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Abstract: In this study; a spectrum–effect relationship analysis combined with a high-performance
liquid chromatography–mass spectrometry (LC–MS) analysis was established to screen and identify
active components that can inhibit thrombin and factor Xa (THR and FXa) in Salviae Miltiorrhizae
Radix et Rhizoma–Chuanxiong Rhizoma (Danshen–Chuanxiong) herbal pair. Ten potential active
compounds were predicted through a canonical correlation analysis (CCA), and eight of them were
tentatively identified through an LC–MS analysis. Furthermore; the enzyme inhibitory activity of
six available compounds; chlorogenic acid; Z-ligustilide; caffeic acid; ferulic acid; tanshinone I and
tanshinone IIA; were tested to verify the feasibility of the method. Among them; chlorogenic acid
was validated to possess a good THR inhibitory activity with IC50 of 185.08 µM. Tanshinone I and
tanshinone IIA are potential FXa inhibitors with IC50 of 112.59 µM and 138.19 µM; respectively.
Meanwhile; molecular docking results show that tanshinone I and tanshinone IIA; which both have
binding energies of less than −7.0 kcal·mol−1; can interact with FXa by forming H-bonds with
residues of SER214; GLY219 and GLN192. In short; the THR and FXa inhibitors in the Danshen–
Chuanxiong herbal pair have been successfully characterized through a spectrum–effect relationship
analysis and an LC–MS analysis.

Keywords: Danshen–Chuanxiong herbal pair; thrombin inhibitors; factor Xa inhibitors; spectrum–
effect relationship analysis

1. Introduction

Thrombin (THR) and factor Xa (FXa), which are members of the Serine Protease family,
play critical roles in the coagulation cascade [1]. In thrombotic diseases, THR catalyzes
the transformation of soluble fibrinogen into insoluble fibrin in response to a vascular
injury, leading to the formation of a clot [2]. FXa is located at the center of endogenous and
exogenous coagulation pathways. It is worth mentioning that the formation of THR can
also be reduced by inhibiting its activity to prevent the expansion of a thrombus [3]. In
reality, thrombotic disease, a common type of cardiovascular disease, has gradually become
a threat to public health [4]. Due to the importance of THR and FXa in the formation of
thrombosis, inhibiting their activity is a feasible strategy for the treatment of thrombotic
diseases [5]. At present, anticoagulant drugs including argatroban (THR inhibitor) and
rivaroxaban (FXa inhibitor) are used clinically [6,7], but risks such as drug resistance and
gastrointestinal bleeding may be caused by these inhibitors [8]. Therefore, it has become a
trend to search for THR and FXa inhibitors in natural sources to provide a reference for the
development of anticoagulant drugs [9].
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Danshen (Salviae Miltiorrhizae Radix et Rhizoma, DS) and Chuanxiong (Chuanxiong
Rhizoma, CX) are both effective for invigorating blood circulation and eliminating blood
stasis [10]. DS and CX have attracted widespread attention as primary materials for the
treatment of cardiovascular diseases (CVDs) [11], tumor disorders [12] and inflammatory
diseases [13]. DS is often employed clinically combined with other traditional Chinese
medicines (TCMs) for promoting blood circulation, of which Danshen–Chuanxiong (DC) is
one of the most frequently used herbal pairs (mixture of plant materials) among best-selling
herbal formulae [14]. In our previous studies, potential THR and FXa inhibitors in DS
and CX were screened, respectively [1,5]. However, the THR and FXa inhibitory activity
of the DC herbal pair has not been evaluated, and the potential active components are
still unclear. Therefore, a spectrum–effect relationship analysis was performed to screen
the active ingredients in the DC herbal pair that inhibit THR and FXa. A spectrum–effect
relationship analysis [15], correlating the peak area in the fingerprint of TCMs with pharma-
codynamic data, is employed to reveal the correlation between the components and their
pharmacological activities. Due to the advantages of being a simple operation and saving
time [16], spectrum–effect relationship analyses have been reliably used in the screening of
natural active compounds. For instance, protocatechuic aldehyde, hydroxysafflor yellow
A and tanshinone IIA were screened and identified as active tyrosinase inhibitors in the
Salvia miltiorrhiza–Carthamus tinctorius herbal pair through a spectrum–effect relationship
analysis [17].

