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1   |   INTRODUCTION

The arterial baroreflex system is one of the major neg-
ative feedback systems to stabilize arterial pressure 
(AP) against pressure disturbances during daily ac-
tivities. Since it acts immediately in response to pres-
sure perturbations and yields full effect within a few 

minutes, the arterial baroreflex system is classified 
as an immediate control system (Hall,  2016). To iden-
tify the dynamic characteristics of the arterial barore-
flex system, we have applied open-loop analysis with 
the Gaussian white noise (GWN) approach (Kawada 
& Sugimachi, 2016). GWN inputs enable estimation of 
the linear and nonlinear dynamics of a given system 
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Abstract
Since the arterial baroreflex system is classified as an immediate control system, 
the focus has been on analyzing its dynamic characteristics in the frequency 
range between 0.01 and 1 Hz. Although the dynamic characteristics in the fre-
quency range below 0.01 Hz are not expected to be large, actual experimental 
data are scant. The aim was to identify the dynamic characteristics of the carotid 
sinus baroreflex in the frequency range down to 0.001 Hz. The carotid sinus ba-
roreceptor regions were isolated from the systemic circulation, and carotid sinus 
pressure (CSP) was changed every 10 s according to Gaussian white noise with 
a mean of 120 mmHg and standard deviation of 20 mmHg for 90 min in anesthe-
tized Wistar-Kyoto rats (n = 8). The dynamic gain of the linear transfer function 
relating CSP to arterial pressure (AP) at 0.001 Hz tended to be greater than that at 
0.01 Hz (1.060 ± 0.197 vs. 0.625 ± 0.067, p = 0.080), suggesting that baroreflex con-
trol was largely maintained at 0.001 Hz. Regarding nonlinear analysis, a second-
order Uryson model predicted AP with a higher R2 value (0.645 ± 0.053) than a 
linear model (R2  =  0.543 ± 0.057, p  =  0.025) or a second-order Volterra model 
(R2 = 0.589 ± 0.055, p = 0.045) in testing data. These pieces of information may be 
used to create baroreflex models that can add a component of autonomic control 
to a cardiovascular digital twin for predicting acute hemodynamic responses to 
treatments and tailoring individual treatment strategies.
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even in the presence of significant noise contamination 
commonly encountered in physiological experiments 
(Marmarelis & Marmarelis,  1978). When tested in the 
frequency range between 0.01 and 1 Hz, the neural arc 
relating the carotid sinus pressure (CSP) input to the ef-
ferent sympathetic nerve activity (SNA) output reveals 
derivative characteristics (i.e., the magnitude response 
or dynamic gain increases with increasing frequency) 
(Ikeda et al.,  1996). By contrast, the peripheral arc re-
lating the SNA input to the AP output shows integral 
characteristics (i.e., the dynamic gain decreases with in-
creasing frequency). It can be interpreted that the fast 
neural arc compensates for the slow peripheral arc to 
improve the rapidness of baroreflex-mediated AP regu-
lation (Ikeda et al., 1996). Nonlinear kernels of the total 
arc relating the CSP input to the AP output reveal an 
“Uryson” structure (i.e., products of the input only at 
the same time contribute to the output) and may en-
hance baroreflex buffering of AP increases in hyperten-
sive conditions (Moslehpour et al., 2016a).

In our previous studies, the open-loop transfer func-
tion of the baroreflex total arc approached a constant gain 
as the frequency decreased toward 0.01 Hz with an out-
of-phase input–output relationship, suggesting that the 
baroreflex-mediated AP response reached a near steady 
state at this frequency (Kawada & Sugimachi,  2016). 
Although the lowest frequency bound of 0.01 Hz allows 
the estimation of the baroreflex responses up to approx-
imately 50 s (a half of the analyzed segment length), a 
prediction for a longer period may be required to sim-
ulate hemodynamic responses to drug administrations 
because some drugs take a few minutes to develop their 
effects. Whether the known dynamic characteristics of 
the arterial baroreflex can be simply extended down to 
0.001 Hz remains to be examined because the barorecep-
tor transduction properties are known to reset toward 
a conditioning input pressure (Coleridge et al.,  1981). 
If resetting occurs, the effective input magnitude may 
be reduced with time, resulting in an attenuated out-
put. Hence, the dynamic gain of the baroreflex could 
be reduced in the frequency range below 0.01 Hz. On 
the contrary, pulsatile pressure does not induce signif-
icant baroreflex resetting compared to static pressure 
(Mendelowitz & Scher, 1990). It is also possible that the 
baroreflex can maintain the dynamic gain in the lower 
frequency range when an input pressure contains fluc-
tuations of a wide frequency range such as in the case of 
the GWN input.

