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    Introduction 
 The dramatic events of chromosome segregation and cell divi-

sion are initiated by the activity of Cdk1 ( Morgan, 2006 ). Acti-

vation of Cdk1 requires binding of mitotic cyclins, which are 

synthesized anew each cell cycle and accumulate gradually during 

G2/M. Cdk1 activation is delayed by the Wee1 kinase, which 

phosphorylates and inhibits Cdk1 ( Russell and Nurse, 1987 ; 

 Gould and Nurse, 1989 ). The Cdc25 phosphatase promotes entry 

into mitosis by removing the inhibitory phosphorylation placed 

on Cdk1 by Wee1 ( Russell and Nurse, 1986 ;  Dunphy and  Kumagai, 

1991 ;  Gautier et al., 1991 ;  Kumagai and Dunphy, 1991 ;  Strausfeld 

et al., 1991 ). 

 In yeast cells, inhibitory phosphorylation of Cdk1 has been 

proposed to mediate a checkpoint that delays entry into mitosis 

until suffi cient growth has occurred ( Nurse, 1975 ;  Fantes and 

Nurse, 1977 ;  Rupes, 2002 ;  Kellogg, 2003 ). Wee1 mutant cells 

enter mitosis prematurely and become abnormally small, whereas 

Cdc25 mutant cells undergo delayed entry into mitosis and be-

come abnormally large ( Nurse, 1975 ;  Russell and Nurse, 1986 ; 

 Jorgensen et al., 2002 ;  Harvey and Kellogg, 2003 ;  Harvey et al., 

2005 ). However, it has been diffi cult to clearly demonstrate that 

Wee1 and Cdc25 play a direct role in the control of cell growth 

because mutants may indirectly cause cell size defects by al-

lowing more or less time to grow. Moreover, there are no clearly 

defi ned molecular links between Cdk1 inhibitory phosphorylation 

and proteins known to be involved in the control of cell size or 

cell growth. Inhibitory phosphorylation of Cdk1 in yeast has 

also been proposed to mediate a checkpoint that monitors cell 

morphogenesis ( Lew, 2000, 2003 ;  Keaton and Lew, 2006 ). 

In vertebrates, inhibitory phosphorylation of Cdk1 is thought to 

function in a checkpoint that monitors the status of the DNA, or 

in regulatory feedback loops that allow the gradual synthesis of 

mitotic cyclins to be converted into an abrupt all-or-nothing 

activation of Cdk1 ( Dunphy, 1994 ;  Ferrell, 2002 ;  Lew, 2003 ; 

 Pomerening et al., 2003, 2005 ;  Karlsson-Rosenthal and Millar, 

2006 ;  Keaton and Lew, 2006 ). These proposed roles for Cdk1 

inhibitory phosphorylation are not mutually exclusive and the 

relative importance of each role may vary in different cell types. 

 A full understanding of Cdk1 inhibitory phosphorylation 

will require elucidation of the mechanisms that regulate Wee1 

and Cdc25. Regulation of Cdc25 family members has been 

studied most extensively in vertebrates, which have three Cdc25 

paralogues that are referred to as Cdc25A, B, and C. In  Xenopus 
laevis  oocyte extracts, Cdc25A becomes hyperphosphorylated 

in mitosis, and the hyperphosphorylated form of Cdc25A iso-

lated from mitotic extracts shows an approximately fi vefold in-

crease in phosphatase activity ( Izumi et al., 1992 ;  Kumagai and 
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that Mih1 undergoes dramatic changes in phosphorylation dur-

ing the cell cycle and that Cdk1, PP2A, and casein kinase 1 each 

play a role in regulation of Mih1 phosphorylation. Because ca-

sein kinase 1 functions in the secretory pathway and is associ-

ated with sites of cell growth, it may provide a molecular link 

between control of cell growth and entry into mitosis. 

 Results 
 Loss of  MIH1  causes delayed entry into 
mitosis and increased cell size 
 Previous studies reported that  mih1 �   cells are larger than wild-

type cells ( Russell et al., 1989  ;  Jorgensen et al., 2002 ;  Harvey 

and Kellogg, 2003 ). We confi rmed and extended these studies 

by using a Coulter counter to directly compare the sizes of 

wild-type,  mih1 �  ,  swe1 �  , and  mih1 �  swe1 �   cells ( Fig. 1 A ).   

These experiments demonstrated that  mih1 �   cells are larger 

than wild-type cells and that  mih1 �  swe1 �   cells are smaller 

than wild-type cells. To confi rm that the large size of  mih1  �  

cells is a result of delayed entry into mitosis, we compared 

the timing of entry into mitosis in wild-type and  mih1 �   cells. 

We assayed entry into mitosis by determining the percentage 

of cells with short mitotic spindles at 10-min intervals as cells 

progressed through the cell cycle after release from a G1 arrest. 

Previous work has shown that formation of short spindles is 

 dependent on mitotic Cdk1 activity and is therefore a good 

marker for entry into mitosis ( Fitch et al., 1992 ). The  mih1 �   
cells showed a 10 – 20-min delay in formation of short spindles 

( Fig. 1 B ). Loss of  MIH1  did not cause a delay in budding or in 

the accumulation of the S-phase cyclin Clb5, which demon-

strates that the delay occurred during G2/M ( Fig. 1, C and D ). 

Collectively, these results demonstrate that Mih1 opposes the 

activity of Swe1 to promote entry into mitosis, and that the 

 basic functions of fi ssion yeast Cdc25 have been conserved in 

budding yeast Mih1. 

 To further characterize the phenotype of  mih1 Δ   cells, we 

used Western blotting in synchronized cells to assay accumula-

tion of the mitotic cyclin Clb2, inhibitory phosphorylation of 

Cdk1, and hyperphosphorylation of Swe1. Loss of Mih1 caused 

a signifi cant delay in each of these events as well as increased 

levels of Cdk1 inhibitory phosphorylation ( Fig. 1 E ). The de-

layed accumulation of Clb2 is consistent with previous experi-

ments, which found that activated Cdk1-Clb2 initiates a positive 

feedback loop that promotes further accumulation of Clb2 ( Amon 

et al., 1993 ). Similarly, the delayed accumulation of Cdk1 in-

hibitory phosphorylation and delayed Swe1 hyperphosphoryla-

tion are consistent with previous experiments, which found that 

Cdk1-Clb2 hyperphosphorylates Swe1, which activates Swe1 

to phosphorylate Cdk1 ( Harvey et al., 2005 ). These results sug-

gest that inhibitory phosphorylation of Cdk1 by Swe1 initially 

blocks the positive feedback loop that leads to increased accu-

mulation of Clb2 and that Mih1 is required for activation of a 

small amount Cdk1 that initiates the positive feedback loop. 

Thus, in the absence of Mih1, accumulation of Clb2 and inhibi-

tory phosphorylation of Cdk1 should both be delayed. 

 The fact that  mih1 Δ   cells are able to exit mitosis sug-

gested that an additional phosphatase may act redundantly with 

Dunphy, 1992 ). Fission yeast Cdc25 also undergoes hyper-

phosphorylation during mitosis ( Kovelman and Russell, 1996 ; 

 Esteban et al., 2004 ;  Wolfe and Gould, 2004a ). Cdk1 associated 

with mitotic cyclins can phosphorylate Cdc25C in vitro, which 

causes a three- to fourfold increase in phosphatase activity 

( Hoffmann et al., 1993 ;  Izumi and Maller, 1993 ). These obser-

vations have led to the idea of a positive feedback loop in which 

mitotic Cdk1 directly activates Cdc25. However, it has remained 

unclear how a small amount of Cdk1 escapes inhibitory phosphoryla-

tion to  initiate the feedback loop. The simplest possibility is that 

the feedback loop is initiated when mitotic cyclins accumulate 

above a threshold set by Wee1 inhibition. A small amount of active 

Cdk1 would then be generated, thereby activating the feedback 

loop. A second possibility is that the feedback loop is initiated 

by a triggering kinase that activates Cdc25 to generate a small 

amount of active Cdk1. In  X. laevis , polo kinase has been pro-

posed to act as a trigger kinase that directly phosphorylates and 

activates Cdc25C ( Kumagai and Dunphy, 1996 ;  Qian et al., 

1998, 1999, 2001 ). However, in fi ssion yeast and budding yeast, 

polo kinase appears to be activated downstream of mitotic Cdk1 

( Tanaka et al., 2001 ;  Mortensen et al., 2005 ). It is therefore 

 unclear whether regulation of Cdc25 by polo kinase is part of a 

highly conserved mechanism. Another possibility is that Cdc25 

is activated by signaling networks that relay information regard-

ing cell growth or other physiological parameters. 

 Cdc25 is also thought to be regulated by 14-3-3 proteins 

and protein phosphatases (PPs). Phosphorylation of  X. laevis  

Cdc25C at serine 287 triggers binding of 14-3-3 proteins and 

inhibition of phosphatase activity ( Margolis and Kornbluth, 2004 ; 

 Wolfe and Gould, 2004b ;  Boutros et al., 2006 ). Mutation of ser-

ine 287 to an alanine prevents binding of 14-3-3 proteins and causes 

premature entry into mitosis. Dephosphorylation of serine 287 

is thought to be performed by PP1 and requires phosphoryla tion 

of T138 by Cdk2 or other kinases ( Margolis et al., 2006a , b ). 

