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Abstract: Bacteria of the Wolbachia genus are maternally inherited symbionts of Nematoda and
numerous Arthropoda hosts. There are approximately 20 lineages of Wolbachia, which are called
supergroups, and they are designated alphabetically. Wolbachia strains of the supergroups A and B
are predominant in arthropods, especially in insects, and supergroup F seems to rank third. Host
taxa have been studied very unevenly for Wolbachia symbionts, and here, we turn to one of largely
unexplored insect families: Acrididae. On the basis of five genes subject to multilocus sequence
typing, we investigated the incidence and genetic diversity of Wolbachia in 41 species belonging
three subfamilies (Gomphocerinae, Oedipodinae, and Podisminae) collected in Turkey, Kazakhstan,
Tajikistan, Russia, and Japan, making 501 specimens in total. Our results revealed a high incidence
and very narrow genetic diversity of Wolbachia. Although only the strains belonging to supergroups
A and B are commonly present in present, the Acrididae hosts here proved to be infected with
supergroups B and F without A-supergroup variants. The only trace of an A-supergroup lineage was
noted in one case of an inter-supergroup recombinant haplotype, where the ftsZ gene came from
supergroup A, and the others from supergroup B. Variation in the Wolbachia haplotypes in Acrididae
hosts within supergroups B and F was extremely low. A comprehensive genetic analysis of Wolbachia
diversity confirmed specific features of the Wolbachia allelic set in Acrididae hosts. This result can
help to elucidate the crucial issue of Wolbachia biology: the route(s) and mechanism(s) of Wolbachia
horizontal transmission.

Keywords: Acrididae; horizontal transmission; multilocus sequence typing; recombination; population;
symbiont; Wolbachia

1. Introduction

Bacteria of the Wolbachia genus are maternally inherited symbionts of Nematoda and
numerous Arthropoda hosts. The wide distribution of Wolbachia in insect hosts resembles
a pandemic [1]. To spread through a host population, the Wolbachia symbionts induce
reproductive abnormalities such as cytoplasmic incompatibility, parthenogenesis, male
killing, and feminisation [2]. Additionally, there is evidence of mutualistic effects between
Wolbachia symbionts and their hosts [3]. There are ~20 lineages of Wolbachia called su-
pergroups, and these are designated alphabetically with some omissions [4–6]. Strains
belonging to supergroups A and B are predominant in arthropods, especially in insects, and
the F supergroup seems to take third place and is partitularly detectable in Nematoda [7],
Coleoptera [8–10], Diptera [11], Hemiptera [12], Hymenoptera [1,13,14], Isopoda [15],
Odonata [16], Scorpiones [17], Strepsiptera [18], and Termites [1,19–21]. Strains of other
Wolbachia lineages are found much less frequently and are often associated with a specific
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host taxon. Similar or even the same Wolbachia strains can be found in unrelated hosts, im-
plying the horizontal transmission of the symbiont. The routes of interspecies transmission
are not well understood at present. Predation, host–parasitoid interactions, and feeding
on a common substrate are possible mechanisms [22–31]; however, the main transmission
pathway remains unknown.

Acrididae grasshoppers comprise more than 10,000 species that are widespread in
nearly all terrestrial landscapes. Due to the great importance of Acrididae grasshoppers as
agricultural pests, much research attention has been given to this taxon.

Data on Wolbachia in Acrididae are fragmentary. Podisma pedestris [32] and Podisma
sapporensis [33] are known to be affected by Wolbachia infection. Samples of Acrida willemsei,
Calliptamus italicus, Ceracris fasciata, Catantops humilis, Chorthippus brunneus, Hieroglyphus
banian, Melanoplus sp., Oxya ntricata, and Oxya japonica have been reported to be unin-
fected [23,34–37]. A series of studies have been performed on populations of Chorthippus
parallelus inhabiting French and Spanish territories [38–45], where investigators have re-
ported Wolbachia strains of supergroups B and F and even B/F recombinants.

Here, we evaluated the genetic diversity of Wolbachia in members of the Acrididae
family. In particular, we screened specimens from three subfamilies (Gomphocerinae,
Oedipodinae, and Podisminae) collected in Turkey, Kazakhstan, Tajikistan, Russia, and
Japan and characterised Wolbachia isolates by a multilocus sequence typing (MLST) protocol
that included five housekeeping genes [12]. We aimed to investigate Wolbachia incidence
in Acrididae hosts and to determine whether there is a Wolbachia genetic pattern that is
specific to Acrididae.

2. Results
2.1. Wolbachia Occurrence in Acrididae

We examined the infection status in 41 Acrididae species and found 28 Wolbachia-infected
species (Table 1). Only two species have been analysed previously: P. sapporensis [33] and
P. pedestris [32]. The symbionts were found in all of the subfamilies under study: Gompho-
cerinae, Oedipodinae, and Podisminae. There were no noticeable differences in Wolbachia
prevalence between the regions and the between specimen collection years. The estimation of
infection prevalence was not the aim of our study because we mainly tested somatic tissues
that may only reflect the lowest rate boundary. Nevertheless, we registered high Wolbachia
prevalence in Ch. biguttulus (174/198), Ch. fallax (16/17), and P. montanus (40/50). High
Wolbachia prevalence in P. sapporensis populations was determined based on gonad tissues
and was reported earlier [33]; here, we screened an additional 18 specimens for infection and
confirmed the previous conclusion. Sample sizes were not sufficient to make firm conclusions
about other species.