The aim of the present study was to estimate the dy-
namic characteristics of the carotid sinus baroreflex in 
the frequency range between 0.001 Hz and 0.01 Hz, a 
10-fold lower frequency range compared to our previous 
studies. First, we applied standard frequency-domain 

transfer function analysis to elucidate the linear dy-
namics of this system. Second, we applied an extended 
nonparametric, frequency-domain analysis to reveal 
the nonlinear dynamics of the system (Moslehpour 
et al., 2015, 2016a,b) with the expectation that the pro-
longed data sets might lead to new findings of baroreflex 
function.

2   |   MATERIALS AND METHODS

The experiments conformed to the Guiding Principles for 
the Care and Use of Animals in the Field of Physiological 
Sciences, which have been approved by the Physiological 
Society of Japan. The experimental protocol was reviewed 
and approved by the Animal Subjects Committee at the 
National Cerebral and Cardiovascular Center (No. 21009).

2.1  |  Surgical preparation

Eight male Wistar–Kyoto rats (326–435 g) were anes-
thetized with an intraperitoneal injection (2  mL/kg) of 
a mixture of urethane (250 mg/mL) and α-chloralose 
(40 mg/mL). To maintain the anesthesia, the anesthetic 
mixture was diluted 18-fold with physiological saline and 
administered continuously (2–3  mL·kg−1·h−1) through 
a catheter inserted into the right femoral vein. An arte-
rial catheter was inserted into the right femoral artery for 
measuring AP. Ringer's lactate solution was administered 
(4 mL·kg−1·h−1) to maintain fluid balance. The rats were 
mechanically ventilated with oxygen-enriched air, and 
the body temperature was maintained between 37°C and 
38°C using a heating pad and a lamp.

After isolation of the bilateral carotid sinus barorecep-
tor regions from the systemic circulation (Sato et al., 1999; 
Shoukas et al., 1991), CSP was controlled using a servo-
pump system. Bilateral vagal and aortic depressor nerves 
were sectioned at the neck to minimize the reflex effects 
other than those mediated by the carotid sinus baroreflex.

A pair of stainless-steel wire electrodes (AS633, Cooner 
Wire) were attached to a postganglionic branch of the left 
splanchnic sympathetic nerve and fixed with silicone glue 
(Kwik-Sil, World Precision Instruments). The electrical 
signal was amplified, band-pass filtered between 150 and 
1000 Hz, full-wave rectified, and then low-pass filtered at a 
cut-off frequency of 30 Hz to quantify SNA.

2.2  |  Protocol

CSP was changed every 10 s in steps according to a GWN 
signal with a mean of 120 mmHg and standard deviation 
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of 20 mmHg. To avoid extreme input pressures from 
damaging the baroreceptors, the input pressures were 
limited between mean ± 3 standard deviations (i.e., 
120 ± 60 mmHg).

After collecting the data during the application of the 
GWN input for more than 90 min, the static characteris-
tics of the baroreflex were measured using a non-pulsatile 
stepwise CSP input. CSP was decreased to 60 mmHg for 
5 min and then increased to 180 mmHg in increments of 
20 mmHg every minute.

At the end of the experiment, the animals were euth-
anized as follows. After inducing deep anesthesia with 
an additional intravenous administration of the above-
undiluted anesthetic mixture (2 mL/kg), the heart was ar-
rested with an intravenous administration of a saturated 
potassium chloride solution.

2.3  |  Data analysis

The data were stored at 1000 Hz on a laboratory computer 
system via a 16-bit analog-to-digital converter. 90-min 
stationary portions of the data were analyzed. To identify 
the total arc, CSP and AP were treated as the input and 
output, respectively. To identify the neural arc, CSP and 
SNA were treated as the input and output, respectively. 
To identify the peripheral arc, SNA and AP were treated 
as the input and output, respectively.

2.4  |  Linear transfer function analysis

After resampling at 0.1 Hz (10-s intervals), the input and 
output data were segmented into 7 half-overlapping seg-
ments of 128 points each. The segment length was 1280 s, so 
the minimum investigated frequency (f1) was 0.00078 Hz. 
In each segment, the linear trend was subtracted, and a 
Hanning window was applied. The transfer function and 
magnitude-squared coherence function were computed 
via standard nonparametric analysis per segment and 
then ensemble averaged (Bendat & Piersol, 2010; Kawada 
et al., 2019).

Since the amplitude of SNA varied considerably among 
animals due to different recording conditions, SNA was 
normalized in each animal and expressed in arbitrary 
units (AU) as follows. The minimum value of SNA ob-
tained from the step input protocol was subtracted from 
the signal. Next, SNA was normalized per animal such 
that the average of the dynamic gain values of the neural 
arc transfer function below 0.003 Hz was unity. The in-
verse of the normalization factor was then applied to the 
peripheral arc transfer function.

2.5  |  Estimation of a second-order 
Volterra model

For the nonlinear analysis, the 90-min output sig-
nals were preprocessed to remove very slow trends. 
The mean values were subtracted, a second-order 
Butterworth filter with a low-cut frequency of 
0.0005 Hz was applied in a bidirectional manner, and 
then the mean values were restored. After that, the 
90-min data were divided into a 60-min segment for 
identifying the model and a 30-min segment for test-
ing the model.

