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INTRODUCTION 
 
Copper (Cu), as an essential element, is the main metal 
used in bronze and brass [1–3]. It plays an indispensable 
role in both animals and plants [4] and also is widely 
used in pipes, wires, cooking utensils, ornaments and 
jewellery [5, 6]. Wide industrial use of Cu leads to 
increased copper pollution in the environment, 
enhancing the risk of copper toxicity in humans and 
animals [7–10]. Usually, workers who are continuously 
exposed to copper face high risk of lung damage, and  

 

lower respiratory function is associated with higher 
serum copper concentrations [11, 12]. It has been 
reported that oral overdose of copper sulphate (CuSO4) 
can repress body development and impair organic 
function [13]. Wistar rats fed on diets contaminated 
with high CuSO4 levels exhibit growth depression [14]. 
 
Oxidative stress results from an imbalance between 
the oxidative and antioxidant systems of cells and 
tissues, and is the result of excessive production of 
oxidative free radicals and related reactive oxygen 
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ABSTRACT 
 
At present, there are few studies focused on the relationship between copper (Cu) and oxidative stress, 
apoptosis, or inflammatory responses in animal and human lungs. This study was conducted to explore the 
effects of Cu on pulmonary oxidative stress, apoptosis and inflammatory responses in mice orally administered 
with 0 mg/kg (control), 10 mg/kg, 20 mg/kg, and 40 mg/kg of CuSO4 for 42 days. The results showed that CuSO4 
increased ROS production, and MDA, 8-OHdG and NO contents as well as iNOS activities and mRNA expression 
levels. Meanwhile, CuSO4 reduced the activities and mRNA expression levels of antioxidant enzymes (GSH-Px, 
CAT, and SOD) and GSH contents, and ASA and AHR abilities. Also, CuSO4 induced apoptosis, which was 
accompanied by decreasing Bcl-2, Bcl-xL mRNA expression levels and protein expression levels, and increasing 
Bax, Bak, cleaved-caspase-3, cleaved-caspase-9 mRNA, and protein expression levels, and Bax/Bcl-2 ratio. 
Concurrently, CuSO4 caused inflammation by increasing MPO activities and activating the NF-κB signalling 
pathway, and down-regulating the mRNA and protein expression levels of anti-inflammatory cytokines (IL-2, IL-
4, IL-10). In conclusion, the abovementioned findings demonstrated that over 10 mg/kg CuSO4 can cause 
oxidative stress, apoptosis, and inflammatory responses, which contribute to pulmonary lesions and 
dysfunction in mice. 
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species (ROS) [15]. It has been identified that high Cu 
levels have toxic effects including ROS generation 
leading to DNA damage [16], oxidative damage to 
biological molecules [17], and peroxidation of cell 
membrane lipids [18]. In addition, studies have shown 
that Cu overload leads to oxidative stress, and 
subsequently damages proteins, lipids and nucleic 
acids [19–23]. In vivo studies, high dietary copper can 
inhibit the serum, hepatic [24–27] and nephritic [28] 
antioxidase activities in ducklings, and induce 
oxidative stress in the brain [29, 30] and spleen [31] 
of chickens. Also, it has been reported that 
intradermal injection of 2% CuSO4 solution in the 
chicken can increase oxygen-derived free radicals, 
result in tissue damage and increase vascular 
permeability [32]. In in vitro studies, Cu and Cu 
compounds can cause oxidative stress via the 
production of ROS in human epithelial lung (A549) 
cells [33] and brain microvascular endothelial cells 
[34]. 
 
Additionally, increased intracellular ROS as a signal of 
oxidative stress, can break single or double strands of 
DNA and activate DNA-dependent protein kinase, 
leading to apoptosis [35, 36]. Reports of in vivo studies 
have shown that high Cu levels induce the higher 
percentage of apoptotic cells of the lymphoid organs [37] 
and kidney [38] in ducklings and lymphoid organs [39], 
kidney [40], and liver [41] in chickens. The findings of 
Guo et al. (2017) indicated that Cu can induce oxidative 
stress and apoptosis in the White Shrimp (Litopenaeus 
vannamei) [42]. Besides, it has been reported that Cu 
induces apoptosis by increasing the expression levels of 
cysteine aspartate specific protease-3(caspase-3), 
cysteinyl aspartate-specific protease9 (caspase-9), and 
Bcl-2 associated X protein(Bax) in the rat kidney and liver 
[43, 44]. In in vitro studies, the findings have indicated 
that Cu can induce mitochondrial dysfunction in primary 
culture of chicken hepatocytes [45] and apoptosis in 
human skin melanoma A-375 cell line [46] and Aedes 
C6/36 cells [47].  
 
