells with less or incomplete eosinophilic, granular appearance can observed, at least
focally, in any thyroid lesions, such as autoimmune thyroiditis, nodular goiter, aging, and
irradiated thyroids. These oncocytic, non-Hürthle cells are called “oncocytic metaplasia”.
Although immunohistochemistry using anti-mitochondrial markers can detect focal on-
cocytic metaplasia [6], there are no quantitative measurements to precisely distinguish
between oncocytic metaplasia and non-oncocytic cells. True Hürthle cells have a cytoplasm
filled with mitochondria with complete loss of cell polarity, while metaplastic cells do not
have a complete loss of cell polarity and have fewer mitochondria at the ultrastructural
level. Hürthle cell “tumors” are defined as oncocytic cells consisting of more than 75% of
the tumor cells [7]. The oncocytic transformation itself is not related to tumor development
and progression [6,8], but the number of mutations in mitochondrial DNA/nuclear muta-
tion ratio seems to be higher [8]. The cellular origin of HCC, as well as other thyroid cancer
types, is still not completely understood. Thyroid cancer stem cell (CSC) model is one
hypothesis to explain thyroid carcinogenesis. To identify thyroid CSCs, various research
with CD133 [9,10], CD44 [10,11], multi-drug resistance (MDR1) [12], ATP binding cassette
subfamily G member 2 (ABCG2) [12,13], multi-drug associated protein 1 (MRP1) [13],
aldehyde dehydrogenase(ALDH) [14], as well as sphere formation assay [15], and side
population assay [14] have been carried out. These studies focused on differentiated and
undifferentiated thyroid carcinomas, not on HCC, and no common CSC markers have been
reported to date. Further studies on the isolation and characterization of CSCs in HCC will
improve knowledge regarding HCC initiation.

Hürthle cell tumors used to be classified as a variant of follicular thyroid tumors.
Hürthle cell tumors with capsular and/or vascular invasion, lymph nodes metastasis, or
distant metastasis are HCC.

3. Clinical Features
3.1. Demographic Features

HCC is more often observed in females, and the reported female to male ratio of HCC
is 1.6–4.8:1 [4,16–18]. The affected age range is 54–62 years old [4,17,19–22]. In a retrospec-
tive study, tumor size, frequencies of extrathyroidal extension, lymph node metastasis,
and distant metastasis, were similar between HCC and non-oncocytic follicular thyroid
carcinomas [16]. To date, no correlation with radiation exposure has been reported [23].
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3.2. Laboratory Tests

Thyroglobulin production varies by case. Both high thyroglobulin production
(>500 ng/dL) [24–26], and limited production [5], which reflects less active follicular
cells, have been reported. An increased thyroglobulin level is a biomarker for recurrence
after thyroidectomy; however, some recurrent HCC cases have undetectable thyroglobulin
levels. Clinical follow-up by thyroglobulin levels should be decided depending on the case.

3.3. Ultrasounds

Preoperative diagnosis by ultrasound is challenging. In ultrasounds, HCC shows a
range of sonographic appearances from predominantly hypoechoic to hyperechoic lesions,
and no preoperative features can differentiate HCC from adenoma [18,27]. Several attempts
have been made to predict HCC before the operation. Ito et al. classified thyroid nodules
into classes 1 to 5 with intermediate steps of 0.5 for classes 2 to 5, called ultrasound classes
(USC) [28]. USC2 is defined as having a round and cystic nodule/isoechoic solid nodule—
an adenomatous nodule or follicular adenoma. USC3 is defined as a round, hypoechoic
solid nodule—a follicular adenoma, adenomatous nodule, or possibly carcinoma. USC4
is a solid nodule with an irregular border or the presence of psammoma calcifications—a
carcinoma. Although USC is not related to the incidence of HCC, among patients diagnosed
with oncocytic cell tumors by fine-needle aspiration cytology (FNAC), such patients are
more likely to show malignancy when USC is 3 or greater.