The input–output relationship was assumed to be de-
scribed by a second-order Volterra series according to our 
previous studies (Moslehpour et al.,  2015, 2016a,b) as 
follows:

where x(n) is the input signal after removing its mean 
value, and y(n) represents the output signal. The zeroth-
order kernel [h0] is the mean value of y(n). The first-order 
kernel [h1(n)] describes how the present and past input 
samples affect the present output sample. The second-
order kernel [h2(n1, n2)] describes how the products of two 
present and past input samples affect the present output 
sample. The system memory (M) was set to 12 samples (or 
120 s), which was significantly longer than the 25 s spec-
ified in our previous studies. The kernels were estimated 
via the previously reported, nonparametric, frequency-
domain method (Moslehpour et al., 2015, 2016a,b).

2.6  |  Estimation of a Uryson model

According to the results of our previous studies 
(Moslehpour et al.,  2015, 2016a,b), we examined a 
second-order Uryson model, which is a reduced form of 
the second-order Volterra model, to describe the input–
output relationship of the systems. The second-order 
Uryson model is expressed as follows:

where h0 and h1(n) are again the zeroth- and first-order 
kernels, respectively, and h2U(n) is the second-order ker-
nel of the Uryson model. We also examined a third-order 
Uryson model to describe the input–output relationship 
as follows:

(1)
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M
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M
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where h3U(n) is the third-order kernel of the Uryson model. 
The kernels were analogously estimated via the previ-
ously reported, nonparametric, frequency-domain method 
(Moslehpour et al., 2015, 2016a,b).

2.7  |  Prediction of the AP response to the 
stepwise CSP input

To understand how the estimated nonlinearity contrib-
uted to the prediction of AP, the AP response to the step-
wise CSP input was predicted. The CSP input was changed 
from 60 to 180 mmHg in increments of 20 mmHg. The step 
duration of the simulation was set to 150 s considering the 
memory of 120 s. The steady-state AP predictions were 
plotted against the CSP levels.

2.8  |  Statistical analysis

For the linear transfer function analysis, the gain and 
phase values were compared between 0.001 and 0.01 Hz 
using paired t-tests. The average of two values at f1 and 

f2 (where fk = k × f1) was used to represent the value near 
0.001 Hz. The average of three values at f12, f13, and f14 was 
used to represent the value near 0.01 Hz.

For the nonlinear analysis, R2 values between the 
measured and predicted outputs were compared among 
the linear model, Volterra model, and two Uryson mod-
els using paired t-tests with the significance levels ad-
justed for 4C2  =  6 comparisons via the Holm's method 
(Glantz, 2012). The R2 values were log-transformed before 
applying these tests for more normally distributed data 
(Bland & Altman, 1996).

3   |   RESULTS

Figure 1 shows typical time series obtained from one rat. 
CSP was perturbed according to a GWN signal. SNA and 
AP responded roughly reciprocal to the changes in CSP. As 
indicated by the histogram, CSP showed a quasi-Gaussian 
distribution centered at 120 mmHg. The histograms for 
SNA and AP did not appear Gaussian, suggesting the pres-
ence of nonlinear SNA and AP responses.

3.1  |  Linear transfer function analysis

Figure  2 illustrates the results of the linear transfer 
function analysis pooled over all eight rats. CSP had a 

(3)

y(n)=h0+

M
∑

k=0

h1(k)x(n−k)+

M
∑

k=0

h2U (k)x
2(n−k)

+

M
∑

k=0

h3U (k)x
3(n−k)

F I G U R E  1   Typical recording of carotid sinus pressure (CSP), sympathetic nerve activity (SNA), and arterial pressure (AP) during a 
gaussian white noise CSP input with a mean of 120 mmHg and standard deviation of 20 mmHg. The input signal was changed every 10 s. In 
the histogram, CSP showed a Gaussian distribution, whereas SNA and AP did not. AU, arbitrary units.
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relatively flat power spectral density in the frequency 
range between 0.00078 and 0.03 Hz (Figure  2a). For 
the total arc (Figure 2b), the dynamic gain tended to be 
higher at 0.001 Hz than at 0.01 Hz (Table  1). The slope 
of the dynamic gain between 0.001 and 0.01 Hz was 
−3.83 ± 1.73 dB/decade, which was significantly less nega-
tive compared to a first-order system (p < 0.001 against 
−20 dB/decade by one-sample t-test). The mean value of 
the dynamic gain at 0.001 Hz was near unity, but this was 
not due to the normalization of SNA because the total arc 
relates CSP to AP. The phase was near −π radians at the 
lowest frequency, reflecting the negative feedback nature 
of the total arc. The phase values were not significantly 
different between 0.001 and 0.01 Hz (Table 1). The coher-
ence was approximately 0.7 in the frequency range above 

0.003 Hz and reduced as the frequency decreased toward 
0.001 Hz.

For the neural arc (Figure 2c), the dynamic gain tended 
to be higher at 0.001 Hz than at 0.01 Hz (Table  1). The 
slope of the dynamic gain between 0.001 and 0.01 Hz was 
−2.31 ± 1.15 dB/decade. The phase values were close to −π 
radians, and did not differ significantly between 0.001 and 
0.01 Hz (Table 1). The coherence was slightly higher than 
0.7 in the frequency range above 0.004 Hz and reduced as 
the frequency decreased toward 0.001 Hz.