In this study, the inhibition effects of the DC herbal pair with different ratios on THR
and FXa were compared. Then, the components in the DC herbal pair were analyzed
through HPLC and the chemical fingerprint was constructed. A spectrum–effect relation-
ship analysis was employed to predict the potential active compounds in the DC herbal pair,
and their chemical structures were identified through an LC–MS analysis. Furthermore,
the in vitro THR and FXa inhibitory activities of the predicted compounds were tested.
Finally, molecular docking was used to explore the possible binding sites and modes of
action between the active compounds and THR and FXa, respectively.

2. Results and Discussion
2.1. Inhibitory Effects of DC Extracts on THR and FXa

As shown in Figure 1A, different ratios of DC herbal pair extracts show a weaker
inhibitory effect on THR than the CX extract when the final concentration is 2.5 mg/mL.
However, compared with the DS extract, all ratios of DC herbal pair extracts display
stronger inhibitory activity on THR. The DC herbal pair extracts (1:1 and 5:1) display a
weaker effect than the other DC herbal pair extracts (2:1, 3:1, 1:5, 1:3 and 1:2). As shown in
Figure 1B, different ratios of DC herbal pair extracts show a stronger inhibitory effect on
FXa than the CX extract when the final concentration is 2.5 mg/mL. Among them, the DC
herbal pair (1:1) exhibits the strongest effect, even stronger than the DS extract. However,
the inhibitory effects of other DC herbal pair extracts (2:1, 3:1, 5:1, 1:5, 1:3 and 1:2) on FXa
are weaker than the DS extract. In reality, studies show that the combined use of DS and CX
display a better antithrombotic effect at a ratio of 1:1 than their separate application [14],
indicating the mechanism for the DC herbal pair to exhibit an antithrombotic effect may
be by inhibiting the activity of FXa. The results may provide scientific evidence for the
experience-based application of the DC herbal pair [18].

2.2. Spectrum–Effect Relationship Analysis

The HPLC fingerprints of DC samples with different ratios are shown in Figure 2. A
canonical correlation analysis (CCA) was used to assess the spectrum–effect relationship
between the areas of 71 chromatographic peaks and the inhibition rate of different extracts
on THR and FXa. As shown in Table 1, the results are expressed through a Pearson
correlation coefficient; “r” indicates the correlation strength, 0.6 ≤ |r| ≤ 0.8 indicates a
strong correlation and 0.8 ≤ |r| ≤ 1.0 indicates a significant correlation [19]. Therefore,
compounds of peaks 4, 17, 24, 55, 61 and 62 with ”r” higher than 0.8 may be the active
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components of herbal pairs for inhibiting THR. On the other hand, compounds of peaks 5,
9, 61, 67 and 71 with ”r” higher than 0.6 are potential active FXa inhibitory compounds. A
further LC–MS analysis was performed to identify the structures of these compounds, and
the inhibitory activity of the pure compounds was tested in vitro.
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Table 1. Correlation coefficients between the chromatographic peak area and % inhibition of thrombin and factor Xa.

Peak 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

THR −0.598 0.727 * 0.715 * 0.831 ** −0.453 0.723 * 0.709 * −0.734 * −0.442 0.761 * −0.356 −0.338 0.580 0.578 0.695 *

FXa −0.212 −0.127 0.132 −0.497 0.628 * 0.175 0.278 0.359 0.750 * −0.112 0.149 0.093 0.205 −0.566 −0.242

Peak 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

THR 0.769 * 0.826 ** 0.750 * 0.449 0.679 * 0.758 * 0.743 * 0.645 * 0.812 ** 0.747 * 0.690 * 0.756 * 0.779 * 0.694 * 0.574

FXa −0.245 −0.195 −0.394 −0.265 −0.294 −0.264 −0.126 −0.310 −0.142 −0.111 −0.082 −0.292 −0.226 −0.119 0.218

Peak 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

THR −0.484 0.749 * 0.697 * 0.712 * 0.685 * 0.346 0.766 * −0.570 −0.549 −0.400 0.455 −0.563 −0.420 −0.515 −0.375

FXa 0.173 −0.219 −0.119 −0.141 −0.102 −0.326 −0.346 0.092 −0.030 −0.289 −0.083 0.078 0.231 0.104 0.018

Peak 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

THR 0.520 0.410 0.723 * −0.560 0.724 * 0.460 −0.511 0.701 * 0.635 * 0.877 ** 0.793 * 0.722 * 0.343 −0.326 0.301

FXa 0.077 −0.182 −0.127 0.131 0.181 0.106 0.455 −0.122 0.051 −0.369 −0.309 −0.284 0.300 0.169 0.249