Inflammation is a defensive response to stimulation and 
usually is beneficial for animals and human beings [48]: 
however, continued inflammation can cause damage to 
the body [49]. Inflammation can be triggered by a 
variety of factors, such as pathogens, damaged cells, 
toxic compounds, and irradiation [50]. In addition, 
oxidative damage can lead to cell metabolism disorders, 
which accelerates the production of inflammation [51]. 
In in vivo studies, the study has investigated the 
potential synergistic effects of chronic exposure to Cu 
in promoting inflammatory and oxidative events in 
mouse brains [52]. Brand et al. (2019) has found that 
inhalation of fumes containing Cu can induce 
asymptomatic systemic inflammation [53]. Pharyngeal 

aspiration of CuO nanoparticles causes lung 
inflammation and lung injuries in Wistar rats [54], 
however, no reports are focused on CuSO4-induced 
inflammation in the human and animal lung. 
 
The aforementioned studies suggest that oxidative stress, 
apoptosis, and inflammatory responses are the three main 
mechanisms involved in Cu-induced toxic effects on 
organs, tissues and cells, however, there are few studies 
focused on the relationship between Cu and oxidative 
stress, apoptosis, inflammatory responses in animal and 
human lungs. Therefore, the present study aims to assess 
pulmonary toxicity via oxidative stress, apoptosis and 
inflammatory responses after CuSO4 intake in mice by 
using methods of histopathology, qRT-PCR, and ELISA, 
flow cytometry, and western blot assay. 
 
RESULTS 
 
Histopathological changes in the lung 
 
Figure 1 shows the dose- and time-dependent lesions in 
lungs at the three CuSO4-treated groups. Histo-
pathologically, alveolar walls were thickened in varying 
degrees, mainly due to inflammatory cells infiltration 
and capillary congestion. The aforementioned histo-
pathological lesions were not observed in the control 
group. 
 
Changes of ROS production levels and Cu contents 
in the lung 
 
The ROS production levels were increased (p < 0.05 or 
p < 0.01) in the 20 and 40 mg/kg groups at day 21 of the 
experiment and in the three CuSO4-treated groups at 
day 42 of the experiment when compared to the control 
group. The Cu contents in the lung were increased (p < 
0.05 or p < 0.01) in the 20 and 40 mg/kg group at day 
42 of the experiment when compared to the control 
group. The results are illustrated in Figure 2. 
 
Changes of factors related to ROS production in the 
lung 
 
The contents of malondialdehyde (MDA) and 8-
hydroxy-2'-deoxyguanosine (8-OHdG) were significant-
ly higher (p < 0.05 or p < 0.01) in the three CuSO4-
treated groups at day 21 and 42 of the experiment than 
in the control group.  
 
The anti-superoxide anion (ASA) and anti-hydroxyl 
radical (AHR) abilities were significantly decreased (p 
< 0.05 or p < 0.01) in the 20 and 40 mg/kg groups at 
day 21 of the experiment and in the three CuSO4-treated 
groups at day 42 of the experiment when compared to 
the control group.  
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The nitric oxide (NO) content was significantly higher 
(p < 0.05 or p < 0.01) in the 40 mg/kg group at day 21 
of the experiment and in the 20 and 40 mg/kg groups at 
day 42 of the experiment than in the control group. The 
 

 
 

Figure 1. Histopathological changes in the lung at 21 and 
42 days of the experiment. (H&E ×400). Control group at 21 
and 42 days: no changes are observed. 10 mg/kg group at 21 
days: the inflammatory cells (  ) are obviously observed in 
alveolar walls. 20 mg/kg group at 21 days: the alveolar walls are 
slightly thickened with inflammatory cell infiltration (   ) 40 mg/kg 
group at 21 days: the alveolar walls are obviously thickened with 
inflammatory cell infiltration (   ). 10 mg/kg group at 42 days: the 
alveolar walls are slightly thickened with inflammatory cell 
infiltration (   ). 20 mg/kg group at 42 days: the alveolar walls are 
thickened with inflammatory cell infiltration (  ). 40 mg/kg group 
at 42 days: the alveolar walls are markedly thickened with 
inflammatory cell infiltration (   ). 

inducible nitric oxide synthase (iNOS) activities and 
mRNA expression levels were significantly increased  
(p < 0.05 or p < 0.01) in the 20 and 40 mg/kg groups at 
day 21 and 42 of experiment in comparison to the 
control group. The results are shown in Figure 3. 
 
Changes of oxidative damage parameters in the lung 
 
The superoxide dismutase (SOD) activities were 
significantly reduced (p < 0.05 or p < 0.01) in the 40 
mg/kg group at 21 and 42 days of the experiment and in 
the 20 mg/kg group at 42 days in comparison to the 
control group. The activities of Catalase (CAT), 
glutathione peroxidase (GSH-Px), Glutathione (GSH) 
contents, and the GSH/GSSG ratio were significantly 
decreased (p < 0.01) in the three CuSO4-treated groups at 
21 and 42 days. The oxidised glutathione (GSSG) content 
was significantly increased (p < 0.05 or p < 0.01) in the 20 
and 40 mg/kg groups at days 21 and 42. The mRNA 
expression levels of antioxidant enzymes (GSH-Px, CAT, 
MnSOD, and ZnSOD) were significantly lower (p < 0.05 
or p < 0.01) in the 40 mg/kg group at day 21 and in the 
three CuSO4-treated groups at day 42 than in the control 
group. The results are shown in Figure 4. 
 