For the peripheral arc (Figure  2d), the dynamic gain 
tended to be higher at 0.001 Hz than at 0.01 Hz (Table 1). 
The slope of the dynamic gain between 0.001 and 0.01 Hz 
was −1.34 ± 0.74 dB/decade. In the present study, the 
mean value of the dynamic gain of the peripheral arc was 

F I G U R E  2   Pooled data of the carotid sinus pressure (CSP) input power (a), total arc transfer function (b), the neural arc transfer 
function (c), and peripheral arc transfer function (d). The lines indicate mean and mean ± SE values over eight rats. AU, arbitrary units.

0.001 Hz 0.01 Hz p value

Total arc

Gain, mmHg/mmHg 1.060 ± 0.197 0.625 ± 0.067 0.080

Log10(Gain) −0.026 ± 0.081 −0.218 ± 0.040 0.062

Phase, radians −3.23 ± 0.19 −3.46 ± 0.07 0.318

Neural arc

Gain, AU/mmHg 0.981 ± 0.045 0.781 ± 0.096 0.124

Log10(Gain) −0.011 ± 0.020 −0.127 ± 0.048 0.084

Phase, radians −3.18 ± 0.18 −3.18 ± 0.09 0.987

Peripheral arc

Gain, mmHg/AU 1.044 ± 0.153 0.852 ± 0.077 0.076

Log10(Gain) −0.018 ± 0.070 −0.085 ± 0.047 0.115

Phase, radians 0.02 ± 0.09 −0.29 ± 0.07 0.038

Data are expressed as mean ± SE values (n = 8 rats). p-values were determined by paired t-tests.

T A B L E  1   Gain and phase values of 
the linear transfer function
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near unity at 0.001 Hz when calculated using the normal-
ized SNA values because the dynamic gain of the total arc 
was near unity at 0.001 Hz. The phase value was close to 0 
radians at 0.001 Hz, and the phase of −0.29 ± 0.07 radians 
indicated a significant delay at 0.01 Hz (Table 1). The co-
herence was higher than 0.8 in the frequency range above 
0.003 Hz and slightly reduced as the frequency decreased 
toward 0.001 Hz.

3.2  |  Nonlinear analysis

Figure 3 depicts typical results of the nonlinear analysis 
for the total arc obtained from one rat (the same rat as 
shown in Figure  1). Figure  3a–d represents scatterplots 
between the estimated and measured AP values obtained 
from the training data. The second-order Volterra model 
showed the highest R2 value among the four models. 
Figure 3e–h represent scatterplots between the predicted 
and measured AP values obtained from the testing data. 
The second-order and third-order Uryson models showed 
higher R2 values than the linear and second-order Volterra 
models.

Table  2 summarizes the R2 values for the total arc 
pooled over all eight rats. In the training data, all three 
nonlinear models showed R2 values higher than that of 
the linear model. The R2 value was significantly higher 

for the second-order Volterra model compared to the 
second-order Uryson model, whereas there was no sig-
nificant difference in the R2 values between the second-
order Volterra model and the third-order Uryson model. 
The R2 values were not significantly different between 
the two Uryson models. In the testing data, the second-
order Volterra model did not show a higher R2 value than 
the linear model. The R2 values were higher for the two 
Uryson models than the linear model and the second-
order Volterra model. The R2 values were not significantly 
different between the two Uryson models.

Figure 4 illustrates the estimated kernels for the total 
arc pooled over all eight rats. The linear kernel showed 
negative deflections at 0 and 10 s (Figure 4a). The kernel 
returned to near zero at 20 s. The second-order Volterra 
kernel showed significant deflections only near the ori-
gin of both time axes (Figure  4b). In the diagonal view 
[h2(n, n)], corresponding to the system response to the 
squared input, the second-order Volterra kernel showed a 
profile similar to the linear kernel, but the most negative 
value tended to occur at 10 s. In the adjacent off-diagonal 
view [h2(n, n + 1)], corresponding to the system response 
to the product of the inputs one sample apart, the kernel 
showed a positive deflection at 0 s. In the next off-diagonal 
view [h2(n, n + 2)], corresponding to the system response 
to the product of the inputs two samples apart, the pos-
itive deflection of the kernel became smaller at 0 s. The 

F I G U R E  3   Scatter plots between measured and estimated arterial pressure (AP) values for a linear model (a), second-order Volterra 
model (b), second-order Uryson model (c), and third-order Uryson model (d) obtained from the training data of one rat. Scatter plots 
between measured and predicted AP values for the linear model (e), second-order Volterra model (f), second-order Uryson model (g), and 
third-order Uryson model (h) obtained from the testing data of the same rat. The red lines indicate the regression lines.
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second-order Uryson kernel resembled the diagonal view 
of the second-order Volterra kernel (Figure 4c). The third-
order Uryson kernel showed positive deflections at 0 and 
10 s (Figure  4d). The third-order Uryson kernel showed 
some fluctuations beyond 70 s, but this could be due to the 
estimation error.