Peak 61 62 63 64 65 66 67 68 69 70 71

THR 0.862 ** 0.912 * 0.482 −0.170 −0.550 −0.500 −0.781 * −0.463 0.265 0.422 −0.597

FXa −0.626 * −0.310 0.213 0.364 0.138 0.045 0.867 ** 0.156 0.410 −0.016 0.703 *

Note: A Pearson correlation was used. “r” represents the strength; *, 0.6 ≤ |r| ≤ 0.8 means a strong correlation; ** 0.8 ≤ |r| ≤ 1 means a
significant correlation.

2.3. Identifications of the Potential Active Compounds through an LC–MS Analysis

An LC–MS analysis was used to study the chemical structures of potential active com-
pounds; the total ion chromatogram was shown in Figure 3. Eight compounds, chlorogenic
acid, caffeic acid, ferulic acid, Z-ligustilide, tanshindiol B, methyl dihydronortanshinonate,
tanshinone I and tanshinone IIA, were tentatively identified by comparing their MS data
with those reported in the literature [20–22]. The detailed MS data of ten predicted com-
pounds are shown in Table 2, and their chemical structures are presented in Figure 4.
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Peak No. tR (min) MW MS1 (m/z) MS2 (m/z) Formula Identification

4 3.599 354 353.18 191.06;179.06;135.03 C16H18O9 Chlorogenic acid
5 4.178 180 179.06 135.03 C9H8O4 Caffeic acid
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Peak 4 gives a [M − H]− ion at m/z 353.18; the product ion is obtained at m/z 191.06
for [M − H − C9H6O3]−, at m/z 179.06 for [M − H − C7H10O5]− and at m/z 135.03 for
[M–H − C8H10O7]−. Therefore, peak 4 is suspected to be chlorogenic acid [20]. Peak 5 has
[M − H]− at m/z 179.06; the product ion is obtained at m/z 135.03 for [M − H − C2H4O]−.
Peak 5 is tentatively identified as caffeic acid [21]. Peak 9 shows a [M − H]− ion at m/z
193.05, which yields an MS2 fragment ion at m/z 149.01 for [M + H − HCOOH]−. According
to the reference [20], peak 9 is suspected to be ferulic acid. Peak 17 yields a [M − H]− ion
at m/z 191.07; the product ion is obtained at m/z 172.02 for [M + H − H2O]−. Therefore,
peak 17 is suspected to be Z-ligustilide [20]. Peak 61 shows a peak of [M − H]− ions at m/z
311.24; the product ion is obtained at m/z 265.16 for [M − H − C2H6O]−. Therefore, peak
61 is suspected to be tanshindiol B [21]. Peak 62 displays a [M − H]− ion at m/z 339.22;
the product ion is obtained at m/z 261.13 for [M + H − C3H11O2]−. Therefore, peak 62 is
tentatively identified as methyl dihydronortanshinonate [21]. Peak 67 displays a [M − H]−

ion at m/z 277.2; the product ion is obtained at m/z 248.99 for [M − H − CO]−. Therefore,
peak 67 is suspected to be tanshinone I [22]. Peak 71 shows a [M − H]− ion at m/z 293.23,
which yields MS2 fragment ions at m/z 277.23 for [M + H − H2O]− and at m/z 248.99 for
[M + H − H2O − CO]−. Therefore, peak 71 is suspected to be tanshinone IIA [22].

2.4. In Vitro Activity Tests for the Predicted Compounds

In order to confirm the feasibility of the spectrum–effect relationship method for
screening of active compounds, in vitro enzymatic activity assays were performed. Arga-
troban, a well-known THR inhibitor [6], was selected as the positive control drug. The
results are shown in Figure 5. Argatroban shows a strong inhibition effect with an IC50
value of 64.94 µM. Chlorogenic acid with an IC50 value of 185.08 µM exhibits a better
inhibitory activity than Z-ligustilide with an IC50 value of 1460.65 µM on THR. As shown
in Figure 6, the IC50 value of rivaroxaban, as the positive control drug [7], is 47.21 µM.
Among four predicted compounds, tanshinone I and tanshinone IIA strongly inhibit the
activity of FXa in a dose-dependent manner with IC50 values of 112.59 µM and 138.19 µM,
respectively. In addition, caffeic acid and ferulic acid do not show a significant inhibitory
effect with IC50 values of 3789.96 µM and 2488.90 µM, indicating that they may not act
directly on the active center of FXa.

