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Abstract

Pairwise sequence covariations are a signal of conserved RNA secondary structure. We describe a method for distin-
guishing when lack of covariation signal can be taken as evidence against a conserved RNA structure, as opposed
to when a sequence alignment merely has insufficient variation to detect covariations. We find that alignments for
several long non-coding RNAs previously shown to lack covariation support do have adequate covariation detection
power, providing additional evidence against their proposed conserved structures.

Availability and implementation: The R-scape web server is at eddylab.org/R-scape, with a link to download the

source code.
Contact: elenarivas@fas.harvard.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Comparative analyses of pairwise covariations in RNA sequence
alignments have a successful history in consensus RNA secondary
structure prediction, where the existence of a conserved structure is
assumed a priori (Gutell et al., 1985, 1992; Holley et al., 1965;
Michel et al., 2000; Noller et al., 1981; Pace et al., 1989; Williams
and Bartel, 1996). A statistically different question arises when
covariation analysis is used to infer whether or not a genomic region
is constrained by an evolutionarily conserved RNA secondary struc-
ture, as evidence for a structure-dependent function. For example,
this question arises in analysis of long non-coding RNAs (IncRNAs)
of uncertain mechanism or function. For this, one wants to deter-
mine if the covariation signal is distinguishable from a null hypoth-
esis of primary sequence conservation patterns alone.

We previously introduced R-scape (RNA Structural Covariation
Above Phylogenetic Expectation), a method for evaluating the
statistical significance of covariation support for conserved RNA
basepairs (Rivas er al., 2017). R-scape analyses found that the
covariation evidence for proposed conserved structures of several
IncRNAs including HOTAIR (Somarowthu et al., 2015), SRA
(Novikova et al., 2012) and the RepA region of Xist (Fang ez al.,
2015; Maenner ef al., 2010) is not statistically significant (Rivas
etal.,2017).

Lack of significant covariation signal does not necessarily mean
there is no conserved RNA structure. An alignment could merely
have too little sequence variation to detect significant covariation
(Fig. 1a). To know when an alignment has sufficient variation, we

©The Author(s) 2020. Published by Oxford University Press.

want to estimate the statistical power (the expected sensitivity) of
detecting significant covariations. In a ‘low-power’ alignment,
covariation analysis is inconclusive because a conserved RNA sec-
ondary structure could be present without inducing sufficient covari-
ation signal. In a high-power alignment, observing no supporting
covariations does provide evidence against a conserved structure.

2 Results and discussion

Many details of an alignment affect covariation analysis, but we
hypothesized that detection power should depend primarily on the
total number of single residue substitutions s;; in two alignment
columns i and j in a proposed consensus pair. We take the sequence
phylogeny into account in inferring s;; by inferring a maximum
likelihood tree, using the Fitch parsimony algorithm (Fitch, 1971) to
estimate a minimum number of substitutions s; at each column inde-
pendently, and taking s;; = s; +s; (Section 3).

We tested this idea using synthetic RNA alignments evolved
under simulated pairwise constraints. Figure 1b—d show simulations
based on a cobalamin riboswitch alignment (Rfam RF00174) of
430 sequences and 42 annotated consensus basepairs. We choose a
random sequence as the root and evolve it down a sub-sampled and
rescaled phylogenetic tree, using an evolutionary model that
includes basepair substitutions, insertions and deletions (Rivas and
Eddy, 2015), to generate synthetic alignments with a desired number
of taxa and average percentage identity (Section 3). We repeat this
to create synthetic alignments over a wide range of sequence number
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Fig. 1. (a) Three different patterns for two alignment columns proposed to form a consensus basepair. (a, left) The two columns have variation and covariation (mutual
information is 1bit). This pattern is consistent with a basepair conserved throughout evolution. (a, middle) The two columns have variation but not covariation (mutual
information is 0.0). These two positions are unlikely to form a basepair. (a, right) Two columns with no covariation and no variation. This pattern is consistent with an A-U
basepair, but there is no evolutionary evidence for it. (b—d) Scatter plots of power (% sensitivity) for detecting basepairs in simulated alignments. Each point represents the frac-
tion of 42 consensus basepairs in a simulated Cobalamin alignment detected with an R-scape E-value <0.05, as a function of sequence number (b), average pairwise % identity
(c) or inferred number of substitutions in two columns s;; (d). (e) The same simulated alignments binned by low (yellow ~27 — 32%), medium (blue ~47 — 52%) or high
(red ~74 — 76%) sensitivity and scatter plotted, illustrating how detection power increases either by increasing sequence number or sequence diversity. (f) Power of covariation
as a function of the total number of substitutions. The orange line is the fitted power(s) curve. Each blue dot represents the empirical data we fit to: the mean fraction of signifi-
cantly covarying basepairs and mean s; in a set of 100 annotated basepairs from Rfam seed alignments, out of 7012 total basepairs ordered by increasing number of