As shown in Figure 5a, the relationship between CSP 
and measured AP during the stepwise CSP input ap-
proximates an inverse sigmoid curve in individual rats 
(Figure 5a, top) and pooled over all eight rats (Figure 5a, 
bottom). This static relationship for the total arc showed 
the thresholding property around 100 mmHg, above 
which AP started to decrease with increasing CSP, and 
the saturation property around 140 mmHg, above which 
AP did not decrease further with increasing CSP. The 
vertical lines indicate the midpoint pressure of a four-
parameter logistic function fitted to the measured 
data. The second-order and third-order Uryson models 
showed a convex relationship between CSP and pre-
dicted steady-state AP, capturing the thresholding prop-
erty only (Figure 5b and c). The second-order Volterra 
model, which did not improve the R2 value over the 
linear model in the testing data, yielded inconsistent 
steady-state AP predictions in response to the stepwise 
CSP input (not shown).

Table  3 summarizes the R2 values for the neural arc 
pooled over all eight rats. In the training data, all three 
nonlinear models showed higher R2 values compared to 
the linear model. There were no statistically significant 
differences in the R2 values of the three nonlinear mod-
els. In the testing data, the two Uryson models, but not 
the second-order Volterra model, showed higher R2 values 
compared to the linear model. The R2 values were not sig-
nificantly different between the second-order and third-
order Uryson models.

Figure  6 illustrates the estimated kernels for the 
neural arc pooled over all eight rats. The linear kernel 
showed a negative deflection at 0 s (Figure  6a). The 

kernel returned immediately to near zero at 10 s. The 
second-order Volterra kernel showed significant neg-
ative deflection only at the origin of both time axes 
(Figure 6b). In the diagonal view [h2(n, n)], the second-
order Volterra kernel showed a profile similar to the lin-
ear kernel. In the next off-diagonal views [h2(n, n + 1) 
and h2(n, n + 2)], the kernel did not show significant 
deflections. The second-order Uryson kernel resembled 
the diagonal view of the second-order Volterra kernel 
(Figure  6c). The third-order Uryson kernel showed a 
positive deflection at 0 s (Figure 6d).

For the peripheral arc, the R2 values derived from the 
linear model were 0.812 ± 0.030 and 0.805 ± 0.043 for the 
training and testing data, respectively. The nonlinear mod-
els did not yield better R2 values compared to the linear 
model in the testing data (not shown). Figure 7 illustrates 
the estimated linear kernel for the peripheral arc pooled 
over all eight rats. The kernel showed positive deflections 
at 0 and 10 s. Thereafter, the kernel returned to zero.

4   |   DISCUSSION

We expanded our analysis on the dynamic characteristics 
of the arterial baroreflex system in the frequency range 
down to 0.001 Hz, as compared with 0.01 Hz in most of our 
previous studies (Kawada & Sugimachi, 2016; Moslehpour 
et al., 2015, 2016a,b). The major findings are that (1) the dy-
namic gain of the linear transfer function was maintained 
or tended to be greater at 0.001 Hz relative to that at 0.01 Hz 
(Table 1), (2) the nonlinear kernels did not show significant 
deflections beyond 20 s for the total arc (Figure  4b) and 
beyond 10 s for the neural arc (Figure 6b), (3) the second-
order Uryson model yielded better predictions compared 
to the linear model and second-order Volterra model and 
as good predictions as the third-order Uryson model for 
the total arc and neural arc in the testing data (Tables 2 
and 3), (4) the Uryson models captured the thresholding 

Linear (L)
Second-order 
Volterra (V)

Second-order 
Uryson (U2)

Third-order 
Uryson

Training data 0.610 ± 0.031 0.739 ± 0.025 0.706 ± 0.031 0.710 ± 0.032

p-value vs. L 0.007† 0.046* 0.046*

p-value vs. V 0.036* 0.092

p-value vs. U2 0.407

Testing Data 0.543 ± 0.057 0.589 ± 0.055 0.645 ± 0.053 0.648 ± 0.055

p-value vs. L 0.294 0.025* 0.026*

p-value vs. V 0.045* 0.044*

p-value vs. U2 0.793

Data are expressed as mean ± SE values (n = 8 rats). p-values were determined by paired t-tests of log-
transformed R2 values with Holm's correction for multiple comparisons. Symbols * and † indicate p < 0.05 
and p < 0.01, respectively.