2.5. Molecular Docking of THR and FXa and Identified Active Compounds

Molecular docking can be used to reveal the possible modes and sites of compounds
interacting with THR and FXa. As shown in Table 3, the binding energies of chlorogenic
acid and Z-ligustilide are less than −5.0 kcal·mol−1, indicating that they are potential THR
inhibitors. Chlorogenic acid is combined with THR through Van der Waals forces and
ionic bonds. Z-ligustilide can enter THR catalytic activity pockets with a strong affinity
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by forming H-bonds with residues of SER214 and GLY226. The 2D interaction diagrams
of chlorogenic acid and Z-ligustilide with THR can be observed in Figure 7. The binding
energies and residues of caffeic acid, ferulic acid, tanshinone I and tanshinone IIA with FXa
are summarized in Table 4. Among them, tanshinone I and tanshinone IIA, which have
binding energies of less than −7.0 kcal·mol−1, can interact with FXa by forming H-bonds
with residues of SER214, GLY219 and GLN192. In addition, caffeic acid and ferulic acid,
which have binding energies of −5.82 kcal·mol−1 and −6.35 kcal·mol−1, are combined
with FXa through Van der Waals and other forces. It is worth mentioning that the molecular
docking results of the four active components are consistent with their activity in in vitro
tests. Tanshinone I and tanshinone IIA with stronger affinity exhibit better inhibition effects.
The 2D interaction diagrams are shown in Figure 8.
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Table 3. Docking results of chlorogenic acid and Z-ligustilide with thrombin.

Compounds Binding Energy
(kcal/mol) Hydrogen Bond Van der Waals Forces Electrostatic Interaction

and Other Forces

Chlorogenic acid −5.81 - GLY219, CYS191, ASP194,
HIS57, GLU192, TRP215

ALA190, CYS220,
SER214, LYS224

Z-ligustilide −6.44 SER214, GLY226 GLU192, ASP194, VAL213,
TYR228, SER214, CYS220 LYS224, ARG221A, ASP189

Table 4. Docking results of caffeic acid, ferulic acid, tanshinone I and tanshinone IIA with FXa.

Compounds Binding Energy
(kcal/mol) Hydrogen Bond Van der Waals Forces Electrostatic Interaction

and Other Forces

Caffeic acid −5.82 - SER214, ASP194, ILE227,
GLY216, ASP189

VAL213, TRP215,
CYS191, CYS220

Ferulic acid −6.35 - ILE227, GLY226, GLY216,
GLY219, TYR99, ILE227,

ALA190, VAL213, TYR228,
HIS57, TRP215

Tanshinone I −7.87 SER214, GLY219 HIS57, SER214, GLN192,
TYR99, GLY216, GLY219

CYS191, CYS220, TRP215,
ALA190, VAL213

Tanshinone IIA −7.44 GLY219, GLN192 LYS96, PHE174,
THR98, MET180 TRP215, TYR99, GLU97
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3. Materials and Methods
3.1. Chemicals and Materials

Thrombin was purchased from Sigma-Aldrich (St. Louis, MO, USA). Substrate S-2238
(≥99%, determined through HPLC) was bought from Adhoc International Technology
Co., Ltd. (Beijing, China). Factor Xa and substrate S-2765 (≥99%, determined through
HPLC) were obtained from Adhoc International Technology Co., Ltd. (Beijing, China).
Argatroban was bought from Huazhong Haiwei Gene Technology Co., Ltd. (Beijing, China).
Rivaroxaban was from Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). The
reference compounds of chlorogenic acid, Z-ligustilide, caffeic acid, ferulic acid, tanshinone
I and tanshinone IIA (≥98%, determined through HPLC) were purchased from Purechem-
standard Co., Ltd. (Chengdu, China). HPLC-grade acetonitrile was purchased from
Shanghai Titan Scientific Co., Ltd. (Shanghai, China). Water used for all the experiments
was purified by a water purification system (ATSelem 1820A, Antesheng Environmental
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Protection Equipment, Chongqing, China). All the other chemicals and solvents, such as
ethanol, potassium dihydrogen phosphate and disodium phosphate, were obtained from
Chron Chemicals Co., Ltd. (Chengdu, China).