Changes of apoptosis percentages in the lung 
 
The apoptotic percentages were elevated (p < 0.05 or p 
< 0.01) in the three CuSO4-treated groups at days 21 
and 42 of the experiment when compared to the control 
group, as shown in Figure 5. 
 
Changes of mRNA and protein expression levels of 
apoptosis-related mediators in the lung 
 
The mRNA expression levels of caspase 3, Bax, Bcl-2 
antagonist killer (Bak), and Bax/BcL-2, and the protein 
expression levels of cleaved-caspase 3, cleaved-caspase 
9, Bax, Bak, and Bax/BcL-2 were significantly higher 
(p < 0.01 or p <0.05) in the three CuSO4-treated groups 
at 21 and 42 days of the experiment than in the control 
group. The mRNA expression levels of the B-cell 
lymphoma-2 (Bcl-2) and Bcl-extra-large (Bcl-xL) were 
significantly decreased (p < 0.01 or p < 0.05) in the 
three CuSO4-treated groups at 21 and 42 days when 
compared to the control group. Also, protein expression 
levels of Bcl-2 and Bcl-xL were significantly decreased 
(p < 0.01) in the 40 mg/kg group at 21 days and in the 
20 and 40 mg/kg groups at 42 days in comparison to the 
control group, as shown in Figure 6. 
 
Changes of MPO activities and PGE2 contents in the 
lung  
 
The myeloperoxidase (MPO) activities and 
prostaglandin E2 (PGE2) contents were significantly 
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Figure 2. Changes of ROS production levels and Cu contents in the lung. (A) ROS production levels in the lung by flow cytometry at 
21 days of the experiment. (B) ROS production levels in the lung by flow cytometry at 42 days. (C) ROS production levels in the lung. (D) Cu 
contents in the lung at 42 days of the experiment. Data are presented with the mean± standard deviation (n=8). *p < 0.05, compared with 
the control group; **p < 0.01, compared with the control group. 

 

 
 

Figure 3. Changes of factors related to ROS production in the lung. (A). 8-OHdG and MDA contents levels in the lung at 21 and 42 
days of the experiment. (B) ASA and AHR activities in the lung at 21 and 42 days of the experiment. (C) NO contents, iNOS activities, and 
mRNA expression in the lung at 21 and 42 days of the experiment. Data are presented with the mean± standard deviation (n=8). *p < 0.05, 
compared with the control group; **p < 0.01, compared with the control group. 
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higher (p < 0.01) in the 20 and 40 mg/kg groups at days 
21 and 42 of the experiment than in the control group, 
as shown in Figure 7. 
 
Changes of mRNA expression and protein 
expression levels of NF-κB and IκB in the lung 
 
The mRNA and protein expression levels of nuclear 
factor-kappa B (NF-κB) were significantly higher (p < 
0.01 or p < 0.05) in the 20 and 40 mg/kg groups at 21 
and 42 days of the experiment than in the control group. 
The mRNA and protein expression levels of inhibitory 

kappa B (IκB) were significantly decreased (p < 0.01 or 
p < 0.05) in the 20 and 40 mg/kg groups at 21 and 42 
days when compared to the control group. The results 
are shown in Figure 8. 
 
Changes in mRNA expression and protein 
expression levels of inflammatory cytokines in the 
lung 
 
The mRNA expression levels and protein expression 
levels of cyclooxygenase-2 (COX-2), interleukin-1β 
(IL-1β), interleukin-8 (IL-8), and interleukin-6 (IL-6)

 

 
 

Figure 4. Changes of oxidative damage parameters in the lung. (A) Changes of antioxidant enzyme activities, GSH and GSSG contents, 
and GSG/GSSG ratio in the lung at 21 and 42 days of the experiment. (B) Changes of mRNA expression levels of antioxidant enzymes in the 
lung. Data are presented with the mean± standard deviation (n=8). *p < 0.05, compared with the control group; **p < 0.01, compared with 
the control group. 
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were significantly increased (p < 0.01 or p < 0.05) in the 
20 and 40 mg/kg groups in comparison to the control 
group at 21 and 42 days of the experiment. 
 
The mRNA and protein expression levels of tumour 
necrosis factor-α (TNF-α) were significantly higher (p < 
0.01) in the 40 mg/kg group at 21 days of the 
experiment and in the 20 and 40 mg/kg groups at 
42 days than in the control group. The mRNA 
expression levels and protein expression levels of 
interleukin-2 (IL-2), interleukin-4 (IL-4), and 
interleukin-10 (IL-10) were significantly decreased (p < 
0.01 or p < 0.05) in the 20 and 40 mg/kg groups at 21 
days and in the three CuSO4-treated groups at 42 days 
when compared to in the control group. The results are 
shown in Figures 9 and 10. 
 