substitutions

and diversity. We use R-scape on each alignment to determine the
number of basepairs with significant covariation support (E-value <
0.05). The E-value of a given score is the expected number of pairs
amongst the total set of tested pairs that are expected to get this
score or better, under the null hypothesis of no covariation. Neither
the number nor the diversity of sequences in the alignment alone suf-
fices to estimate detection power (Fig. 1b and c), whereas s;; does
have a good relationship to power (Fig. 1d). Using either deeper or
more diverse alignments increases s;; and detection power (Fig. 1e).
We empirically fit the relationship between substitutions
and detection power (at a significance threshold of E <0.05) on a
dataset of alignments of 87 RNA families in Rfam v14.0 with
known 3D structures, consisting of 7012 annotated basepairs
(Fig. 1f). These RNA families cover a wide range of different struc-
tures and functions. The fitted curve enables estimation of power(s),
the expected sensitivity for detecting any proposed basepair with s
total substitutions. For an alignment with B total proposed base-
pairs, the expected fraction of basepairs with significant covariation

B

support is £ >~ power(s,). We use this number, which we call align-
b=1

ment power, to compare covariation support across different align-

ments with different numbers of proposed conserved basepairs. We

define an arbitrary threshold of 10% alignment power to distinguish

low-power from high-power alignments.

In summary: given an input alignment with a proposed structure,
first the minimum number of substitutions per column is calculated
using the Fitch algorithm. Then, the number of substitutions per
basepair (s) is calculated as the sum of substitutions for each pos-
ition, and the basepair power(s) is estimated using the empirical
power curve given in Figure 1f (see Section 3). Finally, the alignment
power is defined as the average power for all basepairs in the pro-
posed structure, and the expected number of detected covariations
assuming the alignment is structural is given by the total power of

all basepairs. This expected number of covariations can be then dir-
ectly compared with the observed number detected by R-scape
(Rivas et al., 2017). Alignments with power but no covariation
argue against the existence of a conserved RNA structure.

Only low-power alignments of conserved structural RNAs
should lack significant covariation support. We analyzed all 3016
seed alignments for known conserved structural RNAs in Rfam
v14.1 and compared the fraction of basepairs with significant
covariation support versus estimated alignment power (Fig. 2a;
Supplementary Table S1). Many Rfam alignments (66%, 1985/
3016) have no statistically significant covariation support for any
annotated consensus basepair, and almost all of these (98%, 1945/
1985) are low-power alignments. Only 1% (40/3016) are high-
power alignments with no significant detected covariations (shaded
in red in Fig. 2a; Supplementary Table S2). Rfam, though curated, is
a large compendium with a nonzero error rate. Upon examination,
we believe these 40 families are enriched for inaccuracies. For ex-
ample, the miR-1937 family (RF01942) (66% alignment power) is
annotated in miRbase (Kozomara et al., 2019) as a tRNA sequence
fragment unlikely to be a bona fide miRNA.

Previous analysis of several IncRNAs including HOTAIR
(Somarowthu et al., 2015), SRA (Novikova et al., 2012) and the
Xist RepA region (Fang et al., 2015; Maenner et al., 2010) found no
significant covariation support for their proposed structures, but left
open the possibility that the existing alignments lacked sufficient
variation (Rivas et al., 2017). We reanalyzed the four HOTAIR
IncRNA domain alignments and consensus structures proposed by
Somarowthu et al. (2015), and the SRA alignment and consensus
structure in Novikova et al. (2012). All five alignments are high-
power, estimated to be able to detect 23-50 significant basepair
covariations each (Fig. 2b; Supplementary Table S3). Although
the covariation analysis of these IncRNAs has been a subject of dis-
agreement (Rivas and Eddy, 2018; Tavares et al., 2019), these
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Fig. 2. (a) Power of covariation for structural RNAs. Each point represents one of 2209 Rfam families (seed alignments) with at least 10 annotated consensus basepairs, plotting the
fraction of annotated basepairs that show a significant covariation signal (R-scape E < 0.05) versus ‘alignment power’, the fraction expected to show a significant signal. Points are
color coded by positive predictive value (PPV; the fraction of significantly covarying basepairs that are ‘true’, i.e. in the annotated RNA consensus structure). Besides false positive
base pairs from R-scape, low PPV can also occur because the RNA includes covarying pairs not in the annotated structure (such as pseudoknots, which are not reliably annotated
in Rfam), or because of an incorrect annotated structure. PPV Blue are PPV >95%, yellow 50-95% and red <50%. Red shaded region along the bottom indicates alignments with
sufficient power, defined as > 10%, but no significant detected covariations. (b) Results for HOTAIR, SRA, Xist and COOLAIR IncRNA alignments. Inset table shows details for
each alignment, including the total number of annotated basepairs, the expected number that should show significant covariation (i.e. alignment power times total bp) and the num-
ber observed with significant covariation. Supplementary Table S3 describes all IncRNA alignments and proposed structures tested

results provide new evidence for the view that HOTAIR and SRA do
not have evolutionarily conserved RNA structures.