T A B L E  2   R2 values between 
measured and predicted outputs of the 
total arc
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F I G U R E  4   The pooled results of 
the nonlinear analysis of the total arc. (a) 
Linear kernel. (b) Second-order Volterra 
kernel is illustrated in the 3D view, front 
view, diagonal view, adjacent off-diagonal 
view, and next off-diagonal view. (c) 
Second-order Uryson kernel. (d) Third-
order Uryson kernel. The lines are mean 
and mean ± SE values over eight rats.
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property of the total arc (Figure 5b and c), and (5) the non-
linear models did not yield better predictions compared to 
the linear model for the peripheral arc.

4.1  |  Linear transfer function analysis

The baroreflex response to a static pressure input could 
be attenuated with time due to resetting of the barore-
ceptor transduction properties. One possible explana-
tion is that connective tissues residing in series with the 

baroreceptor endings elongate with time and reduce the 
effective strain sensed by the baroreceptors (Coleridge 
et al.,  1981; Mahdi et al.,  2013). Ionic and chemical 
mechanisms may also be involved in baroreceptor re-
setting (Chapleau et al.,  1989). Even in absence of the 
resetting of baroreceptors themselves, the conditioning 
pressure in the unilateral carotid sinus can cause ba-
roreflex resetting in the contralateral carotid sinus by a 
central mechanism alone (Tan et al., 1989). The barore-
ceptor or baroreflex resetting can occur with a condition-
ing pressure as short as 20 min (Coleridge et al.,  1981; 

F I G U R E  5   The relationship between carotid sinus pressure (CSP) and arterial pressure (AP) at a steady state during a stepwise CSP 
input. (a) Measured AP versus CSP. The vertical lines indicate the midpoint pressure of a four-parameter logistic function fitted to the data 
points. (b) Predicted AP versus CSP for the second-order Uryson model. (c) Predicted AP versus CSP for the third-order Uryson model. In 
each panel, data derived from individual rats are shown in different colors in the top plot. Mean and mean ± SE values pooled over eight rats 
are shown in the bottom plot.

Linear (L)
Second-order 
Volterra (V)

Second-order 
Uryson (U2)

Third-order 
Uryson

Training Data 0.719 ± 0.029 0.831 ± 0.015 0.817 ± 0.023 0.819 ± 0.026

p-value vs. L 0.006 † 0.021 * 0.020 *

p-value vs. V 0.662 0.761

p-value vs. U2 0.661

Testing Data 0.667 ± 0.051 0.719 ± 0.033 0.782 ± 0.039 0.776 ± 0.039

p-value vs. L 0.181 0.012 * 0.019 *

p-value vs. V 0.024 * 0.006 †

p-value vs. U2 0.633

Data are expressed as mean ± SE values (n = 8 rats). p-values were determined by paired t-tests of log-
transformed R2 values with Holm's correction for multiple comparisons. Symbols * and † indicate p < 0.05 
and p < 0.01, respectively.

T A B L E  3   R2 values between 
measured and predicted outputs of the 
neural arc
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F I G U R E  6   The pooled results of the 
nonlinear analysis of the neural arc. (a) 
Linear kernel. (b) Second-order Volterra 
kernel is illustrated in the 3D view, front 
view, diagonal view, and adjacent off-
diagonal views. (c) Second-order Uryson 
kernel. (d) Third-order Uryson kernel. 
The lines are mean and mean ± SE values 
over eight rats.
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Tan et al., 1989). In the present study, CSP was exposed 
to fluctuations over a wide frequency range (Figure 2a), 
but we did not observe substantial attenuation of the dy-
namic gain in the frequency range down to 0.00078 Hz, 
a frequency at which baroreceptor resetting could occur. 
As the input pressure continued changing every 10 s, ba-
roreceptor resetting might have been prevented, as in 
the case of exposure to a pulsatile conditioning pressure 
(Coleridge et al., 1981).

In considering the buffering effects of the arterial baro-
reflex on AP variability for 24 h, Mannoji et al. modeled 
the dynamic characteristics of the total arc by a first-order 
low-pass filter with a pure delay where the corner fre-
quency and the pure delay were set to 0.05 Hz and 0.85 s, 
respectively (Mannoji et al.,  2019). The model was con-
structed based on the transfer function estimated in the 
frequency range from 0.01 Hz to 0.5 Hz and assumed no 
significant changes in the dynamic gain in the frequency 
range below 0.01 Hz. In the present study, the change in 
dynamic gain in the total arc between 0.001 and 0.01 Hz 
was small relative to a first-order roll-off (−20 dB/decade). 
Hence, no major improvements are proposed regarding 
the first-order low-pass filter with a corner frequency of 
0.5 Hz to simulate AP regulation mediated by the arterial 
baroreflex. However, there is still room for argument that 
the total arc could show some dynamic characteristics in 
the frequency range far below 0.001 Hz.