The role of serine 287 phosphorylation has been studied most 

extensively in the context of a checkpoint that delays entry into 

mitosis in response to DNA damage. A similar DNA damage 

checkpoint that operates through inhibitory phosphorylation of 

Cdk1 does not appear to operate in budding yeast ( Amon et al., 

1992 ;  Sorger and Murray, 1992 ). The PP2A phosphatase is 

thought to oppose activating phosphorylation of Cdc25C ( Izumi 

et al., 1992 ;  Kumagai and Dunphy, 1992 ;  Clarke et al., 1993 ; 

 Dunphy, 1994 ;  Margolis et al., 2006b ). Inhibition of PP2A in inter-

phase extracts leads to rapid hyperphosphorylation and activa-

tion of Cdc25C in the absence of signifi cant Cdk1 activity, which 

suggests that a kinase other than Cdk1 plays an important role 

in regulating Cdc25C ( Kumagai and Dunphy, 1992 ;  Izumi and 

Maller, 1995 ). The identity of the kinase that phosphorylates 

Cdc25C in interphase is unknown. In fi ssion yeast, the Cdc14/Clp1 

phosphatase is required for dephosphorylation of Cdc25 during 

mitotic exit ( Esteban et al., 2004 ;  Wolfe and Gould, 2004a ). 

 To expand our knowledge of the mechanisms that regulate 

Cdc25, we have used the powerful approaches available in bud-

ding yeast to characterize the function and regulation of bud-

ding yeast Cdc25. The budding yeast homologues of Cdc25 and 

Wee1 are referred to as Mih1 and Swe1, and the primary mitotic 

cyclin that promotes entry into mitosis is called Clb2. We show 
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 dependent G2/M delay, which indicates that Cdc55 plays a 

role in regulating inhibitory phosphorylation of Cdk1 ( Yang 

et al., 2000 ). We were unable to recover  cdc55 Δ  mih1 Δ   cells 

from genetic crosses, which is consistent with the possibility 

that PP2A Cdc55  is required for dephosphorylation of Cdk1 in 

 mih1 Δ   cells. We were able to recover  cdc55 Δ  mih1 Δ  swe1 Δ   
cells, which further suggests that Mih1 and PP2A Cdc55  act re-

dundantly to dephosphorylate Cdk1. However, these experi-

ments do not rule out the possibility that PP2A Cdc55  is required 

for regulation of another phosphatase that directly dephosphor-

ylates Cdk1 or that  cdc55 Δ   is synthetically lethal with  mih1 Δ   
for other reasons. A  GAL1-MIH1 cdc55 Δ   strain did not give a 

uniform G2/M arrest when shifted to dextrose, which suggests 

that PP2A Cdc55  has diverse functions and does not act solely to 

regulate Cdk1 inhibitory phosphorylation at the G2/M transi-

tion (unpublished data). 

Mih1 to dephosphorylate Cdk1. PP2A appeared to be a good 

candidate because previous work in vertebrates and yeast im-

plicated PP2A in regulation of mitosis ( Goris et al., 1989 ; 

 Izumi et al., 1992 ;  Kumagai and Dunphy, 1992 ;  Clarke et al., 

1993 ;  Lin and Arndt, 1995 ;  Kinoshita et al., 1996 ;  Minshull 

et al., 1996 ;  Wang and Burke, 1997 ). PP2A is a heterotrimeric 

complex composed of a catalytic subunit and two regulatory 

subunits referred to as A and B subunits ( Stark, 1996 ;  Janssens 

and Goris, 2001 ). In budding yeast, there is a single A subunit 

called Tpd3 and two B subunits called Cdc55 and Rts1. Bind-

ing of Cdc55 and Rts1 to PP2A is mutually exclusive and dele-

tion of their genes gives distinct phenotypes, which demonstrates 

that they mediate different functions of PP2A ( Healy et al., 

1991 ;  Shu et al., 1997 ;  Wang and Burke, 1997 ). The two differ-

ent forms of PP2A are referred to as PP2A Cdc55  or PP2A Rts1 . 

Previous work found that  cdc55 Δ   causes a prolonged Swe1-

 Figure 1.    mih1 Δ  cells have an increased cell 
size and undergo delayed entry into mitosis.  
(A) Cells of the indicated genotypes were 
grown to log phase in YPD media at room 
temperature. Cell size was measured using a 
Z2 Coulter counter. (B) Wild-type and  mih1 Δ   
cells were synchronized with  � -factor and re-
leased into fresh YPD media and samples were 
taken at 10-min intervals. Cells were fi xed and 
stained with an anti-tubulin antibody and the 
percentage of cells with short spindles was 
determined. Over 200 cells were analyzed for 
each time point. The experiment was repeated 
at least three times with matched controls per-
formed in parallel on the same day, and the 
same overall trend was observed. Error bars 
are not displayed because the timing of re-
lease from  � -factor arrest varies from day to 
day. (C) Wild-type and  mih1 Δ   cells were syn-
chronized with  � -factor and released into fresh 
YPD media and samples were taken at 10-min 
intervals. Cells were fi xed and the percent-
age of cells with small buds was determined. 
Over 200 cells were analyzed for each time 
point. The experiment was repeated at least 
three times with matched controls performed 
in parallel on the same day, and the same 
overall trend was observed. Error bars are 
not displayed because the timing of release 
from  � -factor arrest varies from day to day. 
(D) Wild-type and  mih1 Δ   cells carrying  CLB5-
3XHA  cells were synchronized with  � -factor 
and released into fresh YPD media and sam-
ples were taken at 10-min intervals. Western 
blotting was used to monitor the behavior of 
Clb5-3XHA. (E) Wild-type cells were synchro-
nized with  � -factor and released into fresh YPD 
media and samples were taken at 10-min inter-
vals. Western blotting was used to monitor the 
behavior of Swe1, Clb2, and Cdk1 tyrosine 19 
phosphorylation. The exposures of the West-
ern blots were normalized using background 
bands to allow direct comparison of the sig-
nals from each strain. The Swe1 protein mi-
grates as a disperse group of phosphorylated 
forms above a 97 kD size standard, whereas 
Clb2 and Cdk1 migrate approximately at 50 
and 35 kD, respectively.   
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 PP2A is required for dephosphorylation 
of Mih1 during mitosis 
 Because regulation of the phosphorylation state of Mih1 is 

likely to play a critical role in the mechanisms that control entry 

into mitosis, we sought to identify the phosphatases and kinases 

that regulate Mih1. We fi rst used a candidate approach to iden-

tify the phosphatase that dephosphorylates Mih1. Because PP2A 

is known to be involved in the regulation of entry into mitosis, 

we fi rst tested PP2A. In budding yeast, the catalytic subunit of 

PP2A is encoded by three partially redundant genes called 

 PPH21 ,  PPH22 , and  PPH3  ( Evans and Stark, 1997 ). A temper-

ature-sensitive allele of  PPH22  in a  pph21 Δ  pph3 Δ   background 

caused loss of the dephosphorylated forms of Mih1 and the ap-

pearance of hyperphosphorylated forms, even at the permissive 

temperature ( Fig. 3 A ).   Similarly, loss of the Cdc55 regulatory 

subunit of PP2A caused a complete loss of dephosphorylated 

forms of Mih1 and the appearance of hyperphosphorylated 

forms, whereas loss of Rts1 had no effect ( Fig. 3 B ). Loss of 

Cdc55 also caused a failure to dephosphorylate Mih1 in syn-

chronized cells ( Fig. 3 C ), and purifi ed PP2A Cdc55  was able to 

dephosphorylate Mih1 in vitro ( Fig. 3 D ). Finally, several other 

phosphatases implicated in regulation of the cell cycle were not 

required for the major downward shift in Mih1 electrophoretic 

mobility, including Glc7, Sit4, and Cdc14 ( Fig. 3, B and E ). 

A relatively slight dephosphorylation of Mih1 occurs at later time 

points in  cdc55 Δ   cells, which suggests that another phosphatase 

may work on Mih1 ( Fig. 3 C ). Collectively, these experiments 

indicate that PP2A Cdc55  is likely to directly dephosphorylate Mih1 

as cells enter mitosis. 

 Previous studies reported that  cdc55 Δ   causes a Swe1-

dependent G2/M delay and an elongated cell phenotype ( Healy 

et al., 1991 ;  Yang et al., 2000 ). We found that  cdc55 Δ   caused 

delayed accumulation of Clb2, a prolonged G2/M delay, and a 

large increase in inhibitory tyrosine phosphorylation of Cdk1 

( Fig. 3 F ). These observations demonstrate that PP2A Cdc55  is 

 required for regulation of Cdk1 inhibitory phosphorylation; 

however, they cannot distinguish whether PP2A Cdc55  works via 

activation of Mih1, inhibition of Swe1, or both. The pheno-

type of  cdc55 Δ   cells could also be caused by a direct role for 

PP2A Cdc55  in removing Cdk1 inhibitory phosphorylation. 