Xist RNA is perhaps the best studied IncRNA, but it remains un-
clear whether Xist’s role in X dosage compensation depends on any
conserved RNA structure, as opposed to its sequence alone. Several
different conserved structures have been proposed for the conserved
5" RepA region of Xist (Fang et al., 2015; Liu et al., 2017; Maenner
et al., 2010), two of which are based on covariation analysis of
alignments of 10-13 sequences (Fang et al., 2015; Maenner et al.,
2010). Although R-scape finds no significant covariation support
for the proposed RepA structures, our method finds that these
are low-power alignments, so the R-scape covariation analyses are
inconclusive (Fig. 2b; Supplementary Table S3).

A conserved structure for the ~1.3kb Xist RepA IncRNA
(including the conserved repeat A and F regions) has been proposed
recently (Liu et al., 2017) from a deeper and more diverse alignment
of 57 sequences. Although the R2R visualization program used by
Liu et al. (2017) highlighted many potential covariations, statistical
analysis by R-scape identifies only one significant covarying
basepair with an E-value of 0.005, out of 334 proposed pairs. Our
method judges this alignment to be high-power, estimated to be suf-
ficient to detect about 110/334 basepairs.

The repeat A +F region is the most conserved region of Xist, but
Xist is a large RNA and it is possible that other Xist regions could
show covariation support for conserved RNA structure (Fig. 3a).
Starting with the human XIST genomic sequence, we used the
nhmmer homology search program (Wheeler and Eddy, 2013) to
identify 21 regions of significant sequence similarity with mouse
Xist (E-value < 107°). Eleven regions correspond to insertions
of well-studied ancient transposons according to Dfam analysis
(Wheeler et al., 2013). For the remaining 10 unique sequence con-
served regions, we iteratively built up alignments of homologs from
47 to 65 vertebrate species. All of these are high-power alignments;
none show significant covariation support for any basepair (Fig. 2b;
Supplementary Table S3). In order to test for long range base pair-
ing, we created a concatenated alignment of all ten XIST homology
regions for 32 species. This concatenated alignment also has suffi-
cient power but not covariations are observed.

Experimental evidence from chemical probing and crosslinking
has been used in making structure predictions for the HOTAIR,
SRA and Xist IncRNAs. However, essentially any RNA, even a
random RNA sequence, has some secondary structure. Lack of co-
variation signal in high-power RNA sequence alignments for these
IncRNAs suggests that whatever structure they adopt is not detect-
ably constraining their evolution, and thus may not be relevant for
their function.

An important caveat in covariation analysis is that the input
sequence alignment is assumed to be reasonably correct. Spurious
apparent covariations can be created artifactually by sliding con-
served primary sequence regions under proposed stems. We identi-
fied an example of this artifact in a proposed conserved structure
for COOLAIR, an Arabidopsis IncRNA (Hawkes e al., 2016).
The COOLAIR alignment is a low-power alignment of only six
aligned sequences, yet R-scape identifies six significant covarying
basepairs, four of them in one proposed helix (Fig. 3b). Upon inspec-
tion, it appears that misalignment introduced artifactual covaria-
tions (Fig. 3c). We realigned the COOLAIR sequences using Infernal
(Nawrocki and Eddy, 2013) (Section 3), which brought regions
of strong primary sequence identity back into alignment (Fig. 3d).
The revised COOLAIR alignment is still low-power, and has only
one significant supported basepair with a marginal E-value of
0.048.

The R-scape software now reports estimated statistical power
calculations along with observed pairwise correlations. We expect
that one important future use of covariation power analysis is to en-
able quantitative use of negative information by excluding pairs that
are unlikely to be conserved basepairs because they have high-power
and no significant covariation.