DISCUSSION 
 
In summary, this study firstly found that CuSO4 could 
induce oxidative stress, apoptosis, and inflammatory 
responses in the mouse lung. 

We observed histopathological changes induced by 
CuSO4, alveolar walls were thickened in varying 
degrees with the dose- and time-dependent lesions, 
which mainly due to inflammatory cells infiltration and 
capillary congestion. Also, the pulmonary injuries were 
strongly consistent with the accumulation of Cu in the 
lung. It has been suggested that one possible molecular 
mechanism involved in the Cu toxicity is the formation 
of ROS, which leads to lesions via oxidative damage 
[55]. Our results showed that CuSO4 induced the 
production of ROS in the pulmonary tissue, and then 
excessive ROS caused oxidative damage to DNA 
(increased 8-OHdG contents) and lipid peroxidation 
(increased MDA contents). To reveal causes of the 
increased ROS, we tested the ASA and AHR abilities. 
The results showed that ASA and AHR abilities were 
reduced, which indicated that CuSO4 decreased the 
capacity of the lung to scavenge ROS and disturbed the 
dynamic balance between ROS production and 
elimination of ROS. Once the antioxidant function is 
impaired, free radicals (including oxygen free radicals, 
hydroxyl free radicals and nitrogen free radicals, etc.)

 

 
 

Figure 5. Changes of apoptosis percentages in the lung. (A) Apoptosis in the lung at 21 days of the experiment. (B) Apoptosis in the 
lung at 42 days. (C) Percentage of apoptosis in the lung. Data are presented with the mean± standard deviation (n=8). *p < 0.05, compared 
with the control group; **p < 0.01, compared with the control group. 
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are accumulated, which then causes oxidative stress in 
the body [56]. Kubbw et al. has found that rats 
consuming the zinc-deficient (0.5 mg/kg), high-copper 
(over 15 mg/kg) diet have the lowest weight gain and 
have an increase in endogenous free radical production 

in lung [57]. We also found an increase in the NO 
contents, iNOS enzyme activities, and mRNA 
expression levels, leading to oxidative damage in the 
lung. NO is an important nitrogen free radical in the 
body, which can also induce inflammation [58]. 

 

 
 

Figure 6. Changes of protein and mRNA expression levels of apoptotic related mediators in the lung at 21 and 42 days of the 
experiment. (A) Western blot assay of apoptosis-related mediators at 21 days. (B) Western blot assay of apoptosis-related mediators at 
42 days. (C) The relative protein expression levels of apoptosis-related mediators. (D) The relative mRNA expression levels of apoptosis-
related mediators. Data are presented with the mean± standard deviation (n=8). *p < 0.05, compared with the control group; **p < 0.01, 
compared with the control group. 
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The increased ROS may indicate that the functioning of 
the antioxidant defence system is weakened [59], 
including decreased antioxidant enzymes (SOD, CAT, 
and GSH-PX) activities and non-enzymatic scavenger 
(GSH) content. SOD and CAT are important anti-

oxidant enzymes that play a major role in ROS 
clearance [60]. GSH is an important intracellular 
antioxidant in alveolar epithelial cells [61]. GSH-
dependent enzymes such as GSH-PX can remove 
hydrogen peroxide by oxidising GSH to GSSG, but 

 

 
 

Figure 7. Changes in MPO activities and PGE2 contents in the lung at 21 and 42 days of the experiment. Data are presented 
with the mean± standard deviation (n=8). *p < 0.05, compared with the control group; **p < 0.01, compared with the control group. 

 

 
 

Figure 8. Changes of mRNA expression and protein expression levels of NF-κB and IκB in the lung at 21 and 42 days of the 
experiment. (A) Western blot assay of NF-κB and IκB at 21 days. (B) Western blot assay of NF-κB and IκB at 42 days. (C) The relative protein 
expression levels of NF-κB and IκB. (D) The relative mRNA expression levels of NF-κB and IκB. Data are presented with the mean± standard 
deviation (n=8). *p < 0.05, compared with the control group; **p < 0.01, compared with the control gro 
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Figure 9. Changes of mRNA expression levels and protein expression levels of pro-inflammatory cytokines in the lung at 21 
and 42 days of the experiment. (A) Western blot assay of pro-inflammatory cytokines at 21 days. (B) Western blot assay of pro-
inflammatory cytokines at 42 days. (C) The relative protein expression levels of pro-inflammatory cytokines. (D) The relative mRNA 
expression levels of pro-inflammatory cytokines. Data are presented with the mean± standard deviation (n=8). *p < 0.05, compared with the 
control group; **p < 0.01, compared with the control group. 
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ROS can oxidise GSH into GSSG, too much GSSG will 
weaken the protective effect of GSH, and the 
dysfunction of GSH will also aggravate the damage to 
organs [62, 63]. In the present study, the results showed 
that CuSO4 decreased CAT, SOD, and GSH-Px 
activities, GSH contents, and also the GSH/GSSG ratio 
was decreased in the lung, which were consistent with 
the report that copper can enhance oxidative stress, 
reduce the activities of antioxidant enzymes (SOD and 
CAT) and decrease the contents of GSH in brain tissues 
of chicken [51]. Cinar et al. (2014) has found that oral 
intake of CuSO4 can induce oxidative stress by reducing 
the activity of enzymes such as CAT and SOD in broiler 
serum [64]. Other studies have shown that the reduced 
intracellular GSH is associated with activation of NF-
κB [65]. The further to explore the molecular 
mechanism of CuSO4-decreased antioxidant enzyme 
activities, we also detected mRNA expression levels of 