 A systematic screen for kinases that 
regulate the phosphorylation state of Mih1 
 We next used a systematic approach to identify kinases that act 

directly or indirectly to regulate hyperphosphorylation of Mih1. 

Western blotting was used to screen 118 strains carrying dele-

tions of genes encoding nonessential kinases or known kinase 

activators for effects on Mih1 hyperphosphorylation (Table S1, 

available at http://www.jcb.org/cgi/content/full/jcb.200711014/

DC1). A single kinase deletion ( mck1 Δ  ) caused a decrease in 

Mih1 hyperphosphorylation, and three kinase deletions ( sky1 Δ  , 
 cla4 Δ  , and  ste20 Δ  ) caused an increase in Mih1 hyperphosphor-

ylation ( Fig. 4 A ).   No single kinase deletion caused a complete 

loss of Mih1 hyperphosphorylation. 

 Essential kinases were purified as TAP-tagged fusion 

proteins and tested for their ability to phosphorylate Mih1 in 

vitro (Table S2, available at http://www.jcb.org/cgi/content/

 Mih1 is hyperphosphorylated early in the 
cell cycle and undergoes dephosphorylation 
as cells enter mitosis 
 To begin to understand how Mih1 is regulated, we used West-

ern blotting to follow the behavior of the Mih1 protein in syn-

chronized cells. For comparison, we also followed the behavior 

of Swe1 and Clb2 in the same samples. Mih1 showed dra-

matic changes in posttranslational modifi cation during the cell 

cycle ( Fig. 2 A ).   Treatment of immunoprecipitated Mih1 with 

phosphatase eliminated all Mih1 modifi cation, which indicated 

that the modifi cation was caused by phosphorylation ( Fig. 2 B ). 

Mih1 was hyperphosphorylated early in the cell cycle and be-

came dephosphorylated as cells entered mitosis. Mih1 dephos-

phorylation occurred concomitantly with Clb2 accumulation 

and Swe1 hyperphosphorylation. The extent of Mih1 hyper-

phosphorylation is unusual. Mih1 is a 63-kD protein and shifts 

as much as 30 kD in apparent electrophoretic mobility. There 

are 83 serines and 20 threonines in Mih1, and only nine of 

these match the minimal consensus phosphorylation site for 

Cdk1 (S/TP). This relatively small number of Cdk1 consensus 

sites suggests that additional sites must be phosphorylated 

to account for the large shift in the electrophoretic mobility 

of Mih1. 

 Figure 2.    Mih1 undergoes dramatic changes in phosphorylation state 
during the cell cycle.  (A) Wild-type cells were synchronized with  � -factor 
and released into fresh YPD media and samples were taken at 10-min in-
tervals. Western blotting was used to monitor the behavior of Mih1, Swe1, 
and Clb2. The differently phosphorylated forms of Mih1 migrate between 
57 and 97 kD size standards. (B) Phosphorylated 3XHA-Mih1 was immuno-
affi nity purifi ed and treated with  �  phosphatase. The phosphorylation state 
of Mih1 was monitored by Western blotting.   
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Yck1/2 and Cka1/2, two pairs of redundant kinases that are the 

budding yeast homologues of casein kinases 1 and 2. We also 

used TAP-tagged versions of Cln2 (G1 cyclin), Clb5 (S cyclin), 

and Clb2 to test the ability of Cdk1 associated with various 

full/jcb.200711014/DC1 ) . To prepare Mih1 substrate for these 

assays, 3XHA-Mih1 was purifi ed by immunoaffi nity chroma-

tography and treated with  �  phosphatase to remove endogenous 

phosphorylation. In addition to the 22 essential kinases, we tested 

 Figure 3.    PP2A Cdc55  is required for dephosphorylation of Mih1.  (A)  PPH22 pph3 Δ  pph21 Δ   and  pph22-12 pph3 Δ  pph21 Δ   cells were grown to log 
phase in YPD media at room temperature. After taking a sample (0-min time point), the cells were shifted to the restrictive temperature and samples were 
collected after 1 h. The phosphorylation state of Mih1 was followed by Western blotting. (B) Western blot analysis of Mih1 phosphorylation in log-phase 
populations of wild-type,  cdc55 �  ,  sit4 �  , and  rts1 �   cells. As a control,  mih1 Δ   cells were included in the analysis. The phosphorylation state of Mih1 
was monitored by Western blotting. (C) Wild-type and  cdc55 Δ   cells were synchronized with  � -factor and released into fresh YPD media and samples 
were taken at 10-min intervals. Western blotting was used to monitor the behavior of Mih1. (D) Immunoaffi nity-purifi ed phosphorylated 3XHA-Mih1 was 
treated with immunoaffi nity purifi ed Cdc55-3XHA. For controls, purifi ed 3XHA-Mih1 was also incubated with  �  phosphatase or a control elution from 
a nonspecifi c immunoaffi nity column. The phosphorylation state of Mih1 was monitored by Western blotting. (E) Cells of the indicated genotypes were 
grown to log phase at room temperature. After taking a 0-min time point, the cells were shifted to the restrictive temperature. Samples were collected at 1, 
2, and 3 h after shifting to 34 ° C. Western blotting was used to monitor the behavior of Mih1. The apparent upward shift in mobility of Mih1 in glc7-12 
cells at 3 h was not reproducible and may have been caused by nutrient limitation after 3 h in culture. (F) Wild-type and  cdc55 �   cells were synchronized 
with  � -factor and released into fresh YPD media and samples were taken at 10-min intervals. Western blotting was used to monitor the behavior of Clb2 
and Cdk1 tyrosine 19 phosphorylation. The exposures of the Western blots were normalized using background bands to allow direct comparison of the 
signals from each strain.   
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 Casein kinase 1 activity is required for 
Mih1 hyperphosphorylation in vivo 
 As a secondary screen of the essential kinases, we determined 

whether kinases that can hyperphosphorylate Mih1 in vitro are 

required for Mih1 hyperphosphorylation in vivo. Inactivation of 

Cka1/2, Sgv1, or Hrr25 with temperature-sensitive alleles had 

no signifi cant effect on Mih1 hyperphosphorylation (unpub-

lished data). Similarly,  yck3 Δ   had no effect on Mih1 phosphoryla-

tion in the screen for nonessential kinases that phosphorylate 

Mih1. In contrast, there was a quantitative loss of Mih1 hyper-

phosphorylation when  yck2-2 yck1 Δ   cells were shifted to the 

restrictive temperature ( Fig. 4 C ). Mih1 hyperphosphorylation 

was also signifi cantly decreased at the permissive temperature. 

A subset of Mih1 phosphorylation was unaffected in  yck2-2 yck1 Δ   
cells, which suggests that an additional kinase phosphorylates 

cyclins to phosphorylate Mih1. Kinases that gave positive results in 

the screen are shown in  Fig. 4 B . Yck1, Yck2, Cka1, Cka2, Sgv1, 

and Cdk1-Clb2 were able to induce partial hyperphosphorylation 

of Mih1. Another member of the casein kinase family (Hrr25) 

was not able to induce hyperphosphorylation of Mih1, whereas 

Yck3, a nonessential member of the casein kinase family, was 

able to induce partial hyperphosphorylation. Mck1 was unable to 

hyperphosphorylate Mih1 in vitro, which suggests that it regu-

lates Mih1 hyperphosphorylation indirectly or that it is inactive 

when purifi ed as a TAP-tagged fusion protein. Cdc5/polo kinase, 

which is thought to phosphorylate Mih1 homologues in other 

organisms, was unable to hyperphosphorylate Mih1. However, this 

assay would not identify kinases that phosphorylate Mih1 but 

fail to induce an electrophoretic mobility shift, or kinases that 

are inactive when purifi ed by the TAP-tag purifi cation protocol. 

 Figure 4.    Mih1 phosphorylation is dependent on the Yck1 and 2 kinases.  (A) Western blot analysis of Mih1 phosphorylation in log-phase populations of 
wild-type,  mck1 �  ,  sky1 �  ,  ste20 �  , and  cla4 �   cells. (B) Purifi ed dephosphorylated 3XHA-Mih1 was incubated with purifi ed TAP-tagged kinases at 30 ° C for 
45 min in the presence of ATP. For each kinase, a control reaction was performed in which no phosphatase was added to ensure that the purifi ed kinase 
did not introduce background bands to the anti-Mih1 Western blot. The phosphorylation state of Mih1 was monitored by Western blotting. (C)  YCK1 YCK2 , 
 YCK1 yck2 �  , and  yck2-2 yck1 �   cells were grown to log phase in YPD media. After taking a sample, the cells were shifted to 34 ° C and samples were 
collected at 1 and 2 h. The phosphorylation state of Mih1 was followed by Western blotting. (D) Purifi ed 3XHA-Mih1 was incubated with the indicated 
combinations of purifi ed Cdk1-Clb2-3XHA, Yck1-TAP, and dephosphorylated Mih1 at 30 ° C for 1 h in the presence of ATP. The phosphorylation state of 
Mih1 was monitored by Western blotting.   