3.4. Clinical Indicators

Indicators of malignancy among Hürthle cell tumors include male [29], tumor size
>4 cm [18,23,26,29], US class ≥ 3 [26], older age (HCC 51.8 years old vs. Hürthle cell
adenoma 43.1) [23]. Subsequently, surgical indications of Hürthle cell tumors are re-
ported as USC ≥ 3, tumor size >4 cm, and thyroglobulin >500 ng/dL (with negative
anti-thyroglobulin-antibody) [26].

4. Treatment

Either near total or total thyroidectomy or unilateral thyroidectomy is initially recom-
mended for patients with HCC > 1 cm and <4 cm without extrathyroidal extension, and
without lymph node metastasis [30]. Thyroid lobectomy alone is sufficient treatment for
small, unifocal, intrathyroidal carcinomas in the absence of prior head and neck radiation,
familial thyroid carcinoma, or clinically detectable cervical nodal metastases [30]. Total
thyroidectomy is recommended for Hürthle cell neoplasms larger than 4 cm [31]. Whether
total thyroidectomy as the primary procedure should be applied is controversial. While
several studies showed more favorable outcome [17,29,31–34], the Surveillance, Epidemiol-
ogy and End Results (SEER) in its large scale database, no significance difference in survival
was observed between patients treated with total thyroidectomy and those treated with
partial thyroidectomy [22]. Extensive surgery, external beam radiation, or chemotherapy
did not confer a survival benefit [23].

The role of radioactive iodine (RAI) is still debated [16]. Guidelines regarding indica-
tions to use RAI for HCC are inconsistent, and RAI is not prevailing for HCC patients [35].
Jillard et al. suggested that RAI should be advocated for HCC patients with tumors >
2 cm and those with nodal and distant metastatic disease, as it improves survival [35].
Radioactive iodine therapy may prompt a survival benefit as an adjuvant ablation therapy,
but only for those who do not have a residual disease [23]. Some teams may choose total
thyroidectomy and RAI therapy. However, functionally, HCC shows decreased iodine
uptake [25], resulting in lower responsiveness to RAI treatment [25].

5. Pathological Features
5.1. Cytological Features and Differential Diagnosis

Using fine needle aspiration cytology (FNAC), clusters of the monotonous follicular
cells with large eosinophilic, granular cytoplasm are observed, and usually, hypercellularity
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is noted (Figure 1). The cells often show irregular nuclear outlines, prominent nucleoli,
and bland chromatin. The tumor cells appear scarcely accompanied by colloid, and/or
inflammation.
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Figure 1. Cytological images of the Hürthle cell carcinoma (HCC). (A) The Papanicolaou-stained
smear shows a monotonous cells oncocytic cells with prominent nucleoli arranged in loosely cohesive
clusters. Papanicolaou stain, original magnification ×200. (B) The cells have prominent nucleoli,
bland chromatin, and granular cytoplasm. Papanicolaou stain, original magnification ×600.

Oncocytic cells are also observed in nodular goiter, chronic thyroiditis, and oncocytic
variants of papillary thyroid carcinoma and oncocytic variant of medullary thyroid carci-
noma (OV-MTC). Therefore, the presence of these cells should not engender a diagnosis of
Hürthle cell lesion [5]. In chronic thyroiditis and nodular goiter, isolated or small cohesive
clusters of oncocytic cells are common, representing follicular cells with oncocytic metapla-
sia. In addition, in nodular goiter, follicular cells with abundant colloids are observed, and
the follicles are not uniform. In chronic thyroiditis, lymphoplasmacytic infiltrations are
frequently observed. However, when a large irregular sheet of oncocytic cells dominantly
appear, differentiating between chronic thyroiditis and Hürthle cell tumor may be difficult.
Indicators of true Hürthle cell tumors are (1) microfollicular architecture, (2) absence of
colloid, (3) absence of inflammation, and (4) presence of transgressing blood vessels [36,37].