antioxidant enzymes in the lung. The results indicated 
that the mRNA expression levels of CuZnSOD, 
MnSOD, CAT, and GSH-PX were lower in the CuSO4-
treated groups than in the control group, which were 
consistent with the reduction of these antioxidant 
enzyme activities. Decreased activities and mRNA 
expression levels of antioxidant enzymes promote 
oxidative stress, which plays critical roles in the patho-
genesis of various diseases [66, 67]. 
 
In conclusion, our results showed that CuSO4 induces 
oxidative stress in the lung by promoting excessive 
ROS production and increased NO contents, and 
reducing antioxidant enzyme activities, GSH contents, 
and the GSH/GSSG ratio, which contribute to 
pulmonary lesions and dysfunction. Also, this study is 
the first to be focused on CuSO4-induced oxidative 
stress in the lung. 

 

 
 

Figure 10. Changes of mRNA expression levels and protein expression levels of anti-inflammatory cytokines in the lung at 21 
and 42 days of the experiment. (A) Western blot assay of anti-inflammatory cytokines at 21 days. (B) Western blot assay of anti-
inflammatory cytokines at 42 days. (C) The relative protein expression levels of anti-inflammatory cytokines. (D) The relative mRNA 
expression levels of anti-inflammatory cytokines. Data are presented with the mean± standard deviation (n=8). *p < 0.05, compared with the 
control group; **p < 0.01, compared with the control group. 
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It has been known that ROS and oxidative stress play 
important roles in the early stages of apoptosis [68]. 
Next, we explored whether, or not, apoptosis was also 
involved in the mechanism of CuSO4-cuased toxicology 
in the lung. After CuSO4 treatment, the results indicated 
that the percentage of apoptosis was increased in the 
CuSO4-treated groups at 21 and 42 days. Apoptosis is a 
process controlled by multiple genes, such as bcl-2 
family and caspase family, which are conserved among 
species [69]. As a group of important apoptotic 
regulators, the bcl-2 family can indirectly regulate 
caspases in relevant apoptotic pathways [70, 71]. 
Results in the present study showed that CuSO4 could 
cause a significant decrease in the protein expression 
levels and mRNA expression levels of anti-apoptotic 
proteins (Bcl-2 and Bcl-xL), while the protein and 
mRNA expression levels of pro-apoptotic proteins (Bax 
and Bak) were significantly increased in the lung. Hsien 
et al. (2008) has also observed that Cu-induced 
apoptosis was accompanied by the increased Bax and 
Bak expression levels and a decreased Bcl-2 expression 
level in neuroblastoma cells [72]. We also observed an 
increased Bax/Bcl-2 ratio in this research. Lee et al. 
(2008) has indicated that the increase of the ratio 
between Bax and Bcl-2 is the key point in the 
occurrence of apoptosis [73]. This increased Bax/Bcl-2 
ratio leads to changes in mitochondrial membrane 
permeability and the release of apoptotic proteins, such 
as Cyt c [74]. In addition, excessive ROS production 
with decreasing concomitant in GSH contents also leads 
to mitochondrial membrane permeability and induction 
of apoptotic cell death in cultured cells [75]. Cyt c can 
cleave and activate caspase-9, which then activates 
downstream caspase-3 and cell apoptosis [76]. In this 
study, CuSO4 increased mRNA expression levels of 
caspase-9 and -3 and protein expression levels of 
cleaved-caspase-9 and -3, which contributed to 
apoptotic occurrence. The reports have also found that 
apoptosis is caused by copper-induced ROS formation 
in MCF7 cells [77], rat liver [78], and chicken intestine 
[79]. In summary, the present study was the first in 
which CuSO4-induced apoptosis was observed in the 
lung, and this was accompanied by decreasing Bcl-2, 
Bcl-xL mRNA expression levels and protein expression 
levels, and increasing Bax, Bak, caspase-3, and caspase-
9 mRNA expression levels and protein expression 
levels, and the Bax/Bcl-2 ratio. 
 