937REGULATION OF MIH1 BY PP2A AND CASEIN KINASE 1  •  PAL ET AL.

with the idea that Yck1 and 2 regulate Mih1. Collectively, these 

results demonstrate that Yck1 and 2 play important roles in regu-

lation of Cdk1 inhibitory phosphorylation, most likely via Mih1. 

They do not rule out the possibility that Yck1 and 2 also regu-

late Cdk1 inhibitory phosphorylation via Swe1. 

 Cdk1 is required for phosphorylation 
and dephosphorylation of Mih1 
 Because Cdk1-Clb2 was identifi ed in the screen for kinases that 

phosphorylate Mih1, we performed further tests for a role of 

Cdk1 in regulating Mih1. The in vitro phosphorylation reactions 

performed in the screen suggested that Cdk1-Clb2 preferentially 

phosphorylates Mih1 when compared with Cdk1-Cln2 ( Fig. 4 B ). 

We tested this more carefully using Cdk1-Clb2-3XHA and 

Cdk1-Cln2-3XHA purifi ed by immunoaffi nity chromatography. 

Mih1 was preferentially phosphorylated by Cdk1-Clb2-3XHA 

under conditions where equal amounts of Cdk1-Clb2-3XHA 

and Cdk1-Cln2-3XHA were added (unpublished data). A ca-

veat to this experiment is that previous work found that Cdk1-

Clb2 has an  � 25-fold greater specifi c activity than Cdk1-Cln2 

( McCusker et al., 2007 ). For technical reasons, it was not possi-

ble to add enough Cdk1-Cln2-3XHA to the reaction to allow com-

parison of the ability of Cdk1-Cln2-3XHA and Cdk1-Clb2-3XHA 

to phosphorylate Mih1 under conditions of equal kinase activity. 

 We next tested whether Cdk1 activity is required for 

phosphorylation of Mih1 in vivo. For these experiments, we 

took advantage of the  cdk1-as  allele, which can be rapidly and 

specifi cally inhibited in vivo with 1NM-PP1. Cells carrying the 

 cdk1-as  allele were released from a G1 arrest and divided into 

two aliquots. 1NM-PP1 was added to one aliquot and samples 

were taken periodically during the cell cycle. The phosphoryla-

tion state of Mih1 and accumulation of Clb2 were assayed by 

Western blotting. Inhibition of cdk1-as in G1 (addition of 1NM-

PP1 30 min after release from  � -factor arrest) had no effect on 

the phosphorylation state of Mih1 over a period of 20 min (un-

published data). However, inhibition of cdk1-as when Clb2 was 

beginning to accumulate at the G2/M transition (addition of 

1NM-PP1 50 min after release from  � -factor arrest) eliminated 

Mih1 dephosphorylation ( Fig. 6 A ).   Mih1 dephosphorylation is 

therefore dependent on Cdk1 activity. 

 The fi nding that inhibition of Cdk1 leads to a failure to 

dephosphorylate Mih1 suggested that Cdk1 does not phosphor-

ylate Mih1 in vivo. To examine this issue more carefully, we 

added 1NM-PP1 to synchronized cells at 80 min, after cells had 

entered mitosis and Mih1 dephosphorylation had been initiated. 

We then collected samples at 2.5, 5, and 10 min and assayed 

Mih1 phosphorylation. Mih1 showed a striking behavior in this 

experiment. At short times after inhibition of cdk1-as, Mih1 ap-

peared to show a transient loss of a subset of phosphorylations; 

however, by 10 min there was a recovery of Mih1 phosphoryla-

tion ( Fig. 6 B ). The addition of 1NM-PP1 to wild-type control 

cells had no effect ( Fig. 6 C ). A possible explanation for this re-

sult is that Cdk1 phosphorylates Mih1 on a subset of sites and is 

also required for PP2A activity. Inhibition of cdk1-as would ini-

tially cause a loss of Mih1 phosphorylation but would also cause 

inactivation of PP2A, which would lead to hyperphosphoryla-

tion of Mih1 by Yck1 and 2. 

Mih1 or that the  yck2-2  allele does not fully eliminate kinase 

activity. Deletion of the  YCK3  gene in  yck2-2 yck1 Δ   cells did 

not further reduce phosphorylation of Mih1, which demon-

strates that Yck3 does not act redundantly with Yck1 and 2 (un-

published data). To determine if the remaining phosphorylation 

of Mih1 might be caused by residual yck2-2 kinase activity at 

the restrictive temperature, we attempted to fully eliminate 

Yck1 and 2 by creating a yck2-degron yck1 Δ  strain. Levels of 

the Yck2-degron fusion protein were reduced at the restrictive 

temperature; however, the protein was still present after 4 h and 

Mih1 remained partially phosphorylated (unpublished data). 

 Purifi ed Yck1 and 2 were not able to induce the large shift 

in Mih1 electrophoretic mobility that occurred in vivo ( Fig. 4 B ). 

A possible explanation for this result is that we did not purify 

suffi cient amounts of TAP-tagged Yck1 or 2 to induce quantitative 

hyperphosphorylation of Mih1. Yck1 and 2 are palmitoylated 

and would therefore be found primarily in the membrane frac-

tion during the TAP-tag purifi cation, which could signifi cantly 

decrease yields. We therefore scaled up the purifi cation and used 

higher levels of detergent to solubilize Yck1. Using this prepa-

ration, we found that Yck1 was able to induce a shift in the electro-

phoretic mobility of Mih1 that was similar in extent to the shift 

observed in vivo, although we were still unable to induce quan-

titative hyperphosphorylation of Mih1 ( Fig. 4 D ). Previous work 

has suggested that casein kinase 1 may preferentially phosphory-

late proteins that have been primed by previous phosphorylation 

by other kinases ( Knippschild et al., 2005 ). We found that 

phosphorylation of Mih1 with Cdk1-Clb2 in vitro did not sig-

nifi cantly enhance phosphorylation of Mih1 by Yck1 ( Fig. 4 D ). 

 Casein kinase 1 is required for regulation 
of Cdk1 inhibitory phosphorylation 
 Several observations support the idea that Yck1 and 2 are re-

quired for the regulation of Cdk1 inhibitory phosphorylation 

in vivo. First, a fraction of  yck2-2 yck1 Δ   cells become abnormally 

large and elongated at the restrictive temperature ( Robinson 

et al., 1993 ). Previous work has shown that misregulation of Cdk1 

inhibitory phosphorylation can lead to a similar elongated cell 

phenotype ( Ma et al., 1996 ;  Kellogg, 2003 ). We found that dele-

tion of  SWE1  in  yck2-2 yck1 Δ   cells largely eliminated the elon-

gated cell phenotype, which confi rmed that the phenotype is 

caused by misregulation of Cdk1 inhibitory phosphorylation 

( Fig. 5 A ).   We also tested the effects of  yck2-2 yck1 Δ   on the cell 

cycle at 30 ° C, a temperature at which cells are viable but Mih1 

hyperphosphorylation is signifi cantly reduced. This experiment 

revealed that a partial loss of Yck1 and 2 function caused in-

creased accumulation of Cdk1 inhibitory tyrosine phosphorylation 

and delayed accumulation of Clb2, which indicates delayed en-

try into mitosis. In addition, Swe1 failed to undergo full hyper-

phosphorylation. Because dephosphorylation of Cdk1 is thought 

to help initiate full hyperphosphorylation of Swe1, this observa-

tion is consistent with reduced Mih1 activity ( Harvey et al., 

2005 ). The  yck2-2 yck1 Δ   cells delayed at the short spindle stage 

of mitosis and  swe1 Δ   eliminated the delay ( Fig. 5 C ). Finally, 

previous work found that  cdc55 Δ   is synthetically lethal with 

 yck2-2 yck1 Δ   ( Robinson et al., 1993 ). Because  cdc55 Δ   is also 

synthetically lethal with  mih1 Δ  , this observation is consistent 
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 Figure 5.    Yck1 and 2 are required for Mih1 hyperphosphorylation.  (A)  yck2-2 yck1 �  and yck2-2 yck1 �  swe1 �   cells were grown to log phase at room 
temperature in YPD media and shifted to 34 ° C for 6 h. (B)  YCK1 YCK2  and  yck2-2 yck1 �   cells were synchronized with  � -factor and released into fresh 
YPD media at 30 ° C and samples were taken at 10-min intervals. Western blotting was used to monitor the behavior of Mih1, Swe1, Cdk1 tyrosine 19 
phosphorylation, and Clb2. The exposures of the Western blots were normalized using background bands to allow direct comparison of the signals from 
each strain. (C) Isogenic  YCK1 YCK2 ,  yck2-2 yck1 Δ  , and  yck2-2 yck1 Δ  swe1 Δ   cells were synchronized with  � -factor and released into fresh YPD media 
at 30 ° C and samples were taken at 10-min intervals. Cells were fi xed and stained with an anti-tubulin antibody and the percentage of cells with short 
spindles was determined. Over 200 cells were analyzed for each time point. The experiment was repeated at least three times with matched controls 
performed in parallel on the same day, and the same overall trend was observed. Error bars are not displayed because the timing of release from  � -factor 
arrest varies from day to day.   
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measurements with a Coulter counter (J. Bean and F. Cross, 

personal communication). We have also shown that inhibitory 

phosphorylation of Cdk1 occurs in wild-type cells growing under 

unstressed conditions ( Fig. 1 C ;  Harvey et al., 2005 ). Together, 

these observations demonstrate that Swe1 actively delays entry 

into mitosis and is required for cell size control in the absence 

of cytoskeletal stress and that the basic functions of fi ssion yeast 

Cdc25 and Wee1 are likely to have been conserved in budding 

yeast Mih1 and Swe1. These experiments do not rule out a role 

for Swe1 and Mih1 in mediating a morphogenesis checkpoint. 