Crude drugs (pieces of plant materials) of Danshen and Chuanxiong were purchased
from Kangmei Pharmaceutical Co., Ltd. in May 2020. Their origins are from Shandong
and Sichuan, respectively. The voucher specimens of Salvia miltiorrhiza Bge. (number
SM2020050101) and Ligusticum chuanxiong Hort. (number CF2020050101) were deposited
at the Pharmaceutical Engineering Laboratory in School of Chemistry and Chemical Engi-
neering, Chongqing University, Chongqing, China.

3.2. Preparation of DC Extracts

Crude drugs of DS and CX were pulverized, then stored in a dry box after filtrating
through a 50 mesh sieve (about 0.29 mm). Nine different ratios of DC herbal pairs (1:0, 1:1,
2:1, 3:1, 5:1, 1:5, 1:3, 1:2 and 0:1) were prepared for reflux extraction. First, 2.5 g of DS and
CX mixed powder was extracted through ultrasonic extraction at room temperature for
15 min with 20 mL of 70% ethanol in a 250 mL round-bottom flask. Then, it was further
extracted in a water bath at 80 ◦C for 30 min. The above process was repeated three times.
After the extract solutions were filtered through filter paper and combined, they were
evaporated in a rotary evaporator (ZFQ 85A, Shanghai Medical Instrument Special Factory,
Shanghai, China) at 55 ◦C under reducing pressure to remove the ethanol solvent. Finally,
the extracts were further dried by lyophilization with a freezing–drying system (DZF-6050,
Shanghai Jing Hong Laboratory Instrument Co., Ltd., Shanghai, China) to obtain the DC
extracts at a yield of about 20% (w/w, dried extract/crude herb). All solutions were stored
in the dark at 4 ◦C. Before the HPLC analysis, the extract was dissolved in methanol
(5.0 mg/mL) and filtered through a 0.22 µm membrane filter (Shanghai Titan Scientific Co.,
Ltd., Shanghai, China).

3.3. HPLC and LC–MS Analysis

An HPLC analysis was performed on an Agilent 1260 series liquid chromatograph
system (Agilent Technologies, Palo Alto, CA, USA), which is equipped with a diode
array detector (DAD), controlled with Agilent ChemStation software. Chromatographic
separation was operated on an Agilent ZOBAX SB-Aq column (250 mm × 4.6 mm, 5 µm)
preceded by a guard column (12.5 mm × 4.6 mm, 5 µm) at a column temperature of 35 ◦C.
The mobile phase, which consists of 0.1% aqueous acetic acid solution (A) and acetonitrile
(B), was at a flow rate of 1.0 mL/min. The gradient program was programmed as follows:
0–2 min, 5% B; 2–10 min, 5%–15% B; 10–24 min, 15%–22% B; 24–35 min, 22%–29% B;
35–42 min, 29%–37% B; 42–60 min, 37%–60% B; 60–62 min, 60%–5% B; and 62–70 min, 5%
B. The injection volume for all samples was 10.0 µL.

An Agilent 6545 equipped with electrospray ionization was used for LC/Q-TOF-MS
analyses (Santa Clara, CA, USA). The LC conditions were the same as described previously.
Nitrogen was used as the atomizing dry gas at a flow rate of 8.0 L/min. The Q-TOF-MS
analysis was used in both negative and positive ion modes. The key parameters were set
as follows: ion source temperature, 320 ◦C; sprayer pressure, 35 psi; spray voltage, 1000 V;
and TOF acquisition speed, 0.5 s. For compound identification, MS1 data and MS2 data
were recorded in the range of m/z 100 to 1000. An LC–MS software package (Agilent) was
employed for data collection and processing.

3.4. THR and FXa Inhibitory Activity Assay
3.4.1. Preparation of Buffers and Solutions

A PBS buffer was prepared by dissolving 1.44 g of Na2HPO4 and 0.24 g of KH2PO4
in 800 mL of water for immediate use (pH was adjusted to 8.0 by 1.0 M NaOH). A stock
solution of THR (125 U/mL) was prepared by dissolving 4.16 mg of THR in 1.0 mL of PBS.
A stock solution of FXa (0.5 IU/mL) was prepared by dissolving 5.0 mg of FXa in 1.0 mL of
PBS. Stock solutions of S-2238 (2 mg/mL) and S-2765 (2.5 mg/mL) were prepared in PBS.
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The DC extract samples (10 mg/mL) were prepared in a PBS buffer and diluted to 5.0 and
2.5 mg/mL as necessary.