3 Materials and methods

3.1 Estimating substitution number s;;

Given an input RNA sequence alignment, R-scape infers a max-
imum likelihood phylogenetic tree using FastTree (version 2.1.10)
(Price et al., 2010), then infers a maximum parsimony assignment
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Fig. 3. (a) Human XIST RNA conservation. Representation of the locations of ten human/mouse unique sequence conserved regions h1-h10 in XIST/Xist, relative to XIST re-
peat regions A-F and to other human/mouse conserved sequence corresponding to ancient transposable elements (TEs). (b) The proposed COOLAIR helix H10, redrawn from
Hawkes et al. (2016) displaying R-scape’s covariation annotation. (c) The proposed COOLAIR helix 10 alignment of six homologous sequences resulting in four apparent
covariations. (d) A revised COOLAIR H10 alignment more consistent with primary sequence conservation. The apparent R-scape covariations from the original alignment
n (b) disappear, while the proposed structure in (c) is maintained. Identical sets of residues in both alignments are shaded in the same color

of substitutions at each independent column i to each branch of the
tree using our implementation of the Fitch algorithm (Fitch, 1971).
For phylogeny-aware statistical significance testing as described in
Rivas et al. (2017), R-scape then uses this information in tree-based
simulations to construct synthetic negative control alignments that
preserve average identity, composition, and phylogenetic relation-
ships of the original alignment, while randomizing pairwise correla-
tions. An empirical null distribution for a pairwise covariation
statistic (default is the G-test statistic, related to mutual information)
is then obtained from all pairs of columns 7, j in these simulated
alignments.

In the new method for statistical power estimation, the same tree
and inferred maximum parsimony substitutions are used to obtain
the total substitutions s; (summed over branches) at each individual
column i. For a proposed basepair involving two columns i, j, we
use s; =s; +sj, the sum of the independent variation in both
columns.

We also tested a more expensive variation where we parsimoni-
ously infer pairwise substitutions jointly at all column pairs 4, j to
obtain s;;, rather than assuming column independence, which gave
similar results (data not shown).

3.2 Simulations

Simulated alignments were produced with the program R-scape-sim.
Given an input sequence alignment with a consensus RNA second-
ary structure, R-scape-sim calculates a maximum likelihood
phylogenetic tree with branch lengths. It sub-samples the original
phylogenetic tree to a desired number of taxa, and linearly scales
branch lengths to achieve a desired average percentage identity
amongst the aligned sequences. One sequence is selected at random
as a root and its evolution is simulated down the tree branches using
a probabilistic evolutionary model. The evolutionary model consists
of rate matrices for single (unpaired) residue substitution, pairwise
(basepair) substitution, insertion, and deletion events (Rivas and
Eddy, 2015; Rivas et al., 2017). We used this simulation procedure
on the Rfam Cobalamin riboswitch alignment (RF00174) to gener-
ate 29 976 synthetic alignments with sequence number ranging
from 5 to 190, and average percentage identity ranging from 30%
to 100%. The simulated alignments were randomly downsampled
to 3000 in order to produce the scatter plots of Figure 1.

3.3 Empirical power(s) curve

For each of 7012 annotated consensus basepairs in 87 RNA families
Rfam v14.0 with known 3D structures, we use R-scape to calculate
the statistical significance (expectation value, E-value) and estimate
s;j for each proposed pair in Rfam ‘seed’ alignments. We binned

proposed pairs with identical s; and calculated the frequency of
pairs with significant support E < 0.05 in each bin. For 1, 653 such
points for bins s=0 to 1, 652, we fitted a polynomial of degree 10
by minimizing least square error. The choice of degree 10 was arbi-
trary, and simpler functions such as 1 — e did not fit as well.

In binning the data by integer s, the number of basepairs per bin
is variable. For large values of s, there are few basepairs per bin
(often 0-2), leading to noisy data and possibly to a bad quality
alignment, which is why we fit all point for s < 150, and only those
with at least 80% power for s>150. For Figure 1f, we plotted
the Rfam data differently, in equal-size bins, by ranking all 7012
basepairs by increasing E-values, dividing them into 70 equal bins,
and calculating the means s and power(s) in each bin. This plot is
less noisy at high s. We did not re-estimate the fitted curve when we
replotted. Fitted power(s) values starting from s=0.012 are hard-
coded in the R-scape source code; for s > 226 we set power(s) = 1.

Our approach treats power(s) as a function solely of s. This
approximates away an important additional dependency on align-
ment length. R-scape E-values are multiple-test-corrected; the num-
ber of potential basepairs depends on the input alignment length.
Detecting significant support for a basepair in a longer alignment
requires more signal because the background of non-pairs is higher.
We considered fitting power(s, p) to a range of different P-value
thresholds p (i.e. before multiple test correction to E-values) but
decided this was impractical. Instead, the fitted power curve treats
all alignments as approximately the same length. The actual lengths
of the Rfam seed alignments used in Figure 1f range from 40 consen-
sus columns (HIV retroviral Psi packing element) to 3680 consensus
columns (eukarya LSU rRNA).