 Mih1 is regulated by casein kinase 1 
and PP2A Cdc55  
 Mih1 is hyperphosphorylated in interphase and undergoes de-

phosphorylation as cells enter mitosis. The dramatic changes in 

Mih1 phosphorylation suggest that phosphorylation plays an 

important role in regulation of Mih1. Yck1 and 2 are responsible 

for the bulk of Mih1 hyperphosphorylation, whereas PP2A Cdc55  is 

responsible for dephosphorylation of Mih1 as cells enter mito-

sis. Although it is clear that PP2A Cdc55  and casein kinase 1 regu-

late Mih1 phosphorylation, the exact roles that they play in 

regulating Mih1 remain unclear. Phosphorylation of Mih1 could 

regulate phosphatase activity, localization, or association with 

other proteins. Paradoxically, genetic tests seem to suggest that 

 Discussion 
 Mih1 promotes entry into mitosis in 
budding yeast 
 Pioneering work in fi ssion yeast demonstrated that loss of 

Cdc25 causes delayed entry into mitosis and increased cell size, 

whereas loss of Wee1 causes premature entry into mitosis and 

decreased cell size ( Nurse, 1975 ;  Nurse et al. 1976 ;  Russell and 

Nurse, 1986, 1987 ;  Gould and Nurse, 1989 ). Early studies in 

budding yeast concluded that  swe1 Δ   does not cause reduced cell 

size or premature entry into mitosis and that Swe1 and Mih1 

mediate a morphogenesis checkpoint that is activated in re-

sponse to cytoskeletal stress ( Sia et al., 1996, 1998 ;  Lew, 2003 ; 

 McNulty and Lew, 2005 ;  Keaton and Lew, 2006 ). Here, we 

have shown that  mih1 Δ   causes delayed entry into mitosis, in-

creased cell size, and increased levels of Cdk1 inhibitory 

phosphorylation. Previous studies also reached the conclusion 

that  mih1 Δ   causes delayed entry into mitosis and increased lev-

els of Cdk1 inhibitory phosphorylation ( Booher et al., 1993 ; 

 Rudner et al., 2000 ). Recent work has shown that  swe1 Δ   causes 

premature entry into mitosis and a reduced cell size ( Jorgensen 

et al., 2002 ;  Harvey and Kellogg, 2003 ;  Harvey et al., 2005 ). 

Previous results that  swe1 Δ   does not cause reduced cell size 

( McNulty and Lew, 2005 ) have been revised after more recent 

 Figure 6.    Cdk1 regulates Mih1  phosphorylation 
and dephosphorylation.  (A) Log-phase  cdk1-as  
cells were synchronized in G1 with  � -factor and 
released into fresh YPD lacking supplemental 
adenine. At the indicated times, the cells were 
split into two aliquots, 1NM-PP1 was added 
to one aliquot, and samples were collected at 
10-min intervals. For the control, an equivalent 
amount of DMSO was added. The phosphoryla-
tion state of Mih1 was monitored by Western 
blotting. (B)  cdk1-as  cells were grown to log 
phase at room temperature and synchronized 
in G1 with  � -factor. The cells were then re-
leased into fresh YPD lacking supplemental 
adenine. At 80 min, the culture was divided 
in half. 1NM-PP1 was added to one half, and 
samples were collected at 0, 2.5, 5, and 10 min 
after the addition of 1NM-PP1. For the control, 
an equivalent amount of DMSO was added. 
The phosphorylation state of Mih1 was moni-
tored by Western blotting. (C) Wild-type cells 
were grown to log phase at room temperature 
and synchronized in G1 with  � -factor. The cells 
were then released into fresh YPD lacking sup-
plemental adenine. At 80 min, the culture was 
divided in half. 1NM-PP1 was added to one 
half, and samples were collected at 0, 2.5, 5, 
and 10 min after the addition of 1NM-PP1. For 
the control, an equivalent amount of DMSO 
was added. The phosphorylation state of Mih1 
was monitored by Western blotting.   
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Mih1 by Yck1 and 2. In this case, inhibition of cdk1-as would 

again cause a loss of Cdk1-dependent phosphorylation of Mih1 

but also an increase in phosphorylation of Mih1 by Yck1 and 2. 

It is also possible that the response of Mih1 to the inhibition of 

cdk1-as involves more complex signaling networks that include 

additional kinases and phosphatases. 

 Previous work in  X. laevis  suggested that Cdk1 phosphor-

ylates and activates Cdc25 during entry into mitosis ( Izumi et al., 

1992 ;  Kumagai and Dunphy, 1992 ;  Izumi and Maller, 1993 ). 

Thus far we have not been able to purify suffi cient quantities of 

tyrosine-phosphorylated Cdk1-Clb2 and differentially phos-

phorylated forms of Mih1 to carefully test whether phosphoryla-

tion regulates Mih1 activity. 

 Is entry into mitosis regulated by highly 
conserved mechanisms? 
 The mechanisms that regulate Mih1 seem to provide a striking 

contrast to the mechanisms that regulate Cdc25. Mih1 is hyper-

phosphorylated in interphase and undergoes dephosphorylation 

when cells enter mitosis, whereas vertebrate Cdc25 is dephos-

phorylated in interphase and undergoes hyperphosphorylation 

when cells enter mitosis ( Izumi et al., 1992 ;  Kumagai and 

 Dunphy, 1992 ). Yet the mechanisms that regulate entry into 

mitosis in eukaryotic cells are of fundamental importance and it 

seems likely that core components of these mechanisms have 

been conserved. Several observations suggest that the mecha-

nisms that regulate Cdc25 and Mih1 may be more similar than 

superfi cial comparisons might suggest. Both Mih1 and Cdc25 

undergo Cdk1-dependent regulation, and Cdk1 appears to help 

initiate feedback loops that trigger changes in their phosphoryla-

tion states ( Dunphy, 1994 ). There is also good evidence that 

both Mih1 and Cdc25 are regulated by a balance of opposing 

kinase and phosphatase activities in which PP2A plays a central 

role. For example, inhibition of PP2A in interphase  X. laevis  

extracts that lack signifi cant Cdk1 activity rapidly induces full 

hyperphosphorylation of Cdc25C. This suggests that a kinase 

other than Cdk1 can hyperphosphorylate Cdc25C and that PP2A 

opposes hyperphosphorylation of Cdc25C ( Kumagai and Dunphy, 

1992 ;  Izumi and Maller, 1995 ). Although Cdk1 and polo kinase 

have been implicated in regulation of Cdc25, no experiments 

have found that these kinases are capable of directly inducing 

the full hyperphosphorylation of Cdc25 that is observed in vivo, 

which again suggests the existence of another kinase that phos-

phorylates Cdc25 ( Izumi and Maller, 1995 ). The activity of the 

kinases that phosphorylate  X. laevis  Cdc25 is high in mitosis 

and low in interphase, whereas the activity of the phosphatases 

that dephosphorylate Cdc25 is high in interphase and low in 

mitosis ( Kumagai and Dunphy, 1992 ). Collectively, these ex-

periments suggest that Cdc25 is regulated by a balance of 

opposing kinase and phosphatase activities ( Dunphy, 1994 ). 

The identity of the kinase that phosphorylates  X. laevis  Cdc25 

in  interphase extracts is unknown, but analysis of Mih1 regula-

tion suggests that it may be casein kinase 1. 

 Mih1 also appears to be regulated by a balance of oppos-

ing kinase and phosphatase activities. Loss of PP2A Cdc55  causes 

Mih1 to shift to hyperphosphorylated forms, whereas loss of Yck1 

and 2 causes Mih1 to shift to dephosphorylated forms. In budding 

both the dephosphorylated and hyperphosphorylated forms of 

Mih1 are required for full Mih1 activity. For example, the 

 cdc55 Δ   phenotype suggests that hyperphosphorylated forms of 

Mih1 have reduced activity. Conversely, the  yck2-2 yck2 Δ   pheno-

type suggests that dephosphorylated forms of Mih1 have re-

duced activity. However, the complexity of mitotic regulation 

makes it diffi cult to make strong conclusions regarding the rela-

tive activities of differently phosphorylated forms of Mih1 from 

mutant phenotypes. For example, it is possible that PP2A Cdc55  or 

Yck1 and 2 also function upstream of Swe1, which would com-

plicate the interpretation of phenotypes. Moreover, it is possible 

that there are additional kinases or phosphatases that regulate 

Mih1 that were missed in our screens. 