2.2. Genetic Diversity of Wolbachia Isolates

A total of 44 Wolbachia isolates were characterised by the MLST protocol [12]; 43 were
unique according to the species–site–year combination (Table 2). We managed to amplify
all five loci for 39 isolates, and for 35 isolates, we obtained unambiguous allele sequences.
For many isolates, there were difficulties in obtaining complete MLST profiles. In two cases
(ftsZ of i-1 and gatB of i-15), we failed to obtain amplicons, even when using nested
PCR. For several isolates, we could not obtain good quality sequences; there were double
chromatogram peaks for certain positions or loci, or in some cases, even repeated double
peaks in the bulk of a sequence.
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Table 1. The Acrididae specimens and Wolbachia infection.

Subfamily Species Region and Year of
Collection

No. of Infected
Specimens/Total

Gomphocerinae Arcyptera (Arcyptera) fusca (Pallas, 1773) Russia, Altai Mts, 2017 2/2

Arcyptera (Pararcyptera) microptera (Fischer von
Waldheim, 1833) Russia, Altai Mts, 2017 0/5

Chorthippus (Chorthippus) albomarginatus (De Geer, 1773) Russia, Irkutsk region,
2016 10/10

Chorthippus (Glyptobothrus) apricarius (Linnaeus, 1758) Russia, Irkutsk region,
2016 7/7

Chorthippus (Glyptobothrus) biguttulus (Linnaeus, 1758) East Kazakhstan, 2007 0/6

-‘’- Russia, Novosibirsk
region, 2017 174/198

-‘’- Russia, Irkutsk region 4/6

-‘’- Russia, Altai Mts, 2015 5/5

Chorthippus (Altichorthippus) intermedius
(Bey-Bienko, 1926) Russia, Altai Mts, 2003 0/8

Chorthippus (Glyptobothrus) mollis (Charpentier, 1825) Russia, Altai Mts, 2003 2/5

-‘’- Turkey, 2003 0/9

Chorthippus fallax (Zubovski, 1900) Russia, Novosibirsk
region, 2017 16/17

Chorthippus hammarstroemi (Miram, 1907) Russia, Altai Mts, 2003 0/5

Dociostaurus (Kazakia) brevicollis (Eversmann, 1848) East Kazakhstan, 2007 3/7

Dociostaurus (Kazakia) tartarus (Stshelkanovtzev, 1921) East Kazakhstan, 2007 0/5

Eclipophleps glacialis (Bey-Bienko, 1933) Russia, Altai Mts, 2003 2/8

Eremippus simplex (Eversmann, 1859) East Kazakhstan, 2007 0/2

Euthystira brachyptera (Ocskay, 1826) Russia, Altai Mts, 2003 0/2

Gomphocerippus rufus (Linnaeus, 1758) Russia, Novosibirsk
region, 2017 1/7

Megaulacobothrus aethalinus (Zubovski, 1899) Russia, Altai Mts, 2003 0/6

Omocestus (Omocestus) viridulus (Linnaeus, 1758) Russia, Novosibirsk
region, 2009 3/4

-‘’- Russia, Altai Mts, 2017 1/1

Omocestus (Omocestus) haemorrhoidalis
(Charpentier, 1825) Russia, Altai Mts, 2017 1/2

Podismopsis altaica (Zubovski, 1900) Russia, Altai Mts, 2003 3/4

Podismopsis genicularibus (Shiraki, 1910) Russia, Sakhalin Is., 2010 2/3

Pseudochorthippus montanus (Charpentier, 1825) Russia, Novosibirsk
region, 2017 40/50

Pseudochorthippus parallelus (Zetterstedt, 1821) Russia, Novosibirsk
region, 2017 5/5

Stauroderus scalaris (Fischer von Waldheim, 1846) Russia, Altai Mts, 2017 8/8

Stenobothrus eurasius (Zubovski, 1898) Russia, Altai Mts, 2003 0/2

Oedipodinae Bryodema gebleri (Fischer von Waldheim, 1836) Russia, Altai Mts, 2003 2/3

-‘’- Russia, Altai Mts, 2017 2/2

Bryodema tuberculata (Fabricius, 1775) Russia, Altai Mts, 2003 0/3
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Table 1. Cont.