The tumor cells of oncocytic variants of papillary thyroid carcinomas show fine gran-
ular cytoplasms and elongated nuclei, and a nuclear groove. Intracytoplasmic inclusion
can be sparse in some cases. The cytological features of papillary fronds and monolayered
sheets suggest an oncocytic variant of papillary thyroid carcinoma rather than Hürthle
cell tumors [38,39]. In the FNAC sample of the OV-MTC, amyloid deposit supports the
diagnosis, but is not always observed [40]. OV-MTC cells show polygonal, plasmacytoid
characteristics with eccentrically placed round nuclei with “salt and pepper” chromatin [41].
Multi-vacuolization resembling histiocytes and loose granularity is observed in OV-MTC.
In contrast, granularity in HCC is dense and firm [42]. For accurate diagnosis, immunohis-
tochemistry using calcitonin and thyroglobulin in combination [43], as well as consideration
of family history of the patient and laboratory data are needed.

Cytologic features such as small cell dysplasia (bland nuclei, cell diameter less than
twice the nuclear diameter), large cell dysplasia (cell diameter at least twice the nuclear
diameter, with prominent nucleoli and irregular nuclear outlines), nuclear crowding, and
dyshesion have been proposed as a diagnostic clue for HCC [44]. These criteria were
later shown by others to be significant features in favor of HCC over adenoma and other
benign lesions [45]. However, distinction of HCC from Hürthle cell adenoma by FNAC
still remains to be challenging due to the lack of other supporting data [46]. In the daily
practice using Bethesda reporting system for thyroid cytology (TBSRTC) [47], a Hürthle
cell neoplasm is typically classified as atypia of undetermined significance or follicular
lesion of undetermined significance (AUS/FLUS, Bethesda III) or benign (Bethesda II). The
appearance of Hürthle cell is encouraged to comment. The presence of Hürthle cells itself
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does not increase the risk of malignancy [48], but > 75% Hürthle cells in a benign/Bethesda
II aspirate may pose an increased risk of malignancy [49].

5.2. Macroscopic Features

Macroscopically, HCC shows a mahogany brown appearance (Figure 2), which is due
to air contact [25]. Necrosis and hemorrhaging may be observed due to its degenerative
nature. Sometimes calcification is observed and is more often found in HCC than in Hürthle
cell adenoma. Calcification is a result of a physiochemical reaction to altered thyroglobulin
within the colloid of the tumor follicles.
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Figure 2. Gross findings of the HCC. (A) The tumor is mahogany brown color. Several foci of
hemorrhage are noted. (B) Widely invasive HCC. Macroscopically, capsular invasion is evident
(arrows). Scale bar indicates 2 cm.

5.3. Histological Features and Differential Diagnosis at Histology

In cases where the Hürthle cell tumor showed capsular invasion and/or vascular
invasion, HCC is diagnosed (Figures 2B and 3A,B). Based on its histology, the tumor
is subcategorized as either minimally invasive or widely invasive. Minimally invasive
HCC refers to encapsulated tumors with microscopically identifiable foci with capsular
or vascular invasion less than four foci. Widely invasive HCC shows extensive capsular
invasion and/or vascular invasion of four foci or greater.

HCC often causes infarction after FNAC. This may make it difficult to observe the
capsular invasions. Mitochondrial DNA common deletion is reported to be less frequent
in infarcted Hürthle cell tumors than in non-infarcted Hürthle cell tumors. Still, the
mechanism leading to infarction is unknown [50]. For clear identification of capsular
invasion, clinical information such as where the tumor cells were aspirated by FNAC is
considered important. Widely invasive HCC often shows capsular invasion in the form of
compacted nodules, lacking stromal desmoplastic reaction. In some cases, determining
whether there is a capsule is difficult.