 The fi nding that the phosphorylation state of Mih1 is regu-

lated by casein kinase 1 and PP2A cdc55  suggests that Mih1 is 

not regulated by relatively simple positive feedback loops that 

only involve core regulators of the cell cycle. The discovery that 

casein kinase 1 is a regulator of Mih1 is of particular interest 

and provides an important step toward understanding the regu-

lation and physiological functions of inhibitory phosphorylation 

of Cdk1. Yck2 is a plasma membrane – associated protein that 

is concentrated at sites of polar cell growth and cytokinesis 

( Robinson et al., 1999 ;  Babu et al., 2002 ). Loss of Yck1 and 2 

causes defects in the pattern of cell growth as well as in endo-

cytosis and septin organization ( Robinson et al., 1993, 1999 ; 

 Panek et al., 1997 ). Key targets of Yck1 and 2 that mediate these 

functions have remained unknown. However, the fact that Yck1 

and 2 regulate Mih1 and are associated with sites of cell growth 

suggests that they are well-positioned to relay signals regarding 

the status of growth-related events to the cell cycle control 

machinery. The discovery of a role for casein kinase 1 in regula-

tion of Mih1 may therefore provide a key missing link between 

the mechanisms that regulate entry into mitosis and mecha-

nisms that regulate aspects of cell growth. Such links must exist 

to allow coordination of cell growth and cell division but have 

remained elusive. 

 Cdk1 is required for initiation of 
Mih1 dephosphorylation 
 Previous work found that  X. laevis  Cdc25 is regulated by Cdk1 

( Izumi et al., 1992 ;  Kumagai and Dunphy, 1992 ;  Izumi and 

Maller, 1993 ). Several experiments demonstrated that Mih1 is 

also regulated by Cdk1. For example, Cdk1-Clb2 preferentially 

phosphorylated Mih1 in vitro when compared with Cdk1-Cln2. 

In addition, inhibition of cdk1-as in cells that are entering mito-

sis caused a failure to dephosphorylate Mih1, and inhibition of 

cdk1-as after entry into mitosis caused a transient dephosphory-

lation of Mih1. A possible explanation for these results is that 

Cdk1 phosphorylates Mih1 on a subset of sites and also acti-

vates dephosphorylation of Mih1 by PP2A Cdc55 . In this model, 

inhibition of cdk1-as during entry into mitosis would prevent 

Mih1 dephosphorylation, whereas inhibition of cdk1-as during 

mitosis would initially lead to a rapid loss of Cdk1-dependent 

phosphorylation of Mih1 but would also lead to inactivation of 

PP2A Cdc55 , which would allow hyperphosphorylation of Mih1 

by Yck1 and 2. Another possibility is that Cdk1-Clb2 initiates 

dephosphorylation of Mih1 by inhibiting phosphorylation of 
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For  Fig. 6 A , cells were released from an  � -factor arrest into fresh YPD at 
30 ° C. At 50 min, the culture was split in half, 25  μ M 1NM-PP1 (a gift from 
C. Zang and K. Shokat, University of California, San Francisco, San 
 Francisco, CA) was added to one half, and an equivalent amount of DMSO 
was added to the other half (mock treated). 1.6-ml samples were collected 
from each set at 10-min intervals until 120 min. For  Fig. 6 B , log-phase 
cells were arrested in G1 and released from an  � -factor arrest into fresh 
YPD at 30 ° C. At 90 min, the culture was split in half, 25  μ M 1NM-PP1 was 
added to one half, and an equivalent amount of DMSO was added to the 
other half. 1.6-ml samples were collected from each set at 0, 2.5, 5, and 
10 min after the addition of 1NM-PP1. The time courses for  Fig. 1 (B and C)  
and  Fig. 5 C  were repeated a minimum of three times, and in each case 
the data shown represent the result of a timecourse performed in parallel 
with an isogenic control and the mutant strains. 

 Western blotting, microscopy, and cell size analysis 
 Polyacrylamide gel electrophoresis was done as previously described 
( Anderson et al., 1973 ). Gel electrophoresis for analysis of Mih1 
phosphorylation by Western blotting was performed with a 10% SDS-
PAGE gel of dimensions 17  ×  8.5  ×  1 mm. The gels were run at 20 mA 
constant current until a 58-kD prestained molecular mass marker was at 
the bottom of the gel. Western blot transfers were performed for 75 min at 
800 mA at 4 ° C in a Hoeffer transfer tank in a buffer containing 20 mM Tris 
base, 150 mM glycine, and 20% methanol. Mitotic spindles were fi xed 
and stained as previously described ( Pringle et al., 1991 ). Cell size analy-
sis was performed as previously described, except that cultures were 
grown at room temperature in YPD to OD 600  = 0.65 ( Harvey et al., 2005 ). 
All microscopy was done using an Axioskop 2 plus (Carl Zeiss, Inc.) with 
a camera (HRm; AxioCam) and 63 ×  objective (numerical aperture 1.4). 
Images were acquired using Axiovision software (Carl Zeiss, Inc). 

 Immunoaffi nity purifi cations 
 Immunoaffi nity purifi cation of 3XHA-Mih1 was performed in the presence 
of 1 M KCl using the same protocol used for purifi cation of 3XHA-Swe1 
with some modifi cations ( Harvey et al., 2005 ). For the purifi cation of phos-
phorylated Mih1 used in  Figs. 2 B  and  4 B , immunoaffi nity beads were 
prepared by binding 400  μ g of affi nity-purifi ed polyclonal anti-HA anti-
bodies to 400  μ l of protein A beads (Bio-Rad Laboratories). Binding was 
performed overnight at 4 ° C on a rotator (Thermo Fisher Scientifi c). Beads 
were equilibrated by washing three times in extract buffer (50 mM Hepes-
KOH, pH 7.6, 1 M KCl, 1 mM MgCl 2 , 1 mM EGTA, 5% glycerol, and 
0.25% Tween-20) before the addition of extract. Cells containing a 3XHA-
tagged copy of Mih1 under the control of the  GAL1  promoter (GP16) were 
grown overnight at 30 ° C in yeast extract peptone media containing 2% 
glycerol and 2% ethanol to OD 600  = 0.8. Galactose was added to 1% and 
cells were incubated at 30 ° C for 3.5 h. The cells were pelleted and ground 
under liquid nitrogen and 12 g of cell powder was resuspended in 25 ml of 
extract buffer containing 2 mM PMSF. All subsequent steps were performed 
at 4 ° C. The extract was centrifuged for 5 min at 10,000  g , followed by an 
additional centrifugation step at 45,000  g  for 45 min. After the fi nal spin, 
15 ml of the extract was added to the anti-HA antibody beads. 

 The extract and anti-HA beads were gently rotated end over end at 
4 ° C for 1.5 h. The beads were pelleted by centrifugation, the supernatant 
was removed, and the remaining extract was incubated with the beads for 
an additional 1.5 h at 4 ° C. The beads were pelleted by centrifugation and 
washed three times with 15 ml of ice-cold extract buffer without PMSF. After 
the fi nal wash, the beads were washed twice with ice-cold elution buffer 
(50 mM Hepes-KOH, pH 7.6, 250 mM KCl, 1 mM MgCl 2 , 1 mM EGTA, 
5% glycerol, and 0.1% Tween-20). The beads were then transferred to a 
1.5-ml Biospin column (Bio-Rad Laboratories) and washed three times by 
pipetting 1 ml of elution buffer onto the top of the column. To elute the col-
umn, 250  μ l of elution buffer containing 0.5 mg/ml HA dipeptide was 
added to the column and the fl ow-through fraction was collected. After a 
30-min incubation, another aliquot was added. This was repeated for a to-
tal of six fractions. Elution fractions two through fi ve were aliquoted in 10- μ l 
vol and fl ash frozen on liquid nitrogen. 

 For the purifi cation of the trimeric PP2A Cdc55  core complex, we uti-
lized a CDC55-3XHA strain (DK354) that lacks the Zds1 and 2 proteins, 
which associate with the PP2A Cdc55  core complex ( Gavin et al., 2002 ). 
A similar protocol was followed, except that cells were grown in YPD and 
10 g of powder was resuspended in 25 ml of extract buffer. For the purifi cation 
of dephosphorylated Mih1 for  Fig. 4 (B and D) , the experiment was per-
formed similarly with the following modifi cations: 500  μ g of polyclonal anti-
HA antibodies were added to 400  μ l of protein A beads. For treatment with 
 �  phosphatase, the beads were washed twice with  �  phosphatase buffer 
(50 mM Tris-HCl, pH 7.5, 5 mM DTT, 2 mM MnCl 2 , and 100  μ g/ml BSA). 

yeast, the balance may be shifted more toward the kinase during 

interphase so that Mih1 is found primarily in the hyperphosphor-

ylated form. In vertebrates, the balance may be shifted more to-

ward the phosphatase in interphase so that Cdc25 is primarily in 

the dephosphorylated form. Thus, it is possible that Mih1 and 

Cdc25 are both regulated by a conserved mechanism that is based 

on the opposing activities of kinases and phosphatases. Regula-

tion of a protein by opposing kinase and phosphatase activities 

can potentially generate switch-like changes in the activity of 

the protein ( Goldbeter and Koshland, 1981, 1984 ;  LaPorte and 

Koshland, 1983 ;  Ferrell and Xiong, 2001 ;  Ferrell, 2002 ). Regu-

lation of Mih1 and Cdc25 by opposing kinase and phosphatase 

activities may therefore play an important role in the mechanisms 

that convert gradually increasing mitotic cyclin levels to an 

abrupt switch-like activation of Cdk1 at the G2/M transition. 