Inflammation is also a crucial toxicological mechanism 
of copper [80]. Myeloperoxidase (MPO) activity is used 
to measure the inflammatory degree in tissues and 
organs, and our results suggested that MPO activities 
were increased, which was consistent with the increased 
MPO arising from excessive accumulation of ROS [81]. 
This study is the first to investigate the mechanism of 
NF-κB activation in pulmonary inflammation by CuSO4 

intake in mice. NF-κB is considered to be a major 
cellular transcription factor in inflammatory processes, 
and NF-κB activation has been identified as an 
important feature of inflammatory pulmonary diseases 
[82, 83]. Normally, NF-κB and IκB combine to form an 
inactive NF-κB-IκB complex [84]. In this study, The 
expression levels of IκB mRNA and protein were 
decreased, and the expression levels of NF-κB mRNA 
and NF-κB protein were increased, which demonstrated 
that CuSO4-induced IκB degradation promoted the 
activation of NF-κB. Concurrently, we observed that 
CuSO4 increased mRNA and protein expression levels 
of pro-inflammatory cytokines, such as TNF-α, COX-2, 
IL-6, IL-1β, and IL-8, which was in line with activation 
of the transcription factor NF-κB pathway. Our results 
are consistent with the report that copper can increase 
the expression levels of NF-κB, COX-2, IL-1β, TNF-α, 
IL-1β, and IL-8 mRNA and protein and exacerbate the 
damage and oxidative stress in zebrafish larvae tissues 
[85, 86]. 
 
It is well known that COX-2 is a classic pro-
inflammatory cytokine, and plays an important role in 
the regulation of pulmonary inflammation [87]. As a 
downstream product of COX-2, PGE2 can not only 
induce the aggregation of inflammatory cells but also 
accelerate the process of peripheral inflammatory 
response induced by harmful stimuli [88]. In the present 
study, we observed that the PGE2 contents as well as 
the COX-2 mRNA and protein expression levels were 
significantly increased. Lu et al. (2008) has reported 
that intake of copper can up-regulate the expression of 
inflammation-related genes in the mouse brain, such as 
COX-2 and TNF-α [89]. iNOS, a proinflammatory 
marker in lung tissue, plays an essential role in 
exacerbating inflammation and can catalyse the 
production of NO, while excessive NO can increase the 
permeability of blood vessels and promote the 
infiltration of inflammatory cells [90–93]. In the present 
study, we found that CuSO4 increased the activities and 
mRNA expression levels of iNOS, and NO contents, 
which promoted lung inflammation. 
 
On the contrary, IL-2, IL-4, and IL-10 are recognised as 
cytokines able to mediate immune suppression, which 
can inhibit the production of Th1 cells and reduce the 
release of pro-inflammatory cytokine [94, 95]. In the 
stage of acute pulmonary inflammation, IL-10 has 
significant anti-lymphocytes and neutrophilic infiltra-
tion [96]. Our results showed that CuSO4 decreased the 
mRNA and protein expression levels of IL-2, IL-4, and 
IL-10. 
 
In conclusion, CuSO4 can increase MPO activities, 
activate the NF-κB pathway, and down-regulate anti-
inflammatory cytokines, indicating that imbalance 
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between pro-inflammatory and anti-inflammatory 
cytokine induces inflammatory responses in the lung. 
CuSO4-induced inflammatory responses contribute to 
pulmonary lesions and dysfunction. 
 
MATERIALS AND METHODS 
 
Experimental animals and diets 
 
A total of 240 four-week-old ICR mice (half male and 
half female) obtained from the Chengdu Dossy 
Experimental Animals were used in the present study. 
The animals were housed in separate polypropylene 
cages, and diet and water were provided ad libitum 
throughout the experiment. The mice were fed a full-
price diet provided by Dossy. After a week of rest and 
acclimatisation, mice were equally divided into four 
different groups (each with n = 60). The control group 
was given orally distilled water only, groups I, II, and 
III were given CuSO4 orally at the dose of 10, 20, and 
40 mg/kg body mass, respectively. Mice were 
administered their respective doses daily by gavage for 
42 consecutive days, and the gavage volume was 
1 ml/100 g body mass. 
 
The animal protocols and all procedures of the 
experiment were performed in compliance with the laws 
and guidelines of Sichuan Agricultural University 
Animal Care and Use Committee. 
 
Histopathological observation of the lung 
 
At 21 and 42 days, eight mice (male female half) in 
each group were humanely killed and their lungs were 
removed, fixed in 4% paraformaldehyde solution, 
dehydrated with increasing concentrations of ethanol, 
cleared with xylene and embedded in paraffin. And then 
lungs were serial sectioned at 5μm thickness, stained 
with hematoxylin and eosin (H&E), and observed by 
optical microscopy. 
 
Determination of pulmonary Cu contents 
 
At 42 days of the experiment, eight mice (male female 
half) in each group were humanely killed and their 
lungs were removed, weighed, dried, and collected for 
the determination of the Cu contents. The Cu contents 
in the lung were measured according to a reference 
method [97]. 
 