3.4.2. Calculation of the % Inhibition

THR and FXa inhibitory activity assays were performed with an iMark™ Microplate
Absorbance Reader (Bio-Rad Laboratories, Inc., Hercules, CA, USA). A DC extract solution
of 50 µL and a 50 µL THR solution were mixed and incubated for 10 min at 37 ◦C. Sub-
sequently, a 100 µL S-2238 (2 mg/mL) solution as the chromogenic substrate was added
to start the reaction in the microplate reader. The absorbance was monitored at 405 nm
every 30 s for 10 min, and each group was measured three times. As a control group, the
operation process was similar to the experimental group but without a DC extract. Except
for the enzyme solution and chromogenic substrate, the procedure for assessing the FXa
inhibitory activity was exactly the same as for THR. The inhibition rate (%) of THR and
FXa was calculated using Formula (1).

I(%) =

[(
dA
dt

)
blank

−
(

dA
dt

)
sample

]
(

dA
dt

)
blank

(1)

where I(%) represents the % of inhibition, and
(

dA
dt

)
blank

and
(

dA
dt

)
sample

represent the

reaction rate of the control and experimental group, respectively. The results were expressed
as the mean ± standard deviation (SD) of three experiments.

3.5. Spectrum–Effect Relationship Analysis

A spectrum–effect relationship analysis was performed by transferring the DC fin-
gerprint peak area and inhibition rate of THR and FXa into SPSS software (Ver. 24.0,
Chicago, IL, USA) for a canonical correlation analysis (CCA). The chromatograms of nine
ratios of DC samples were calculated and generated by “Similarity Evaluation System
for Chromatographic Fingerprint of Traditional Chinese Medicine” composed by Chinese
Pharmacopoeia Committee (Version 2004A). A CCA was used to establish the spectrum–
effect relationships between the areas of 71 peaks in the fingerprint and inhibition rate of
THR and FXa, respectively, to screen potential active components.

3.6. Molecular Docking of THR and FXa and Identified Active Compounds

AutoDock 4.2 (The Scrips Research Institute, La Jolla, CA, USA) was employed for
molecular docking studies to predict the site and mode of action of active compounds
from THR and FXa, respectively. The brief steps for molecular docking are as follows.
First, the crystal structures of THR (No. 1DWC) and FXa (No. 2W26) from the PDB library
were downloaded, which were output in PDBQT format after the following operations:
the water molecules and the ligands of argatrobana and rivaroxaban were deleted while
polar hydrogen was added and the point charge was calculated. Second, the 3D chemical
structures of active compounds were drawn by ChemDraw 3D (Ver. 15.0) to minimize
energy to prepare ligands. Semi-flexible docking was used to simulate the docking process.
The grid size was set to (x, y, z) = (60, 60, 60), and the grid centers of THR and FXa were
set to (x, y, z) = (35.887, 19.178, 18.856) and (x, y, z) = (7.951, 5.850, 21.876), respectively.
The Lamarckian genetic algorithm (LGA) was employed and the number of GA runs was
equal to 50 for finding the most favorable ligand binding orientations. Finally, Discovery
Studio 4.5 (BIOVIA, San Diego, CA, USA) was used to observe the interaction of active
compounds with THR and FXa.

3.7. Statistical Analysis

All data are presented as the mean ± standard deviations (SD) of at least three different
experiments. The statistical analysis was performed by SPSS.
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4. Conclusions

In this study, the potential THR and FXa inhibitory components in the DC herbal
pair were screened by a spectrum–effect relationship analysis. Combined with a canonical
correlation analysis, in vitro THR and FXa inhibitory activity test and LC–MS analysis,
two potential THR inhibitory active compounds (chlorogenic acid and Z-ligustilide) and
four potential THR inhibitory active compounds (caffeic acid, ferulic acid, tanshinone I
and tanshinone IIA) were predicted. Furthermore, chlorogenic acid, tanshinone I and
tanshinone IIA were verified to possess good THR and FXa inhibitory activity with IC50
values of 185.08 µM, 112.59 µM and 138.19 µM, respectively. In addition, the molecular
docking results, which are consistent with their in vitro activity verification, show that
tanshinone I and tanshinone IIA can interact with FXa by forming H-bonds with residues
of SER214, GLY219 and GLN192.
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