Subfamily Species Region and Year of
Collection

No. of Infected
Specimens/Total

Locusta migratoria (Linnaeus, 1758) Central Kazakhstan, 2007 0/4

Oedaleus decorus (Germar, 1825) Russia, Altai Mts, 2017 1/1

-‘’- East Kazakhstan, 2007 3/4

-‘’- Tadzhikistan, 2009 1/1

Psophus stridulus (Linnaeus, 1758) Russia, Altai Mts, 2003 0/1

Pyrgodera armata (Fischer von Waldheim, 1846) East Kazakhstan, 2007 0/4

Podisminae Anapodisma miramae (Dovnar-Zapolskij, 1932) Russia, Maritima region of
Far East, 2008 1/1

Bohemanella frigida (Boheman, 1846) Russia, Altai Mts, 2003 1/3

Ognevia longipennis (Shiraki, 1910) Japan, Hokkaido, 2005 4/4

-‘’- Russia, Altai
Mts, Edigan, 2003 5/5

Podisma pedestris (Linnaeus, 1758) Russia, Altai Mts, 2003 5/5

-‘’- Russia, Altai Mts, 2016 1/4

Podisma kanoi (Storozhenko, 1994) Japan, Honshu, 2005 1/1

Podisma sapporensis (Shiraki, 1910) Japan, Hokkaido Is, Tanno
town vicinities, 2005 5/5

-‘’- Japan, Hokkaido Akan
town vicinities, 2005 5/5

-‘’- Japan, Hokkaido, Yotei
Mt., 2005 5/5

-‘’- Japan, Hokkaido,
Disengen Mt., 2005 5/5

-‘’-
Japan, Hokkaido,

Naganuma town vicinities,
2005

5/5

-‘’- Japan, Hokkaido, Teine
Mt., 2005 10/10

-‘’-
Japan, Japan, Hokkaido,

Shimokawa town
vicinities, 2005

3/3

Podisma tyatiensis (Bugrov & Sergeev, 1997) Russia, Kuril Arch.,
Kunashir Is, 2001 1/1

Prumna littoralis (Tarbinsky, 1932) Russia, Maritima region of
Far East, 2008 1/1

Prumna primnoa (Motschulsky, 1846) Russia, Sakhalin Is, 2010 5/5

Prumna ussuriensis (Tarbinsky, 1930) Russia, Maritima region of
Far East, 2008 1/5

Sinopodisma punctata (Mishchenko, 1954) Japan, Ryukyu Arch.,
Ishigaki Is, 2005 0/3
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Table 2. Wolbachia MLST profiles of the analysed Acrididae isolates.

Isolate Species (Region, Year) Supergroup gatB coxA hcpA ftsZ fbpA Sequ-Ence
Type *

i-1 Arcyptera fusca (Altai, 2017) F ~73 **
(MZ816480)

~63
(MZ816523)

~261
(MZ816567) No *** 410

(MZ816669) not full

i-2 Chorthippus albomarginatus
(Irkutsk, 2016) B 134

(MZ816445)
168

(MZ816488)
~6

(MZ816532)
106

(MZ816581)
197

(MZ816634) hST-1

i-3 Ch. Apricarius
(Irkutsk, 2016) B 134

(MZ816446)
14

(MZ816489)
~6

(MZ816533)
106

(MZ816582)
197

(MZ816635) hST-2

i-4 Ch. Biguttulus
(Irkutsk, 2016) B 9 (MZ816447) 133

(MZ816490)
~6

(MZ816534)
106

(MZ816583)
197

(MZ816636) hST-3

i-5 Ch. Bigut-
tulus (Novosibirsk, 2017) B 9 (MZ816448) 133

(MZ816491)
6

(MZ816535)
106

(MZ816584)
197

(MZ816637) hST-4

i-6 Ch. Biguttulus (Altai, 2015) B 9 (MZ816481) 133
(MZ816524) ? **** ? ? not full

i-7 Ch. Mollis (Altai, 2003) B 9 (MZ816449) 133
(MZ816492)

6
(MZ816536)

106
(MZ816585)

197
(MZ816638) hST-4

i-8 Ch. Fallax
(Novosibirsk, 2017) B 9 (MZ816450) 133

(MZ816493)
6

(MZ816537)
106

(MZ816586)
197

(MZ816639) hST-4

i-9 Dociostaurus brevicollis
(Kazakhstan, 2007) F ~73

(MZ816451)
~63

(MZ816494)
~261

(MZ816538)
~269

(MZ816587)
410

(MZ816640) hST-5

i-10 Eclipophleps glacialis
(G, Altai, 2003) B 9 (MZ816482) 133

(MZ816525)
~6R

(MZ816568) No ~4
(MZ816670) not full

i-11 Gomphocerippus rufus
(G, Novosibirsk, 2017) B 9 (MZ816452) 133

(MZ816495)
6

(MZ816539)
106

(MZ816588)
197

(MZ816641) hST-4

i-12 Omocestus viridulus
(Novosibirsk, 2009) B 9 (MZ816453) 133

(MZ816496)
6

(MZ816540)
106

(MZ816589)
197

(MZ816642) hST-4

i-13 Om. Viridulus (Altai, 2017) B 134
(MZ816454)

168
(MZ816497)

~6
(MZ816541)

106
(MZ816590)