4.2  |  Nonlinear analysis

The results of the nonlinear analysis for the total arc are 
basically consistent with our previous reports where the 
nonlinear kernels were estimated up to a memory length 
of 25 s from 10-min data during the application of a GWN 
input with a switching interval of 0.5 s (Moslehpour 
et al.,  2015, 2016a,b). In the present study, the second-
order Volterra kernel did not show significant deflections 
in memory length beyond 20 s, validating the presump-
tive memory length in the previous studies. The second-
order Volterra model provided a higher R2 value than the 
second-order Uryson model in the training data but not 
in the testing data (Table 2), suggesting overparameteriza-
tion and less reliability of the Volterra kernel estimation. 
The third-order Uryson model provided R2 values similar 

to the second-order Uryson model, indicating that the 
second-order Uryson model sufficed to describe the dy-
namic characteristics of the total arc (Table 2).

As indicated in Figure 5a, the input–output relationship 
between CSP and measured AP at steady state approximates 
an inverse sigmoidal curve. Mathematically, second-order 
nonlinear models can only capture either the thresholding 
or saturation property. In our previous studies and the pres-
ent study, the second-order Uryson model only captured 
the thresholding property (Figure  5b). While the third-
order Uryson model could capture both the thresholding 
and saturation properties, it captured only the threshold-
ing property (Figure  5c) in agreement with our previous 
results (Moslehpour et al., 2016b). We have reasoned that 
the GWN input did not sufficiently excite the barorecep-
tors in the saturation zone. Indeed, the midpoint pressure 
of the measured sigmoid curve was 126.6 ± 2.2 mmHg 
(Figure  5a), whereas the mean of the GWN input was 
120 mmHg, which made the number of input samples in 
the saturation zone less than that in the thresholding zone. 
Further studies are required to resolve the entanglement of 
the baroreflex static nonlinear properties.

For the neural arc, the linear and second-order Volterra 
kernel showed a significant deflection only at 0 s, suggest-
ing that the neural arc behaved as a purely static nonlinear 
system in the tested frequency range. Hence, from a neu-
ral arc perspective, identification in the frequency range 
as low as 0.01 Hz, which was done in our previous studies, 
suffices.

For the peripheral arc, the linear model yielded an 
R2 value of approximately 0.81 in both the training and 
testing data, and the nonlinear models did not improve 
the R2 value in the testing data, suggesting no significant 
nonlinear response of AP to the SNA input. However, 
it should be mentioned that the measured SNA was not 
GWN (Figure  1) and thus the nonlinear kernels of the 
peripheral arc may not have been well estimated. These 
results are consistent with our previous study using a 
shorter duration of data with CSP perturbation every 0.5 s 
(Moslehpour et al., 2015).

In this previous study, the linear model for the neural 
arc yielded an R2 value of approximately 0.77 in the test-
ing data, and the nonlinear models did not yield higher R2 
values compared to the linear model despite the known 
nonlinear properties of thresholding and saturation 

F I G U R E  7   Linear kernel of the 
peripheral arc. The lines are mean and 
mean ± SE values over eight rats.
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(Moslehpour et al., 2015). We were puzzled why the total 
arc showed significant nonlinearity whereas its subsys-
tems, the neural and peripheral arcs, did not show sig-
nificant nonlinearity. Measurement noise in SNA could 
have hampered the detection of the nonlinearity of the 
neural arc in our previous study. On the other hand, the 
linear model for the neural arc yielded an R2 value of ap-
proximately 0.67 in the testing data in the present study, 
and the two Uryson models increased the R2 values to ap-
proximately 0.78. As the data were processed every 10 s, 
the confounding effect of measurement noise could have 
been reduced, allowing the detection of the nonlinearity 
in the neural arc. In fact, the results for the total, neu-
ral, and peripheral arcs may be entirely consistent in the 
present study. The neural arc could be represented by a 
static system of the quadratic form (Figure 6), while the 
peripheral arc could be represented by a linear dynamic 
system of low-pass characteristics (Figure 7), suggesting 
that the total arc could be represented by a Hammerstein 
system (i.e., a static nonlinear system followed by a 
linear dynamic system). The linear and second-order 
Uryson kernels of the total arc were similar in shape and 
of low-pass characteristics (Figure 4a and c). Assuming 
first- and second-order kernels of the same shape, the 
total arc can indeed be reduced to a Hammerstein system 
for the 0.1 Hz resampled data (see Appendix). However, 
an Uryson model may be pertinent to describe the total 
arc over a wider frequency range up to 1 Hz.

4.3  |  Limitations

The number of animals was small (n = 8). The SE value of 
the dynamic gain at 0.001 Hz was three times greater than 
that at 0.01 Hz in the total arc. Increasing the number of ani-
mals could lead to statistical differences in the dynamic gain 
values between the two frequencies analyzed. However, the 
conclusion that the carotid sinus baroreflex largely retained 
the dynamic gain in the frequency range down to 0.001 Hz 
would still be the same. The vagi were cut bilaterally to re-
move vagal afferent signals and to achieve open-loop condi-
tions for the carotid sinus baroreflex. Accordingly, we could 
not assess the adaptation of the parasympathetic efferent 
arm from the heart rate response in the present data sets.