3.4 Alignment power
The expected sensitivity for detecting a basepair b with s, substitu-
tions is power(sy), from the empirical fitted curve shown in
Figure 1f. In addition to reporting the pairs that significantly covary
with their corresponding E-value, R-scape now also reports for each
pair the inferred number of substitutions s, and the estimated
power(sp).

As an overall summary statistic for an alignment with a proposed
structure, R-scape reports the total number of basepairs expected to
have significant covariation support,

cov—bp —exp = Z power(sy),
b=1

and the alignment power, defined as the fraction of basepairs
expected to have significant support,
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—bp — 1<
alignment power = w =3 bZ:l power(sp).
In this work, alignments with > 10% power are arbitrarily con-

sidered to have sufficient power.

3.5 R-scape statistical test modes

R-scape has two statistical modes to test the presence of a conserved
RNA structure. By default, R-scape considers all pairs as equivalent
and performs an statistical test as to which of the all possible L(L —
1)/2 pairs (for an alignment of length L) are significantly covarying.
This is R-scape’s default one-set test. Alternatively, if a consensus
secondary structure is provided, R-scape allows an optional #wo-set
test consisting of two independent tests on two different sets. One
test is on the proposed structure (the set of basepairs); the other par-
allel test is on all other possible pairs in the alignment (the set of non
basepairs). On the set of basepairs, R-scape extracts the alignment’s
support for the annotated structure. On the set of non basepairs,
R-scape identifies other possible covarying basepairs not present in
the given structure.

Estimating the alignment power requires a proposed structure,
thus the use of R-scape’s fwo-set mode. Under the one-set mode, R-
scape still reports the power for each of the significantly covarying
basepairs, assuming that those could be part of a structure. The co-
variation and covariation power analyses provided in this manu-
script for all IncRNAs have been obtained with R-scape’s two-set
mode on the proposed secondary structures.

3.6 IncRNA alignment sources

HOTAIR domain 1-4 alignments (D1-D4) and proposed consensus
structure used in Somarowthu ez al. (2015) were kindly provided to
us by S. Somarowthu.

The SRA alignment and proposed consensus structure used in
Novikova et al. (2012) were unavailable to us. The proposed sec-
ondary structure of the human ncSRA was reproduced by hand
from Supplementary Figure S1 of Novikova et al. (2012). An SRA
alignment was produced by imposing the human ncSRA proposed
structure in the Multiz100way alignment of the ncSRA region
obtained from the UCSC human genome browser (http://genome.
ucsc.edu). This alignment includes 76 mammalian species.

The Xist repeat A region alignment used in Maenner et al.
(2010) and four alternative proposed consensus structures that we
call RepA.SO through RepA.S3 were reproduced from
Supplementary Figure S5 in Maenner ez al. (2010).

The Xist repeat A region alignment and proposed consensus
structure in Fang et al. (2015) were kindly provided to us by W.
Moss.

The RepA IncRNA alignment (spanning repeat A and repeat F
regions) with a proposed consensus structure in Liu et al. (2017)
was kindly provided to us by the authors.

We produced our own RepA IncRNA alignment of 65 sequences
and got similar results: a high-power alignment sufficient to detect
about 254 basepairs, but no significantly supported covarying pairs.
The proposed structures for all ten XIST conserved regions were
produced using R-scape.

As described in the main text, we used nhmmer (Wheeler
and Eddy, 2013) to identify 21 significant local alignments (at
E < 1073) between human XIST and mouse Xist, covering 79% of
the XIST RNA sequence. We used nhmmer and Dfam (Wheeler
et al., 2013) to determine that 11 of these conserved regions corres-
pond to known transposable elements including retroposons (L2d
3end), DNA transposons (Charlie29a, Charlie29b), SINEs (FLAM
C) and retroviral LTRs (LTR78). For the remaining 10 conserved
regions, we used an nhmmer profile of the mouse/human pairwise
alignment to search a database of vertebrate genome sequences,
resulting in 10 alignments consisting of 47—-65 homologous sequen-
ces, which we name XIST h1 through XIST h10.

We used the Arabidopsis thaliana COOLAIR IncRNA sequence
and the consensus structure proposed in Hawkes et al. (2016) to

construct a single-sequence Infernal profile (Nawrocki and Eddy,
2013), then used Infernal to align all six COOLAIR homologs to
this profile.

All alignments (with consensus structure annotation, where ap-
plicable) are included in Supplementary Material in Stockholm
format.
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