HCC is composed of pleomorphic or polygonal large cells with abundant, granular,
and acidophilic cytoplasm and large nuclei with prominent nucleoli (Figure 3C) [51]. It
often shows follicular, trabecular, and/or solid architecture, and rarely shows a predom-
inantly papillary pattern [25]. A pure follicular pattern is less common in HCC [1], but
when such a follicular pattern is seen, the tumor accompanies fibrous bands between nests.
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Figure 3. Histological images of HCCs. (A) HCC is diagnosed in cases where a Hürthle cell
tumor shows capsular invasion, and/or (B) vascular invasion. (C) HCC is composed of polygonal
large cells with abundant granular and acidophilic cytoplasm. HCC cells have large nuclei with
prominent nucleoli. (D) Tumor cells are diffuse and strongly positive for anti-mitochondria antibodies.
Hematoxylin and eosin stain (A–C), immunohistochemistry of anti-mitochondrial antibody (D).
Original magnification, ×1.25 (A), ×40 (B), ×100 (D), and ×400 (C).

Cytoplasmic granularity in Hürthle cells is due to the presence of numerous mitochon-
dria (Figure 3D). The amount and morphological characteristics of the mitochondria vary
greatly from case to case [52]. However, according to the diagnostic criteria, more than
75% of oxyphilic cells must be observed for diagnosis. The high prevalence of Hürthle cell
changing into thyroid lesions may reflect high oxidative stress and reactive oxygen species
production in thyroid cells during normal iodine and thyroid hormone metabolism [53,54].
These high reactive oxygen species levels can result in mutagenic genetic events in mito-
chondrial DNA, leading to mitochondrial dysfunction [7,55]. Abnormality of mitochondria
leads to defects in the energy production process, and a compensatory mechanism for
these defects is considered to come into play [7]. This results in increased proliferation
of numerous mitochondria, which is observed as oncocytic cytoplasm. Over time, as the
number of the mitochondria increases, Hürthle cell appearance is expressed [51], and
this is a continuous process rather than a “black-and white phenomenon” [7]. In cases of
HCC, necrosis frequently appears either spontaneously or after fine-needle aspiration. This
observation is reported to be as a consequence of mitochondrial abnormalities [56].

Thyroid lesions containing oncocytic cells are nodular goiter, oncocytic variants of
papillary carcinoma and medullary carcinoma. Oncocytic variants of medullary thyroid car-
cinoma (MTC) are rare, showing extensive mitochondrial hyperplasia, prominent nucleoli,
well-defined cytoplasm, and polygonal cells, which is in contrast with the spindle-shaped
cells of conventional MTC. Although MTC is derived from C cells (parafollicular cells), not
follicular cells, oncocytic variant MTC may be difficult to histologically differentiate. MTC
is often accompanied by amyloid deposits, and this aids in diagnosis. However, amyloid
deposits sometimes occur as a result of systemic or secondary amyloidosis [57]. HCC with
neuroendocrine differentiation [58] or thyroid tumors in patients with basal high calcitonin
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levels should be diagnosed with caution. For the appropriate diagnosis, consideration of
molecular testing, as well as family history and serum calcitonin levels, is essential [59].
Oncocytic parathyroid adenoma and adenocarcinoma also require differential diagnosis.
Neoplastic lesions showing extensive invasion without hormone production are especially
difficult to differentiate. Immunohistochemically, parathyroid tissue tests positive for
chromogranin A, GATA3, while thyroid tissue tests positive for TTF-1, PAX8. However,
in the hormone non-producing tumors, neither calcitonin nor PTH is clearly expressed.
Tumor location with images and invasive patterns can be diagnostic clues in these cases.

Immunohistochemistry is not mandatory for the diagnosis of HCC, except in cases to
distinguish MTC or parathyroid tumors, and a specific diagnostic marker for HCC has not
yet been obtained. HCC cells test positive for thyroid transcription factor-1 (TTF-1) and
thyroglobulin, and negative for calcitonin and parathyroid hormone (PTH). Thyroglob-
ulin may show perinuclear positivity. According to the literature, genes associated with
Retinoid-interferon-induced Mortality-19 (GRIM-19) [60], p53 [56], and Cyclin D [61,62]
can be immunohistochemically detected.