Determination of the oxidative and anti-oxidative 
parameters in the lung 
 
At 21and 42 days of age during the experiment, eight 
mice (male female half) in each group were humanely 
sacrificed, and the lungs were immediately stored at 4 °C 

cold phosphate buffer saline in a chilled homogeniser, 
and centrifuged at 3000 rpm for 15 min. Thereafter, the 
supernatant was transferred into new Eppendorf tubes. 
The commercial kits were purchased from Nanjing 
Jiancheng Bioengineering Institute (Nanjing, China) and 
used to detect ASA (Cat. No. A052-1) and AHR (Cat. 
No. A018), MDA (Cat. No. A003-1), CAT (Cat. No. 
A007-1), T-SOD (Cat. No. A001-1), GSH-Px (Cat. No. 
A005), and GSH (Cat. No. A061-1) according to the 
manufacturer’s instructions. Pulmonary 8-OHdG levels 
were measured using ELISA according to the 
manufacturer’s instructions. 
 
Detection of MPO, iNOS activities, and NO and 
PGE2 contents 
 
At 21 and 42 days into the experiment, eight mice (half 
male, half female) in each group were humanely 
sacrificed, and the lungs were immediately stored at  
4 °C cold phosphate buffer saline in a chilled 
homogeniser, and centrifuged at 3500 rpm for 10 min. 
Thereafter, the supernatant was transferred into new 
Eppendorf tubes. The commercial kits were purchased 
from Nanjing Jiancheng Bioengineering Institute 
(Nanjing, China) and used to detect MPO (Cat. No. 
A044), iNOS (Cat. No. A014-1), and NO (Cat. No. 
A013-2) according to the manufacturer’s instructions. 
Pulmonary PGE2 levels were measured using ELISA 
according to the manufacturer’s instructions. 
 
Apoptosis and ROS analysis by flow cytometry 
 
At 21and 42 days, eight mice (half male, half female) in 
each group were humanely sacrificed, and the lungs 
were immediately stored at 4 °C phosphate buffer 
saline, and then were cut up to make a cell suspension, 
which was filtered through a 350-mesh nylon screen. 
The cells were washed twice with ice-cold phosphate 
buffer saline (PBS, pH 7.2-7.4), and then suspended in 
PBS at a concentration of 1 × 106 cells/ml. 
 
Thereafter, a total of 100 µL cell suspension were 
transfer into a 5 mL culture tube and centrifuged at 
800g for 5 min for apoptosis testing. PE Annexin V and 
7-aminoactinomycin (7-AAd) staining were used to dye 
the specimens. The mixture was gently shaken and then 
left in the dark for 15 minutes. Then 400 µl binding 
buffer was added to the tube, and the apoptosis rate of 
lung cells was detected and analysed by flow cytometry 
(FACS Calibur, BD, USA). The results were analysed 
using the Mod Fit LT for Mac V3.0 computer program. 
 
Some 300 μL of the aforementioned cell suspensions 
were taken and transferred to another centrifuge tube, 
and stained with 10 μM DCFH- DA for 20 min at 37 °C 
for ROS testing. Then the cells were washed with PBS
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Table 1. List of primers of the antioxidant enzymes in qRT-PCR analysis. 

Gene symbol Accession number Primer sequence (5'–3') Product size Tm(°C) 
CuZn- SOD NM205064 F: CGCAGGTGCTCACTTTAATCC 119bp 57 
  R: CTATTTCTACTTCTGCCACTCCTCC   
Mn-SOD NM204211 F: CACTCTTCCTGACCTGCCTTACG 146bp 57 
  R: TTGCCAGCGCCTCTTTGTATT   
CAT  NM001031215  F: CTGTTGCTGGAGAATCTGGGTC  160bp 61 
  R: TGGCTATGGATGAAGGATGGAA    
GSH-Px NM001277853 F:  TTGTAAACATCAGGGGCAAA  140bp 61 
  R: TGGGCCAAGATCTTTCTGTAA   

 
Table 2. List of primers of the apoptotic genes in qRT-PCR analysis. 

Gene symbol Accession number Primer sequence (5′–3′) Product size Tm (°C) 
caspase-3 NM_009810 F: ACATGGGAGCAAGTCAGTGG 149bp 60 
  R: CGTCCACATCCGTACCAGAG   
caspase-9 NM_015733 F: GAGGTGAAGAACGACCTGAC 103bp 57 
  R: AGAGGATGACCACCACAAAG   
Bax NM_007527 F: ATGCGTCCACCAAGAAGC 163bp 61 
  R: CAGTTGAAGTTGCCATCAGC   
Bak NM_007523 F: CGCTACGACACAGAGTTCCA 175bp 60 
  R: CACGCTGGTAGACGTACAGG   
Bcl-2 NM_009741 F: AGCCTGAGAGCAACCCAAT 159bp 59 
  R: AGCGACGAGAGAAGTCATCC   
Bcl-xL NM_009743 F: TGTGGATCTCTACGGGAACA 117bp 59 
  R: AAGAGTGAGCCCAGCAGAAC   

 
Table 3. List of primers of the inflammatory mediators in qRT-PCR analysis. 
Gene symbol Accession number Primer sequence (5′–3′) Product 

size 
Tm (°C) 