197
(MZ816643) hST-1

i-14 Om. Haemorrhoidalis
(Altai, 2017) B 134

(MZ816455)
14

(MZ816498)
~6

(MZ816542)
106

(MZ816591)
197

(MZ816644) hST-2

i-15 Podismopsis altaica
(Altai, 2003) F No ~63

(MZ816526)
~325

(MZ816569) ? ? not full

i-16 Podismopsis genicularibus
(Sakhalin Is., 2010) B–A 134

(MZ816456)
14

(MZ816499)
~6

(MZ816543)
226

(MZ816592)
197

(MZ816645) hST-6

i-17 Pseudochorthippus montanus
(Novosibirsk, 2017) B 9 (MZ816457) 133

(MZ816500)
6

(MZ816544)
106

(MZ816593)
197

(MZ816646) hST-4

i-18 Ps. Montanus
(Novosibirsk, 2017) B 9 (MZ816483) 133

(MZ816527)
6

(MZ816570) ? ? not full

i-19 Ps. Parallelus
(Novosibirsk, 2017) B 9 (MZ816458) 133

(MZ816501)
6

(MZ816545)
106

(MZ816594)
197

(MZ816647) hST-4

i-20 Stauroderus scalaris
(Altai, 2017) B 9 (MZ816459) 133

(MZ816502)
6

(MZ816546)
106

(MZ816595)
197

(MZ816648) hST-4

i-21 Bryodema gebleri
(Altai, 2003) F ~73

(MZ816460)
~63

(MZ816503)
~261

(MZ816547)
~205

(MZ816596)
410

(MZ816649) hST-7

i-22 Bryodema gebleri
(Altai, 2017) F ~73

(MZ816461)
~63

(MZ816504)
~261

(MZ816548)
~205

(MZ816597)
410

(MZ816650) hST-7

i-23 Oedaleus decorus
(Altai, 2017) F ~73

(MZ816462)
~63

(MZ816505)
~35

(MZ816549)
~205

(MZ816598)
410

(MZ816651) hST-8

i-24 Oe. Decorus
(Kazakhstan, 2006) F ~243

(MZ816484)
~63RK

(MZ816528)
~261

(MZ816571)
~205R

(MZ816616)
410

(MZ816671) N, full

i-25 Oe. Decorus
(Tajikistan, 2009) F ~243Y

(MZ816485)
~30YR

(MZ816529)
~261Y

(MZ816572)
~205

(MZ816617)
410

(MZ816672) N, full

i-26 Anapodisma miramae
(Far East, Russia, 2008 ) B 39 (MZ816463) 14

(MZ816506)
40

(MZ816550)
7

(MZ816599)
197

(MZ816652) ST299
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Table 2. Cont.

Isolate Species (Region, Year) Supergroup gatB coxA hcpA ftsZ fbpA Sequ-Ence
Type *

i-27 Bohemanella frigida
(Altai 2003) B 9 (MZ816464) 9

(MZ816507)
6

(MZ816551)
106

(MZ816600)
197

(MZ816653) hST-9

i-28 Ognevia longipennis
(Japan, 2005) B 9 (MZ816465) 133

(MZ816508)
6

(MZ816552)
106

(MZ816601)
197

(MZ816654) hST-4

i-29 Og. Longipennis
(Altai, 2003) B 9 (MZ816466) 133

(MZ816509)
6

(MZ816553)
106

(MZ816602)
197

(MZ816655) hST-4

i-30 Podisma pedestris
(Altai, 2003) B 9 (MZ816467) 133

(MZ816510)
6

(MZ816554)
106

(MZ816603)
197

(MZ816656) hST-4

i-31 P. pedestris (Altai, 2016) B 9 (MZ816468) 133
(MZ816511)

6
(MZ816555)

106
(MZ816604)

197
(MZ816657) hST-4

i-32 Prumna littoralis (Far East,
Russia, 2008) B 9 (MZ816469) 133

(MZ816512)
6

(MZ816556)
106

(MZ816605)
197

(MZ816658) hST-4

i-33 Pr. Primnoa (Sakhalin, 2010) B 9 (MZ816470) 133
(MZ816513)

6
(MZ816557)

106
(MZ816606)

197
(MZ816659) hST-4

i-34 Pr. Primnoa
(Sakhalin Is., 2010) B 188

(MZ816471)
224

(MZ816514)
~6

(MZ816558)
20

(MZ816607)
25

(MZ816660) hST-10

i-35 Pr. Ussuriensis (Far East,
Russia, 2008) B 9 (MZ816472) 133

(MZ816515)
6

(MZ816559)
106

(MZ816608)
197

(MZ816661) hST-4

i-36 Podisma kanoi (Honshu,
Japan, 2005) B 9 (MZ816473) 133

(MZ816516)
6

(MZ816560)
106

(MZ816609)
197

(MZ816662) hST-4

i-37 P. sapporensis
(Japan, Tanno, 2005) B 9 (MZ816474) 14

(MZ816517)
6

(MZ816561)
106

(MZ816610)
197

(MZ816663) hST-11

i-38 P. sapporensis
(Japan, Akan, 2005) B 9 (MZ816475) 14

(MZ816518)
6

(MZ816562)
106

(MZ816611)
197

(MZ816664) hST-11

i-39 P. sapporensis
(Japan, Yotei, 2005) B 9 (MZ816476) 14

(MZ816519)
6

(MZ816563)
106

(MZ816612)
197

(MZ816665) hST-11

i-40 P. sapporensis (Japan,
Disengen, 2005) B 9 (MZ816486) 14

(MZ816530)
6

(MZ816573)

Mix *****
(MZ816618-
MZ816632)