5.4. Ultrastructure

Using transmission electron microscopy, HCC cells are observed to have large, irregu-
lar nuclei with a deep notch [63]. Nuclei contain one to several nucleoli, and the cytoplasm
is packed with several thousand mitochondria (Figure 4). A full-brown oncocytic cell is
estimated to contain 4000 to 5000 mitochondria [64]. These mitochondria display two types
of morphology. One is larger mitochondria with stacking “shelf-like” cristae [63,65]. The
other is smaller and oval, and short cristae are peripherally arranged [63]. Other structural
abnormalities are bundles of dense filaments, filamentous inclusions, and round electron-
dense bodies in the matrix [5,51,66]. The amount and morphological characteristics of the
mitochondria vary greatly from case to case [51,52]. The surface of HCC cells is irregular.
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6. Molecular Changes

The genetic profile of HCC differs from papillary thyroid carcinoma and follicular
thyroid carcinoma. Molecular pathways that differentiate Hürthle cell adenoma from HCC
with wide invasiveness included the PIK3CA-Akt-mTOR and Wnt, providing rationale
toward new targets of this type of malignancy [67]. A significant difference in oncogene
expression between follicular thyroid carcinoma (FTC) and HCC suggests that despite
having a common origin in the follicular cell, follicular thyroid carcinoma and HCC should
be considered as two separate entities [68]. HCC shows changes in both nuclear DNA
and mitochondrial DNA (mtDNA). Molecular changes in nuclear DNA involve several
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signaling pathways and mitochondrial functions. Mitochondrial genetic changes involve
interaction between mutations in the mitochondrial and nuclear genomes [55].

6.1. Genetic Change in Genes Involved in RAS/RAF/MAPK and PIK3/Akt/mTOR Pathways

Ganly et al. identified genetic mutations associated with RAS/RAF/MAPK and
PIK3/Akt/mTOR pathways in HCCs [67,69]. These genes included PTEN, PIK3, PTEN,
TSC1, TSC2, and RAS family. PTEN was observed in about 5% of cases overall [69,70] and
in 25% of TP53 mutation positive-cases [2]. RAS family mutations—NRAS, KRAS, and
HRAS—are identified in about 45% of follicular tumors. In HCC, the incidence of RAS muta-
tions is less than that of conventional follicular tumors, which is about 10–15% [67,69,71,72].
BRAF mutations are the predominant genetic changes in papillary thyroid carcinoma but
the incidence of BRAF mutation in HCC is not common [25].

6.2. Genetic Rearrangements

Along with the point mutations, chromosomal rearrangements are also common muta-
tional mechanism in thyroid cancers [73]. However, genetic rearrangements of PAX8/PPAR,
RET/PTC, EML4/ALK, and ETV6/NTRK3 are infrequently observed in HCC [25,72,74].

6.3. TP53

This mutation is known to occur with increasing frequency in dedifferentiated thyroid
tumors rather than well-differentiated tumors. TP53 mutations were found at a high allelic
frequency [70]. The TP53 mutation was found in 22% cases overall [70], and in 42% [2] of
HCC cases. All the mutations are in the DNA binding domain [70]. This mutation may
occur in tumors that are prone to dedifferentiation and can therefore be used as a diagnostic
and prognostic marker in oncocytic follicular tumors.

6.4. TERT Promoter Mutations

TERT promoter mutations are associated with unfavorable prognosis in various can-
cers. Major TERT promoter mutations are C228T and C250T. TERT promoter mutations
are found mainly in widely invasive HCCs (32%), and only in 5% of minimally invasive
HCCs [4,72]. In a recent study, some thyroid tumor showed increased TERT mRNA ex-
pression even in the absence of TERT promoter mutations, which have a significantly
high recurrence rate. [75]. In HCCs, increased TERT mRNA expression has not been
observed [4].