 Materials and methods 
 Yeast strains and culture conditions 
 The gene deletions and TAP-tagged kinases used to screen for kinases that 
regulate Mih1 were obtained from Open Biosystems. The strains used for 
this study are listed in  Table I .   In most cases, cells were grown in yeast 
extract-peptone-dextrose (YPD) media supplemented with 40 mg/liter 
adenine. The  cdk1-as1  strain was grown in YPD lacking supplemental ade-
nine. GP16 was generated by integrating the  GAL1  promoter and a 3XHA 
tag upstream of  MIH1  in strain DK186 using standard protocol (oligos: 
CATTGGCACATTCATCTTCAGTTCCATGAAA-TATATTGTTGCACTGAGC-
A G CGTAATCT and CAGGACTAAGGATGAA-GAGGGGCTTCAATGTTT-
TATATGGGAATTCGAGCTCGTTTAAAC;  Longtine et al., 1998 ). GP28 was 
generated by sporulating the diploid  sit4 Δ ::kanMX4/SIT4  strain (diploid 
deletion collection; Open Biosystems). DK1053 was generated by ampli-
fying  swe1 Δ ::HIS5  ( Kluyveromyces lactis ) from strain SH181 with oligos 
(GCGACGCGACGCGAAAAAAATGC and AATGCTTGAAGCGGCTGT A-
C TT) and transforming it into LRB756. Strains DK1121 and 1138 were 
generated by integrating 3XHA tag at the N-terminal ends of Clb5 in 
HT179 and DK186 using standard protocol (oligos: CGAAATGCATAG-
CAACTTTCAAAATCT-ATTTAATCTTAAGCGGATCCCCGCGTTAATTAA and 
GTAAAGAGTATGCGAATTCATGAGCATTACTAGTACTAATGAATTCG-A G-
CTCGTTTAAAC;  Longtine et al., 1998 ). 

 Plasmid construction and antibody generation 
 To generate an anti-Mih1 antibody, full-length  MIH1  was cloned into pGEX4T-3 
to create pGP1 (oligos: GCGGGATCCATGAACAATATATTTCAT and GCG-
GAATTCGCGGGCCTGGGTAAATCT). The GST-Mih1 fusion was expressed 
in  Escherichia coli  and purifi ed as previously described ( Kellogg and 
Alberts, 1992 ). 

 Cell cycle time courses 
 For most cell cycle time courses, log-phase culture cells were grown over-
night at room temperature to OD 600  = 0.65. Cells were arrested in G1 by 
the addition of either 15  μ g/ml  � -factor for 2.5 h (for  BAR1  strains) or 
0.5  μ g/ml  � -factor for 3 h (for  bar1  �  strains) at room temperature. The cells 
were released from the arrest at 30 ° C, 1.6-ml samples were collected 
at 10-min intervals, and the cells were rapidly pelleted in screw-top tubes. 
The supernatant was removed and  � 250  μ l of acid-washed glass beads 
were added before freezing on liquid nitrogen. To lyse the cells, 150  μ l of 
protein sample buffer (65 mM Tris-HCl, pH 6.8, 3% SDS, 10% glycerol, 
and 5%  � -mercaptoethanol) supplemented with 50 mM NaF, 50 mM 
 � -glycerophosphate, and 2 mM PMSF was added and the tubes were placed 
in a Multibeater-8 (BioSpec Products, Inc.) and mixed at top speed for 90 s. 
The PMSF was added to the sample buffer immediately before use from a 
100-mM stock made in 100% ethanol and stored at  � 20 ° C. The tubes 
were immediately removed, centrifuged for 10 s in a microfuge, and placed 
in a boiling water bath for 5 min. The tubes were centrifuged in a tabletop 
microfuge for 5 min and 20  μ l was loaded on a gel. To test for essential ki-
nases or phosphatases that act on Mih1, log-phase cultures of temperature-
sensitive alleles were shifted to the restrictive temperature and 1.6-ml 
samples were collected at 1-h time intervals. For the cell cycle time course 
shown in  Fig. 5 B , cells were arrested in G1 at 22 ° C and released from the 
arrest at 30 ° C, which is a semirestrictive temperature for the  yck2-2  allele. 
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 Screening for kinases that phosphorylate Mih1 
 To screen for nonessential kinases that phosphorylate Mih1, kinase 
deletion strains were grown to log phase at 30 ° C in 2-ml 96-well plates. 
Table S1 provides a list of the nonessential kinase deletion strains that 
were tested. Cells were pelleted by centrifugation, resuspended in 50 mM 
Hepes-KOH, pH 7.6, aliquoted to 1.6-ml screw-top tubes, and pelleted again. 

After the fi nal wash in phosphatase buffer, the beads were resuspended in 
phosphatase buffer and transferred to a 1.6-ml tube. The beads were centri-
fuged and the supernatant was aspirated. 400  μ l of phosphatase buffer and 
30  μ l of  �  phosphatase were added and the tube was incubated at 30 ° C 
for 1 h with gentle mixing every 15 min. The column was washed and the 
protein was eluted and aliquoted as described in the previous paragraph. 

 Table I.    Strains used in this study  

Strain Genotype Strain background Reference or source

DK186  MATa,   leu2-3,112 ura3-52 can1-100 ade2-1 his3-11 trp1-1 bar1 Δ  GAL + W303  Altman et al. (1997) 

DK303  MATa,   leu2-3,112 ura3-52 can1-100 ade2-1 his3-11 trp1-1 bar1 Δ  GAL +  
      CLB2-3XHA::TRP1 

W303  Harvey et al. (2005) 

DK354  MATa,   leu2-3,112 ura3-52 can1-100 ade2-1 his3-11 trp1-1 bar1 Δ  GAL +  
      zds1 Δ ::LEU2 zds1 Δ ::TRP1 CDC55-3XHA::HIS5  ( K. lactis )

W303 H. Tjandra a 

DK1053  MATa ,  his3 leu2 ura3-52 yck1-1::URA3 yck2- 2  swe1 Δ ::HIS5  ( K. lactis ) Unknown This study

DK1121  MATa,   leu2-3,112 ura3-52 can1-100 ade2-1 his3-11 trp1-1 bar1 Δ  GAL +  
      mih1 Δ ::URA3 Clb5-3XHA::HIS 

W303 This study

DK1138  MATa,   leu2-3,112 ura3-52 can1-100 ade2-1 his3-11 trp1-1 bar1 Δ  GAL +  
      Clb5-3XHA::HIS 

W303 This study

DEY213  MATa,   leu2-3,112 ura3-52 can1-100 ade2-1 his3-11  
     trp1-1 bar1 Δ  GAL + PPH22::URA3 pph3 Δ 1::LYS2 pph21 Δ ::HIS3 

W303  Evans and Stark (1997) 

DEY214  MATa,   leu2-3,112 ura3-52 can1-100 ade2-1 his3-11 trp1-1 bar1 Δ  GAL +  
      pph22-12::URA3 pph3 Δ 1::LYS2 pph21 Δ ::HIS3 

W303  Evans and Stark (1997) 

GP16  MATa,   leu2-3,112 ura3-52 can1-100 ade2-1 his3-11 trp1-1 bar1 Δ  GAL +  
      GAL1-3XHA-MIH1 :: HIS5  ( K. lactis )

W303 This study

GP28  MAT a,  his3 Δ 1 leu2 Δ 0 URA3 Δ 0 lys2 sit4 Δ ::kanMX4 BY4743 This study

HT179  MATa,   leu2-3,112 ura3-52 can1-100 ade2-1 his3-11 trp1-1 bar1 Δ  GAL +  
      mih1::URA3 

W303 H. Tjandra

JAU05  MATa,   leu2-3,112 ura3-52 can1-100 ade2-1 his3-11 trp1-1 bar1 Δ  GAL +  
      cdc28::cdc28-as1 

W303  Bishop et al. (2000) 

JC33a  MATa,   cdc5-1  bar1:: URA3 ,  leu2-3,112 ura3-52 can1-100 ade2-1 his3-11  
      trp1-1 GAL + 

W303 D. Morgan  b  

JM82  MATa,   leu2-3,112 ura3-52 can1-100 ade2-1 his3-11  
     trp1-1 GAL + cdc55 Δ ::HIS3 

W303 A. Rudner  c  

KKY387  MATa,   ura3-52 lys2-801 amber  ade2-101 ochre  trp1 Δ 63 his1- Δ 200 leu2- Δ   
      hrr25 Δ ::loxP-kanMX-loxP (pKK204 2 μ  pGAL-3XHA-HRR25 degron ) 

YPH499  Kafadar et al. (2003) 

LRB756  MATa ,  his3 leu2 ura3-52 yck1-1::URA3 yck2- 2 Unknown  Panek et al. (1997) 

LRB758  MATa ,  his3 leu2 ura3-52 Unknown  Panek et al. (1997) 