197
(MZ816673) Mix

i-41 P. sapporensis (Japan,
Naganuma, 2005) B 9 (MZ816477) 14

(MZ816520)
6

(MZ816564)
106

(MZ816613)
197

(MZ816666) hST-11

i-42 P. sapporensis
(Japan, Teine, 2005) B 9 (MZ816487) 73

(MZ816531)

Mix
(MZ816574-
MZ816580)

106
(MZ816633)

Mix
(MZ816674-
MZ816686)

Mix

i-43 P. sapporensis (Japan,
Shimokawa, 2005) B 9 (MZ816478) 14

(MZ816521)
6

(MZ816565)
106

(MZ816614)
197

(MZ816667) hST-11

i-44 P. tyatiensis (Kunashir Is.,
Russia, 2001) B 9 (MZ816479) 14

(MZ816522)
6

(MZ816566)
106

(MZ816615)
197

(MZ816668) hST-11

* ST numbers according to the PubMLST database or haplotype numbers according to this study or short comments
are provided; ** the ‘~ number’ refers to the most closely related alleles according to the PubMLST database;
*** no PCR product; **** multiple double chromatogram peaks; ***** mix: a DNA sample that yielded multiple
double chromatogram peaks was cloned and sequenced.

We reconstructed ML phylogenetic trees for each locus to examine supergroup cluster-
ing (Figure 1, Supplementary Materials). Alleles of the analysed isolates belong to Wolbachia
supergroups B and F. In particular, species belonging to Podisminae only harboured vari-
ants from supergroup B, species belonging to Oedipodinae only harboured variants from
supergroup F, and species belonging to Gomphocerinae mostly harboured species from
super group B with some from supergroup F. Overall, the genetic diversity of the MLST loci
appeared rather low (Table 2; Figures 1 and 2, Supplementary Materials). This result was
especially evident at the fbpA locus, where nearly all of the B-supergroup isolates contained
the fbpA-197 allele and where all of the F-supergroup isolates contained fbpA-410. Moreover,
there was one case of an inter-supergroup recombination. A complete haplotype of i-16
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(Podismopsis genicularibus) was found to be basal to supergroup B because the ftsZ-226 allele
belonged to supergroup A, whereas alleles from other loci were assigned to supergroup B.
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Only haplotype ST-299 has been reported upon earlier [46], whereas others turned
out to be unique because of new alleles or new allele combinations. A new combination
of previously known alleles (gatB-9, coxA-133, hcpA-6, ftsZ-106, and fbpA-197) that we
designated as ST hST-4 (see Materials and Methods) was the most frequent in the study
population; it was present in seven species of Gomphocerinae and in six species of Podis-
minae. Haplotypes hST-1, -2, -3, -9, and -11, which are closely related to hST-4 (p-distance
0.0005–0.0020, namely, 1–4 mutations), were also revealed in Gomphocerinae and Podis-
minae species in geographically distant populations. These six haplotypes form an ‘hST-4
group’ that includes a constant allele set of ftsZ-106 and fbpA-197 as well as varied but
closely related (to each other) alleles of gatB, coxA, and hcpA loci. Other B-supergroup
haplotypes were distantly related to hST-4 (p-distance for ST-299: 0.0058, for hST-6: 0.0203
and for hST-10: 0.0323); however, they shared identical alleles with the hST-4 group. These
phenomena can be explained by intra-supergroup recombination.

Wolbachia strains belonging to supergroup F were detected in five species. Haplotypes
of complete profiles (hST-5, -7, and -8; p-distance 0.0024–0.0053) and isolates with incomplete
profiles (i-1 and i-15) or with ambiguous sites (i-24 and i-25) were found to be closely
related, i.e., genetic diversity was also rather low. A comparative analysis of the haplotype
diversity of supergroup F retrieved from the PubMLST database showed that variants of
the Acrididae isolates formed a separate cluster (Figure S1).

To examine the relationship of the Wolbachia variants isolated from Acrididae with
other Wolbachia strains, we reconstructed a phylogenetic network (Figure 3, Supplementary
Materials). The dataset that was used for this analysis included Wolbachia haplotypes
from different hosts that contained at least one allele that was identical or that was closely
related to Wolbachia isolates from Acrididae (see Materials and Methods). Most Wolbachia
isolates of Acrididae (actually the hST-4 group) formed a separate bundle in the phyloge-
netic network without isolates from other hosts. Even i-16, which is an inter-supergroup
recombinant, occupied a long branch in this bundle. The remaining Wolbachia haplo-
type hST-10 (i-34) manifested a close relationship with isolates from Gryllidae hosts. Of
note, i-34 was isolated from the Prumna primnoa population of Sakhalin in 2010, where
the hST-4 (i-33) haplotype was identified as well. Haplotypes of the F supergroup also
formed a separate bundle. Only the F-supergroup Wolbachia haplotype ST-448 isolated
from Teratodes monticollis (Acrididae: Teratodinae) was noticeably different in the allele set
and genetic distance (p-distance 0.0293–0.0313). Therefore, the additional data from the
MLST profiles based on allele similarity confirmed that the analysed Acrididae subfamilies
have a specific genetic pattern of Wolbachia.