6.5. Tumor Mutational Burden and Global Copy Number Diversity

Tumor mutational burden (TMB) refers to the number of mutations that exist within
a tumor [76]. HCCs contain an average of 2.6 mutations/Mb, which was six-fold greater
than that reported in The Cancer Genome Atlas (TCGA) of PTC (0.41 mutations/Mb) [72].
High TMB has been associated with responses to immune checkpoint inhibitors in several
tumors, such as non-small cell lung cancer, and can be a promising biomarker. Still, its
cutoff and clinical relevance for thyroid tumors have not yet been elucidated.

Regions of chromosomal gain and loss are observed in HCCs. Large regions of ampli-
fication are observed on chromosomes 5, 7, 12, and 17. These chromosomal amplifications
potentially lead to activation of RAS-RAF-MEK and PI3K-Akt-mTOR pathways [67]. Chro-
mosome 7 and 12 potentially activate the RAS-RAF-MEK pathway. Chromosomal regions
of gain and loss in HCC differ from papillary thyroid carcinoma and follicular thyroid
carcinoma [67]. Through amplification of chromosome 7, BRAF was found to be signif-
icantly overexpressed in HCC, which is involved in the mTOR pathway. According to
clustering analysis of the copy number data, three groups of Hürthle cell tumors were
observed—deletions predominant type, amplification predominant type, and mixed type.
Among these, the mixed type was mostly attributed in aggressive HCC [67]. Loss of
heterogeneity (LOH) has been reported in HCC [72,77]. In two studies, LOH is associated
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with more aggressive diseases. However, the reason why LOH leads to a worsened course
is unknown.

6.6. Mutations in Mitochondrial DNA and Related Genes

The mitochondrial DNA (mtDNA) is small, and incorporates a sequence of 16,569 bp,
encoding 13 essential components in cellular energy production [51]. Mitochondrial DNA
(mtDNA) is more susceptible than nuclear DNA to mutagen-induced damage. As in other
types of cancers [78,79], alterations in mtDNA in HCC have been revealed. So-called
“common deletion” is the most common mitochondrial alteration. It is a large-scale dele-
tion of 4977 base pairs (bp) of mtDNA residing between two 13-bp direct repeats in the
mtDNA sequence at nucleotide positions 13,447–13,459 and 8470–8484. Hürthle cell tumor
displayed high percentage of the common deletion. Common deletion was significantly
higher in Hürthle cell tumors than in non-Hürthle cell tumors, and significantly higher
HCC [80]. Disruptive mutations in mitochondrial DNA are found in complex I subunit
genes in Hürthle cell tumors. Usually, mutations of mtDNA are heteroplasmic, but ho-
moplasmy in the Hürthle cell tumors is frequently observed. Gasparre et al. sequenced
the entire mtDNA in thyroid oncocytic tumors and controls [81], and 26% of the analyzed
thyroid oncocytic tumors showed disruptive mutations (nonsense or frameshift). This
was observed in complex I subunit genes, and the association between these mutations
and the oncocytic phenotype was statistically significant [81]. Attributing a causal role
to single mitochondrial mutation is difficult, and a more-than-one-hit hypothesis is more
plausible. Mitochondrial mutations may play a part as one of many factors leading to
tumor development [81].

The genes associated with Retinoid-interferon-induced Mortality-19 (GRIM-19), one
of the IFN/RA inducible GRIM products, is a 552-base pair cDNA mapped to human chro-
mosome 19p13.2 [82], which encodes a 16-kDa protein. It was originally identified as a po-
tential tumor suppressor associated with growth inhibition or cell apoptosis. Subsequently,
it was identified as an essential subunit of the mitochondrial respiratory chain complex
I [83,84]. It also represses STAT3 and serves as a negative regulator of cell growth [82,85]. In
the colorectal cancer cell lines, GRIM-19 was shown to inhibit hypoxia-induced autophagy
through inactivation HIF-1α/STAT3 dependent gene transcription, and suppress hypoxia-
triggered invasion and epithelial-mesenchymal transition (EMT) [86]. Somatic missense
mutations in GRIM19 has been found in approximately 11% of HCCs [87]. GRIM-19 may
potentially aid as a cytological marker of malignancy in Hürthle cell tumors [60].