LRB1039  MATa,   his3 leu2 ura3-52 yck2::kanMX Unknown L. Robinson  d  

PAY704-1  MATa,   leu2-3,112 ura3-52 can1-100 ade2-1 his3-11 trp1-1 bar1 Δ  GAL +  
      glc7 Δ ::LEU2 trp1::GLC7::TRP1 

W303  Andrews and Stark (2000) 

PAY701-2  MATa,   leu2-3,112 ura3-52 can1-100 ade2-1 his3-11 trp1-1 bar1 Δ  GAL +  
      trp1::glc7-12::TRP1 

W303  Andrews and Stark (2000) 

RJD1229  MAT � ,   cdc14-1 pep4::TRP1 bar1::LEU2 ade2-1 can1-100 his3-11,15 leu  
      2-3,112 trp1-1 ura3-1 

W303 R. Deshaies  e  

SH24  MATa,   leu2-3,112 ura3-52 can1-100 ade2-1 his3-11  
     trp1-1 bar1 Δ  GAL + swe1 Δ ::URA3 

W303  Harvey et al. (2005) 

SH113  MATa,   leu2-3,112 ura3-52 can1-100 ade2-1 his3-11  
     trp1-1 bar1 Δ  GAL + mih1 Δ ::URA3 swe1 Δ ::HIS3MX6 (K. lactis) 

W303 S. Harvey  a  

SH181  MATa,   leu2-3,112 ura3-52 can1-100 ade2-1 his3-11,15  
     trp1-1 bar1 Δ  GAL + ura3-1 swe1 Δ ::HIS3MX6 (K. lactis) 

W303 S. Harvey

SH650  MATa,   leu2-3,112 ura3-52 can1-100 ade2-1 his3-11 trp1-1 bar1 Δ  GAL +  
      + cdc55 Δ ::KanMX6 

W303 S. Harvey

YDH6  MATa,   ade2-101his3- Δ 200 leu2- Δ 1 lys2-801 amber  trp1- Δ 1 ura3-52 cka1- 
       Δ 1::HIS3 cka2- Δ 1TRP1 (pCEN6/ARSH4 LEU2 CKA2) 

YPH250  Hanna et al. (1995) 

YDH8  MATa,   ade2-101 his3- Δ 200 leu2- Δ 1 lys2-801 trp1- Δ 1 ura3-52 cka1- 
       Δ 1::HIS3 cka2- Δ 1::TRP1 ( p CEN6/ARSH4 LEU2 cka2-8) 

YPH250  Hanna et al. (1995) 

YDH13  MATa,   ade2-101 his3- Δ 200 leu2- Δ 1 lys2-801 trp1- Δ 1 ura3-52 cka1- 
       Δ 1::HIS3 cka2- Δ 1::TRP1 ( p CEN6/ARSH4 LEU2 cka2-13) 

YPH250  Hanna et al. (1995) 
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ability to phosphorylate Mih1 in vitro. Online supplemental material is avail-
able at http://www.jcb.org/cgi/content/full/jcb.200711014/DC1. 
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The  supernatant was removed and glass beads were added to each tube 
before freezing on liquid nitrogen. For Western blotting of the crude ex-
tracts, 100  μ l of protein sample buffer was added to each tube, cells were 
lysed by bead beating followed by incubation at 100 ° C for 5 min, and 
20  μ l of each sample was used for SDS-PAGE. 

 To screen essential kinases, TAP-tagged kinases were purifi ed and 
tested for their ability to phosphorylate Mih1. Table S1 provides a list of TAP-
tagged proteins that were tested. For each purifi cation, 15  μ l of IgG Sepha-
rose beads (GE Healthcare) was transferred into a 500- μ l microfuge tube. 
The beads were washed three times with 500  μ l of extract buffer (50 mM 
Tris-HCl, pH 7.5, 700 mM NaCl, 75 mM NaF, 75 mM BGP, 2 mM EGTA, 
5% glycerol, and 0.25% Tween 20). To prepare cells for purifi cation experi-
ments, 50 ml of cells at OD 600  = 0.65 were pelleted,  resuspended in 1 ml of 
50 mM Hepes-KOH, pH 7.6, aliquoted to 1.6-ml screw-top tubes, and pel-
leted again, and 250  μ l of glass beads was added to each tube before 
freezing on liquid nitrogen. Extracts for purifi cations were made by adding 
300  μ l of room-temperature extract buffer with 2 mM PMSF. The tubes were 
placed immediately into a Multibeater-8 and beaten at top speed for 30 s. 
The tubes were then placed in an ice-water bath for 30 s before a 5-min spin 
in a microfuge at 13,000 rpm. 300  μ l of the  supernatant was removed and 
replaced with 200  μ l of extract buffer with 2 mM PMSF and the tubes were 
beaten again for 30 s. The supernatants were pooled, spun in a microfuge 
at top speed for 5 min, and then added to the IgG Sepharose beads equili-
brated in lysis buffer. The tubes were rotated gently end over end at 4 ° C for 
1.5 h and the beads were then washed three times with 500  μ l of extract 
buffer without PMSF, followed by three more washes with 500  μ l TEV cleav-
age buffer (10 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.5 mM EDTA, 1 mM 
DTT, 0.1% Tween-20, and 5% glycerol). At the end of these washes, the 
beads were resuspended in 70  μ l TEV cleavage buffer and 1  μ l of 1.6-mM 
TEV protease (a gift from J. Little, University of California, Santa Cruz, Santa 
Cruz, CA) was added to each tube. The tubes were rotated gently end over 
end at room temperature for 2 h. The tubes were spun in a microfuge at top 
speed for 2 min and 65  μ l of the supernatant was transferred to a fresh tube. 
The composition of the supernatant was adjusted to 2 mM MgCl 2  and 
0.5 mM ATP. Kinase assays were performed by mixing 15  μ l of purifi ed 
kinase with 5  μ l of  dephosphorylated Mih1, followed by incubation at 30 ° C 
for 45 min with gentle mixing every 10 min. For control reactions, 15  μ l of 
purifi ed kinase was incubated with 5  μ l of the elution buffer used to purify 
dephosphorylated Mih1. This control ensured that bands detected in the re-
actions that included Mih1 were not caused by background bands from the 
added kinase. Each sample was mixed with 5  μ l of 4 ×  protein sample buffer 
and incubated at 100 ° C for 5 min, and 25  μ l was loaded onto a 10% SDS 
polyacrylamide gel for Western blot analysis. This protocol was modifi ed to 
scale up the purifi cation of Yck1-TAP kinase in the in vitro kinase assay 
shown in  Fig. 4 D . In brief, 4 liters of Yck1-TAP cells were grown and 8 g of 
cell powder was resuspended in 20 ml of extract buffer. The cell  lysate was 
centrifuged at 10,000  g  for 5 min followed by 40,000  g  for 45 min and the 
supernatant was bound to 200  μ l IgG beads for 2 h. The beads were 
washed three times with extract buffer without PMSF and three times with 
TEV cleavage buffer with 0.25% Tween-20. The beads were suspended in 
400  μ l TEV cleavage buffer and 7  μ l of 1.6-mM TEV protease was added. 
The beads were rotated at room temperature for 2.5 h and 350  μ l of the super-
natant was removed and frozen in 25- μ l aliquots on liquid nitrogen. 

 In vitro assays with  �  phosphatase, PP2A Cdc55 , and Yck1-TAP 
 To demonstrate that Mih1 modifi cation is caused by phosphorylation 
( Fig. 2 B ), 10  μ l of purifi ed phosphorylated Mih1 was treated with 2  μ l 
 �  phosphatase in phosphatase assay buffer (50 mM Hepes-KOH, pH 7.6, 
0.05% Tween 20, 5% glycerol, 1 mM DTT, 1 mM MnCl 2,  and 50  μ g/ml BSA) 
in a total volume of 40  μ l. The reactions were incubated at 30 ° C for 30 min 
and terminated by adding 12.5  μ l of 4 ×  sample buffer. The samples were 
boiled at 100 ° C for 5 min and 20  μ l of each reaction was analyzed by 
Western blotting. To show that Mih1 is a direct substrate of PP2A Cdc55 , a 
similar protocol was followed, where 10  μ l of purifi ed Cdc55-3XHA was 
added to the 5  μ l of purifi ed dephosphorylated 3XHA-Mih1 in phospha-
tase assay buffer in a total volume of 40  μ l. To demonstrate that Cdk1-Clb2-
3XHA and Yck1-TAP can directly phosphorylate Mih1, 5  μ l of the purifi ed 
dephosphorylated 3XHA-Mih1 was incubated with 10  μ l of purifi ed Cdk1-
Clb2-3XHA or Yck1-TAP in the presence of kinase assay  buffer (50 mM 
Hepes-KOH, pH 7.6, 2 mM MgCl 2 ,1 mM DTT,10% glycerol, and 2 mM 
ATP) in a total volume of 40  μ l. The reaction was performed at 30 ° C for 
1 h and was terminated by adding 12.5  μ l of 4 ×  protein sample buffer. 

 Online supplemental material 
 Tables S1 provides a list of gene deletion strains tested for effects on Mih1 
phosphorylation. Table S2 provides a list of essential kinases tested for their 
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