Martinez-Rodriguez and Bella [44] reported the Wolbachia MLST diversity of Ch. parallelus
in Spanish and French locations. We retrieved sequences of five MLST loci deposited by [44]
in GenBank, combined them with the dataset of our phylogenetic network, excluded re-
dundant portions of sequences, and reconstructed a new phylogenetic network (Figure 4,
Supplementary Materials). Half of the Wolbachia variants from Ch. parallelus matched the
genetic pattern discovered in our collection for both the B- and F-supergroup haplotypes.
The other half represented B–F supergroup recombinants. B–F recombinants were registered
by [44]; here, we reported detailed characteristics of some variants (details in Figure 4). It is
worth pointing out that the recombination occurred at all possible loci, thereby giving rise to
18 unique haplotypes in total.
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2.3. Incomplete MLST Profiles

As mentioned above, for some isolates, we could not obtain an amplicon or unam-
biguous sequences. Amplicons of three such cases in two isolates of P. sapporensis (i-40 and
i-42) were cloned and sequenced. Fifteen clones of an ftsZ amplicon of i-40 represented
11 variants; among them, we regard two variants—ftsZ-106 (two clones) and ftsZ-81 with
substitution A408 (five clones)—as authentic (see the last sentence of this subsection) be-
cause the former is commonly found in other P. sapporensis isolates, and the latter one was
assembled manually after direct amplicon sequencing. The other eight variants represented
by unique clones were close to the alleles ftsZ-7, -81, and -106, but they differed by amino
acid substitutions, and there was even a stop codon in clone 5. A similar pattern was
observed during the screening of the hcpA and fbpA amplicons of i-42. There were seven
variants that were closely related to the allele hcpA-142 with 4–7 mutations, including the
variant hcpA-142 G298 A373 G393 T438, which was manually assembled after direct amplicon
sequencing. In the case of fbpA cloning, one variant matched fbpA-197, two differed by one
mutation, and the others differed by 13–19 mutations. Therefore, the cloning of the PCR
products revealed several variants: ftsZ-106, ftsZ-81 A408, and hcpA-142 G298 A373 G393 T438

in i-40 as well as fbpA-197 and probably one mutant variant of fbpA-197 in i-42. They most
likely characterise the Wolbachia genome, whereas other variants quite possibly reflect Taq
polymerase artefacts or denote Wolbachia genome segments that became integrated into the
host genome.

3. Discussion

The Acrididae family includes more than 10 thousand species inhabiting different
climatic zones from tropical rainforests to the subarctic zone. There is extensive information
about the geographical distribution and economic significance of this group of insects and
about the factors affecting the regulation of grasshopper population size in natural and
anthropogenic landscapes. Nevertheless, knowledge about the symbionts of this group
of insects remains meagre. Here, we presented the most detailed survey of Wolbachia
diversity in Acrididae to date; 28 species out of 40 appeared to be infected by Wolbachia. On
the other hand, this list, together with other studies [23,32–37,44], comprises less than 1%
of known Acrididae species. To achieve a more informative picture of Wolbachia genetic
diversity in this family, it is necessary to examine other big subfamilies, and special attention
should be paid to collections from warm climate zones, where the diversity is especially
high. Currently, our results indicate that Wolbachia infection (i) is widespread among three
subfamilies of Acrididae grasshoppers, (ii) can reach high prevalence in populations, and
(iii) can be detected by means of DNA isolated from somatic tissues.

Our main result is the narrow genetic diversity of Wolbachia variants in Acrididae hosts.
While Wolbachia in insects is commonly represented by the strains of supergroups A and B,
the Acrididae hosts proved to be infected with supergroups B and F without A-supergroup
variants. The only trace of an A-supergroup lineage was found in i-16, where the haplotype
hST-5 includes the ftsZ gene from supergroup A and other genes from the B supergroup.
The variation of the B-supergroup haplotypes in Acrididae is especially low, as clearly
illustrated by the phylogenetic network (Figure 3), where all the haplotypes included in the
analysis showed allelic similarity with grasshopper Wolbachia. Previously, an allele set (with
central haplotype ST-41) specific to butterfly hosts was characterised [46]; however, the
Wolbachia variation observed here in Acrididae is much lower. The accumulation of data on
Wolbachia infection in Acrididae hosts will possibly shed light on other Wolbachia variants,
including A-supergroup variants. Nonetheless, it is already obvious that Acrididae hosts
have a unique infection profile in the global pattern of the Wolbachia pandemic.

Active horizontal transmission (HT) of a specific set of Wolbachia strains among Acri-
didae grasshoppers is a reason for the observed narrow diversity. Here, we documented
(i) cases (often seen in Wolbachia studies) where the same haplotype is found in different
species (Table 2), (ii) findings of identical haplotype profiles in populations of Ognevia
longipennis from Japan and Altai Mountains of Russia even though these populations most
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likely have been geographically isolated for several thousand years, and (iii) distantly
related Wolbachia haplotypes within the Sakhalin population of P. primnoa (Sakhalin 2010).
There is no clear understanding of the HT mechanism, although some data have been
reported [22,25,26,29,47]. Potential vectors of Wolbachia HT are parasitoid wasps, red velvet
mites, tachinids, entomophilic nematodes, and horsehair worms (Nematomorpha) that
have wider or narrower specificity to Acrididae hosts. The next question is the nature of
Wolbachia specificity to hosts. Are Acrididae species only susceptible to certain variants of
Wolbachia, or does the susceptibility extend to all encountered variants?