5   |   CONCLUSIONS

The dynamic characteristics of the carotid sinus baroreflex 
were examined in the frequency range down to 0.001 Hz. 
Linear analysis revealed that the dynamic gain at 0.001 Hz 
was maintained or tended to be greater compared with the 
dynamic gain at 0.01 Hz for the total arc, neural arc, and 

peripheral arc. Nonlinear analysis showed that second-
order Uryson models yielded better predictions compared 
to linear models for the total arc and neural arc. The lin-
ear model may however suffice to describe the dynamic 
characteristics of the peripheral arc. These pieces of in-
formation may be used to create baroreflex models that 
can add a component of autonomic control to a cardio-
vascular digital twin (Chakshu et al., 2021) for predicting 
acute hemodynamic responses to treatments and tailoring 
individual treatment strategies.
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APPENDIX A
A Hammerstein system is comprised of a nonlinear static 
subsystem followed by a linear dynamic subsystem. When 
the nonlinear part is of polynomial type, the Hammerstein 
system can be represented by the following equation.

where bk is the coefficient for the k-th polynomial term. The 
coefficient for the first-order polynomial term (b1) can be 
fixed to unity so that h1(n) can be uniquely identified. We 
estimated the polynomial coefficients and the linear kernel 
for the total arc using a nonlinear least-squares fitting 
method (Nelder & Mead,  1965). For a second-order 
Hammerstein model, the initial value of b2 was set to 0.01 
based on the relative magnitudes of the linear and second-
order Uryson kernels (Figure 4a and c). For the given b2, the 
linear kernel was estimated using standard nonparametric 
transfer function analysis, and the error between the esti-
mated output and measured output was calculated. This 
process was repeated for values of b2 around the initial value, 
and the b2 value and linear kernel that minimized the sum 
of squared errors were selected as the final estimates. A 
third-order Hammerstein model was likewise identified, 
starting with b2 and b3 set at 0.01 and 0.0001, respectively.
Table  4 shows the estimated polynomial coefficients. 
Figure 8a and b illustrate the linear kernels of the second-
order and third-order Hammerstein models, respectively. 
Both models yielded R2 values comparable to, but not better 
than, the second-order Uryson model (Table 5). Although 
the third-order Hammerstein model showed an R2 value 
higher than the second-order Hammerstein model in the 
training data, the R2 values were not significantly different 
between the two Hammerstein models in the testing data. 
Figure 8c and d illustrate the prediction of the AP response 
to the stepwise CSP input derived from the second-order 
and third-order Hammerstein models, respectively. The 
Hammerstein models up to third-order captured the thresh-
olding property of the total arc. These results quantitatively 
confirm that the total arc can be represented by a second-
order Hammerstein model for 0.1 Hz resampled data.

(A1)

y(n) = h0 +

M
∑

k=0

h1(k)
[

x(n − k) + b2x
2(n − k) + b3x

3(n − k) + ⋯

]

T A B L E  4   Polynomial coefficients for the second-order and 
third-order Hammerstein models

b2 (×10−2) b3 (×10−4)

Second-order 
Hammerstein

1.605 ± 0.296 –

Third-order Hammerstein 1.462 ± 0.385 −1.633 ± 0.752

Data are expressed as mean ± SE values (n = 8 rats).
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F I G U R E  8   Linear kernels of the (a) second-order and (b) third-order Hammerstein models of the total arc. The predicted relationships 
between carotid sinus pressure (CSP) and arterial pressure (AP) at a steady state during a stepwise CSP input for the (c) second-order and (d) 
third-order Hammerstein models. In (c) and (d), data for individual rats are shown in different colors in the left plot. Mean and mean ± SE 
values pooled over eight rats are shown in the right plot.

Linear (L)
Second-order 
Uryson (U2)

Second-order 
Hammerstein 
(H2)

Third-order 
Hammerstein

Training data 0.610 ± 0.031 0.706 ± 0.031 0.695 ± 0.030 0.715 ± 0.029

p-value vs. L 0.011 * 0.021 * 0.008 †

p-value vs. U2 0.064 0.161

p-value vs. H2 0.006 †

Testing data 0.543 ± 0.057 0.645 ± 0.053 0.654 ± 0.047 0.658 ± 0.048

p-value vs. L 0.005 † 0.014 * 0.013 *

p-value vs. U2 0.457 0.354

p-value vs. H2 0.345

Data are expressed as mean ± SE values (n = 8 rats). p-values were determined by paired t-tests of log-
transformed R2 values with Holm's correction for multiple comparisons. Symbols * and † indicate p < 0.05 
and p < 0.01, respectively.

T A B L E  5   R2 values between 
measured and predicted outputs of the 
total arc
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