Variations in the inner mitochondrial membrane transporter have been also reported.
Mitochondrial protein is mostly encoded by the nuclear genome. These are imported from
cytosol into mitochondria via translocator, translocase of inner mitochondrial membrane
44 homolog (TRMM44) [88]. Variations in the inner mitochondrial membrane transporter
TIMM44 have been observed in patients with oncocytic thyroid tumors. Details of how
these variation cause or affect HCC is still not known.

6.7. Other Molecular Changes

Differences between of minimally invasive HCC and widely invasive HCC could
be demonstrated by gene expression analysis. Among these differences, beta-catenin
(CTNNB1) was a significant gene set that was enriched [67]. In widely invasive HCC,
beta-catenin is involved in processes regulating vascular invasion [67].

Sheu et al. showed that oncocytic thyroid tumors, including adenoma and carci-
noma, showed a statistically significant increase in C-allele frequency of GNB3 C825T
polymorphism of the G protein beta3-subunit compared to all non-oncocytic tumors [89].
GNB3 C825T has been reported to contribute to increased risk of cancer, especially thyroid
carcinoma [90]. This polymorphism may thus be a (co)factor favoring the development of
oncocytic thyroid tumors, but the biological mechanism remains obscure. Whether this is
somehow related to the mitochondrial DNA changes seen in oncocytic thyroid tumors also
remains to be seen [51].
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Among genetic changes, HCCs can be divided into three groups according to the
combination of TERT promoter mutation, widespread LOH, and whole-chromosome
duplication of chromosome 7 assigns [72]. The first group shows TERT alterations, major
LOH, and whole-chromosome duplication (WCD) of chromosome 7 and is observed in
widely invasive HCC. The second group shows major LOH and WCD of chromosome 7,
without TERT alteration. The third group does not show these genetic changes, which are
observed in minimally invasive and nonrecurrent HCCs. Other molecular changes need
further assessment of their biological meanings.

7. Prognosis and Prognostic Factors

Overall recurrence rates and average time to relapse are 12–33% and 90.74 months [17,32].
Average time without symptoms of disease is 222.4 months [17]. The 5-year and 10-year
cancer-specific survival rates are 85–95.4 and 92.6%, respectively [4,17,22]. One in four
patients at presentation is M1 stage [4], and one in four patients develops metastatic disease,
with a median time of 50 months [32].

The five-year cumulative probability of recurrence or mortality among patients with
TNM stage I–II among female and male patients were 0% and 17%, respectively. Among
patients with TNM stage III–IV, the five-year cumulative probability of recurrence or
mortality for female and male patients were 74% and 91%, respectively [4].

HCC has been thought to lead to a worse prognosis than that for non-oncocytic tumors.
Prognosis differs between minimally and widely invasive HCCs. As long as the tumor
is minimally invasive and non-angioinvasive, prognosis is excellent. No recurrence was
observed only among patients with minimally invasive HCCs [4]. If widely invasive HCC
is observed in males, older age (>45) with more than four foci of angioinvasion, larger
than 4 cm, and/or TNM stage III–IV, prognosis is poor [4,31]. Widely invasive HCCs are
significantly associated with the male gender and clinical recurrence or mortality.

8. Conclusions

HCC has been established as a separate entry in the current WHO classification.
Morphologically, HCC demonstrates a distinct feature which is caused by mitochondrial
accumulation. HCC can lead to worse prognosis in cases where the tumor is widely
invasive, in male patients, older age, more than four foci of angioinvasion, tumor larger
than 4 cm, and/or TNM stage III–IV. HCC shows changes in both nuclear DNA and mtDNA
involving signaling pathways and mitochondrial functions. Further clarification of the
biological meaning of the molecular features is needed for molecular-based, personalized
medicine.
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