The Wolbachia allelic diversity observed in our study is consistent with the findings
about Wolbachia in Ch. parallelus studied on the Perinea peninsula [44]. A comprehensive
analysis of the data generated by [44] and our results indicates that Wolbachia variants be-
longing to supergroups B and F are widespread in Acrididae hosts. Moreover, Ch. parallelus
was found to harbour nearly every possible MLST recombinant combination of super-
groups B and F (Figure 4). In our work, we were only able to reliably detect one isolate
of inter-supergroup recombination. In five isolates, we obtained ambiguous signals in
chromatograms. The nature of the problem for three of them (i-6, -15, and -18) was not
investigated here, i.e., co-infection with B and F lineages cannot be ruled out. Two other
isolates were cloned, and we came to the conclusion that the results can be explained by
multi-infection with B-supergroup strains and/or by insertions of Wolbachia genes into
the host’s nuclear genome. The transfer of Wolbachia genes into a host nuclear genome in
insects has been well documented [48–52], e.g., in Orthoptera [42,43].

Another essential issue of Wolbachia diversity is the concept of a bacterial species [53–55].
Every Wolbachia supergroup is a species candidate [6,56–59]. This observation implies genome
specificity, ecology specificity, and ‘reproductive isolation’, which in bacteria, take the form of
a low rate or impossibility of gene exchange between strains of different supergroups/species.
Indeed, recombination between strains of supergroups A and B is known to occur, albeit
at a low rate [46,57,60–63]. Recombination between supergroups F and B has been only
detected in Chrysocoris stollii (Hemiptera) [62]; however, in the case of Ch. parallelus, there
are 18 haplotypes [44]. Comprehensive genomic analysis of core genes indicates that the F
supergroup clusters together with C and D lineages found in nematode hosts [63,64]. The F
lineage has retained the genes responsible for homologous recombination (data not shown); we
concluded this after the examination of the wCle genome (GenBank accession No.: AP013028).
Previously, the evolution of these genes was studied in the genomes belonging to supergroups
A, B, C, and D [65] but not in F. These data suggest that gene exchange between the genomes
of B and F strains in Ch. parallelus may occur via homologous recombination. If rampant
recombination has actually occurred in Ch. parallelus, it casts serious doubt on the idea that
supergroups B and F can be considered independent bacterial species.

4. Materials and Methods
4.1. Collection of Specimens

Grasshopper specimens were collected from natural populations during the period of
2001–2017 (Table 1). The specimens were fixed in 96% ethanol and were stored at −20 ◦C.
The total study population included 501 specimens from Gomphocerinae, Oedipodinae,
and Podisminae, with four species being predominant (64.3%): Chorthippus biguttulus (215),
Chorthippus fallax (17), P. sapporensis (35), and Pseudochorthippus montanus (50).