NF-κB NM205134 F: CTGAAACTACTGATTGCTGCTGGA 179bp 62 
  R: GCTATGTGAAGAGGCGTTGTGC   
IκB NM204588 F:TGAGGACGAGGACGATAAGC 146bp 58.8 
  R: ACAACGTGATCGCCATTACCTG   
COX-2 NM001167718 F: CTTAAATTGAGACTTCGCAAGGATG 165bp 62 
  R: TGGGACCAAGCCAAACACCT   
IL-1β Y15006 F: CAGCCTCAGCGAAGAGACCTT 106bp 60 
  R: CACTGTGGTGTGCTCAGAATCC   
IL-8 HM179639 F: CTGGCCCTCCTCCTGGTT 105bp 60 
  R: GCAGCTCATTCCCCATCTTTAC   
IL-6 NM001314054.1 F:ACAAAGCCAGAGTCCTTCAGAG 86bp 60 
  R:GCCACTCCTTCTGTGACTCC   
TNF-α NM204267 F: CCCCTACCCTGTCCCACAA 100bp 58 
  R: TGAGTACTGCGGAGGGTTCAT   
IL-2 NM_001303244.1 F: TGTGGAATGGCGTCTCTGTC 125bp 60 
  R: AGTTCAATGGGCAGGGTCTC   
IL-4 NM_021283.2 F: ATGGATGTGCCAAACGTCCT 78bp 60 
  R: AAGCACCTTGGAAGCCCTAC   
IL-10 NM_010548.2 F: TGCCTGCTCTTACTGACTGG 79bp 60 
  R: CTGGGAAGTGGGTGCAGTTAT   
β-actin NM_007393 F:GCTGTGCTATGTTGCTCTAG 117bp 60.9 
  R:CGCTCGTTGCCAATAGTG   
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 and centrifuged (600g, 5 min) once more. The 
supernatant was discarded, and cells were resuspended 
in 0.5 ml PBS and counted by flow cytometry (FACS 
Calibur, BD, USA). 
 
Determination of mRNA expression levels of 
antioxidant enzymes, inflammatory cytokines, and 
apoptotic proteins in the lung by qRT-PCR 
 
At 21 and 42 days, lungs of eight mice in each group 
(half male, half female) were removed, stored in 
liquid nitrogen, and then Total RNA was extracted 
with the RNAiso Plus, and reverse transcribed into 
cDNA by using the Prim-Script™ RT reagent Kit as 
per the manufacture’s specification. The gene 
sequences of CuZnSOD, MnSOD, CAT, GSH-PX, 
Caspase 3, Caspase 9, Bax, Bak, Bcl-2, Bcl-xL, NF-
κB, IκB, COX-2, IL-1β, IL-8, IL-6, and TNF-α IL-2, 
IL-4 and IL-10 were retrieved from NCBI, and the 
primers of these genes (Tables 1–3) were synthesised 
by Sangon Biotech (Shanghai, China). β-actin of mice 
was chosen as the reference gene. qRT-PCR reaction 
conducted on a C1000 Thermal Cycler (BIO RAD, 
USA) by using the SYBR® Premix Ex TaqII (Takara, 
China) in accordance with the standard steps. All data 
output from the qRT-PCR experiments were analysed 
using the 2-ΔΔCT method. 
 
Determination of protein expression levels of 
apoptotic proteins and inflammatory cytokines in 
the lung by Western blot assay 
 
At 21 and 42 days, lungs of eight mice in each group 
(half male, half female) were removed, stored in liquid 
nitrogen, and then homogenised in liquid nitrogen by 
using a mortar and pestle. The total protein in each 
sample was carried out using RIPA lysis buffer, and 
protein contents of lungs were measured by using the 
BCA Protein Assay kit. Then the protein samples were 
separated by sodium dodecyl sulphate-polyacrylamide 
gel electrophoresis (SDS-PAGE) (10%-15% gels), and 
protein standards were used as molecular weight 
marker. After electrophoresis, proteins were transferred 
to nitrocellulose filter membranes. The membranes 
were blocked with 5 % non-fat-dried milk in phosphate-
buffered saline with 0.1 % Tween 20 (PBST) for 1 h. 
After primary antibodies were incubated overnight at  
4 °C, the membranes were washed three times with PBS 
for 10 min and incubated with biotin-conjugated 
secondary antibodies for 1 h with gentle shaking and 
washed again with PBST. Blots were visualised by 
ECLTM (Bio-Rad, Hercules, CA, USA) and X-ray film. 
The detected indicators were: cleaved-caspase-3, 
cleaved-caspase-9, Bax, Bak, Bcl-2, Bcl-xL, NF-κB, 
IκB, COX-2, IL-1β, IL-8, IL-6, TNF-α, IL-2, IL-4, and 
IL-10. 

Statistical analysis 
 
The significance of difference was analyzed by the 
SPSS version 17.0. The results were shown as means ± 
standard deviation. The analysis was performed with the 
one-way analysis of variance (ANOVA). The 
differences between control and experimental group(s) 
at p < 0.05 were considered significant. 
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