4.2. Screening and Sequencing

A leg of an individual was used for DNA extraction in most cases. This approach is
rather convenient because it allows the procedure to be repeated in cases of failed extraction
(just take another leg) and to avoid bacterial contamination from the digestive system due to
the facultative predation/cannibalism of Orthoptera species. Nonetheless, the use of somatic
tissues does not permit a reliable estimation of Wolbachia prevalence in a population. Male
gonad tissues were used for the screening of Podisma species collected in Hokkaido (Japan)
and Kunashir (Russia), which were partially reported by Bugrov et al. [33]. Here, we added
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18 specimens and present full MLST profiles for the Podisma spp. hosts. DNA extraction
from each sample was performed in 0.3–0.6 mL of extraction buffer (0.1 M NaCl, 10 mM Tris-
HCl (pH8.0), 25 mM EDTA, 0.5% SDS, and 0.1 mg/mL proteinase K) for 2 h at +56 ◦C, and
DNA was then salted out with 0.5 V of 5 M potassium acetate/3 M acetic acid, after which
DNA was further precipitated and dissolved in 0.2 mL of double-distillated H2O. Next, 1 µL
of the DNA solution was used in all polymerase chain reactions (PCRs). The quality of the
DNA was checked with universal primers specific to the nuclear gene of 28S rRNA (28sF3633:
5′-TACCGTGAGGGAAAGTTGAAA-3′, and 28sR4076: 5′-AGACTCCTTGGTCCGTGTTT-
3′ [66]) or to mitochondrial gene CO1 (LCO1490: 5′-GGTCAACAAATCATAAAGATATTGG-
3′, and HCO2198: 5′- TAAACTTCAGGGTGACCAAAAAATCA-3′ [67]). PCR was conducted
using BioMaster HS-Taq PCR (2×) (BiolabMix, Novosibirsk, Russia) or a mix containing
3.0 mM Mg2+, 0.6 mM each primer, 1× PCR buffer (16 mM (NH4)2SO4, 67 mM Tris–HCl
pH 8.8 (at 25 ◦C), and 0.1% of Tween 20), and 1.0 U of Taq polymerase in a total reaction vol-
ume of 20 µL. The detection of Wolbachia infection in each specimen was performed by means
of at least two MLST loci, as usually done with primer sets coxAF1/R1 and ftsZF1/R1 [12]. All
five MLST loci were amplified and sequenced for Wolbachia-positive DNA samples. In cases of
a weak amplicon signal or negative PCR results, the nested-PCR approach was employed [68].
External primer sets F2/R2 or F3/R3 were used for gatB, coxA, hcpA, and fbpA loci according
to [https://pubmlst.org/organisms/wolbachia-spp/protocol-single-infected, accessed on
12 December 2021], primers ftsZunif1/2 for the ftsZ locus according to [6]; and the inner
primers F1/R1 according to [12]. The thermal cycling conditions were as follows: initial
denaturation at 95 ◦C 5 min, followed by 35 cycles of conventional PCR, and 15 + 30 cycles
of nested PCR at 95 ◦C for 15 s, annealing at 55 ◦C for the MLST primers or at 58 ◦C for
28S or at 53 ◦C for CO1 for 40 s, elongation at 72 ◦C 30 s–1 min, and final elongation for
3 min. In the second round of nested PCR, we added 0.5 µL of the reaction mixture from
the first round. The PCR products were visualised by agarose gel (1.0–1.5%) electrophore-
sis with ethidium bromide. A portion of the amplification reaction mixture was diluted as
follows: 2 µL of the amplicon + 18 µL of water; then 1 µL of this solution was treated with
10 U of exonuclease I (New England Biolabs, Ipswich, MA, USA) in the supplied buffer and
sequenced using the BrightDye Terminator Cycle Sequencing Kit (Nimagen, Nijmegen, The
Netherlands) or BigDye Terminator v3.1 cycle sequencing Kit (Applied Biosystems, Foster
City, CA, USA). Three amplicons (ftsZ of i-40; hcpA and fbpA of i-42, which yielded ambiguous
sequences) were cloned in the pAL-TA vector (Evrogen, Moscow, Russia) according to the
manufacturer’s instructions and were sequenced with the M13 primer set. The MLST profiles
of the Wolbachia isolates were deposited in the GenBank database under accession numbers
MZ816445–MZ816686. Because the MLST database has not been accepting new submissions
for some time, here we designated haplotypes with new combinations of alleles or new alleles
as ‘hST-Number’ (Table 2).

4.3. Evolutionary Analysis

New MLST loci sequences were checked for stop codons, and sequence length was
limited according to the MLST protocol for subsequent allele analysis. All of the sequences
were used to reconstruct maximum likelihood (ML) phylogenetic trees of each MLST locus.
As a supergroup reference, we used the alleles that had been retrieved from the following
sequence types (STs): ST-1 (supergroup A), ST-19 (A), ST-41 (B), ST-35 (D), and ST-62 (super-
group F). Moreover, we reconstructed an ML phylogenetic tree of concatenated sequences
for isolates with complete MLST profiles. A set of STs that represented supergroups A
(ST-1 and ST-19), B (ST-9 and ST-41), D (ST-35), and F (ST-62) and a set of STs that had been
previously isolated from Orthoptera hosts (id-24 (ST-21), id-25 (ST-32), id-1694 (ST-440),
id-1703 (ST-448), and id-1707 (ST452)) were added to the ML tree reconstruction. Sequence
alignments were generated in the MUSCLE software [69], and a nucleotide substitution
model for each dataset was chosen by means of MEGA 6; statistical branch support was
based on 1000 bootstrap iterations.

https://pubmlst.org/organisms/wolbachia-spp/protocol-single-infected
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To expand the Wolbachia genetic diversity analysis, we created a dataset that included
additional MLST profiles. The MLST profiles were chosen according to allele identity to-
ward variants observed in Acrididae isolates (‘one allele criterion’, see details in refs. [46,62].
Briefly, we took an ST from the Public Databases for Molecular Typing and Microbial
Genome Diversity (PubMLST) [70] if it contained the same allele as any of the loci found in
our study. Because the number of alleles in our study was unique, we also included STs
with the most closely related alleles. To present the phylogenetic relationships of profiles in
this dataset, we reconstructed an unrooted phylogenetic network in SplitsTree4 [71] using
the neighbour-net method [72]. In addition, we conducted a comprehensive phylogenetic
analysis of the data on Wolbachia diversity discovered in Ch. parallelus [44] and in the
above-mentioned dataset. We retrieved alleles from GenBank, assembled concatenated se-
quences, aligned the sequences, excluded redundant parts, and reconstructed the unrooted
phylogenetic network.

5. Conclusions

Many Acrididae species harbour Wolbachia symbionts. Nonetheless, Wolbachia ge-
netic diversity is rather low among these hosts: (i) there are strains of only supergroups
B and F, (ii) genetic variation is narrow within each supergroup. These data indicate
mas-sive Wolbachia horizontal transmission among Acrididae hosts. Specific content of
Wolbachia alleles in Acrididae hosts can be used for identifying route(s) and mechanism(s)
of Wolbachia horizontal transmission.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms23020853/s1.
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