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Astrocytic modulation of potassium under seizures

Introduction
Over 50 million people are suffering from epilepsy globally 
(Ngugi et al., 2010; Thurman et al., 2011; Losi et al., 2012), 
which amounts to 1% of the world population (Witcher and 
Ellis, 2012; Baldin et al., 2014). A seizure, as a fundamental 
component of epilepsy, is an uncontrolled sudden attack of 
behavioral change invoked by neuronal hyperexcitability. 
For decades, the underlying mechanism of seizure has baf-
fled neuroscientists. As an increasing number of evidences 
surface through researches, the cardinal role of astrocytes in 
this perplexing condition has come to unfold and be recog-
nized. Astrocytes are now believed to contribute to seizure 
both independently and concertedly. 

As the most abundant sub-type of glial cells, astrocytes 
consist of one third of the brain. Their leaflet-like processes 
envelope the majority of the central nervous system (CNS) 
synapses, and the end-feet contribute to and retain the 
integrity of blood brain barrier. Astrocytes were formerly 
believed to provide energy for neurons and function pri-
marily as metabolic and physical support in the CNS. Resent 
research has advanced our knowledge to the next level and 
shown that astrocytes also exert a pivotal function in neu-
ronal homeostasis and modulation (Seifert and Steinhauser, 
2013; Verkhratsky et al., 2017). Through potassium buffer-
ing (Kofuji and Newman, 2004) and agonist-induced Ca2+ 
wave (Wang et al., 2013), astrocytes can actively regulate 
ionic homeostasis,  control neuronal excitability (Kofuji and 
Newman, 2004), maintain the blood-brain barrier integrity, 
sustain cellular water distribution, modulate amino acid 
neurotransmitter metabolism, and provide energy and nutri-

ent support to neurons (Verkhratsky et al., 2014). These pro-
cesses all contribute to a stable internal osmotic environment 
that normal cerebral activities rely on. These new findings 
along with other features render astrocyte a vital target in the 
field of epilepsy treatment through neuromodulation. In ad-
dition, recent epilepsy research has discovered genetic muta-
tions of voltage-gated Na+, Ca2+ and K+ channels (Carmignoto 
and Haydon, 2012) and inhibitory synaptic transmission, 
which have been identified to be involved in the purported 
idiopathic epilepsy (McNamara et al., 2006). Herein, we re-
viewed the current concepts of astrocytic modulation of K+ 
under seizures. 

Search Strategy and Selection Criteria
We conducted a literature search of the electronic databases, 
including PubMed/MEDLINE, Google Scholar from 1990 
to 2019. The following terms were used accordingly: astro-
cytic potassium modulation; astrocytes calcium signaling; 
astrocytic epilepsy models; astrocytic cell volume; astrocyte 
and traumatic brain injury; traumatic brain injury and sei-
zure. We have also reviewed reference lists of obtained pub-
lications. Literature that is not published in English has not 
been considered. 

Increase of K+ Induces Paroxysmal Oscillation
The neuronal excitability in the CNS is heavily regulated by 
the K+ channel and extracellular potassium concentration 
(Kofuji and Newman, 2004). The opening of the K+ chan-
nel after a single action potential can result in a transient 
increase in the extracellular K+ concentration that amounts 
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to nearly 1 mM above the resting potential; whereas that of 
an intensive neuronal firing discharge can create an increase 
of nearly 5 mM above the resting potential. An increased 
K+ derived from the latter scenario, i.e., an intense neuronal 
stimulation, predispose neurons to develop epileptiform 
discharges (Timofeev et al., 2002). In epileptogenesis stud-
ies, a peak of 10–12 mM in the [K+]o has been observed 
during an epileptic episode with hyper-synchronous neuro-
nal activities (Walz, 2000; Carmignoto and Haydon, 2012). 
Although the association between [K+]o concentration and 
epilepsies has been well recognized and substantiated, it re-
mains unclear whether the increase of [K+]o is the culprit of 
a seizure attack, or the result of the intense epileptic electri-
cal discharge. 

Grafstein (1956) hypothesized that K+ released during in-
tense neuron discharge accumulated in the interstitial space, 
which in turn led to depolarization of neurons and spike 
inactivation. A combination of intrinsic conductance and 
elevated K+ can be sufficient to initiate 2–3 Hz oscillations. 
K+ modulation can influence immensely the maximal con-
ductance of some depolarizing currents and the excitability 
of neurons (Timofeev et al., 2002; Bazhenov et al., 2004). 
Spontaneous local increase of neuronal discharge may rise 
K+ concentration; through the shift of reversal potential of 
K+ currents, elevated K+ can produce synchronized neuronal 
bursts (Bazhenov et al., 2004). A recent study has observed 
periodic bursting caused by increase of K+ in a cortical net-
work model and a cerebellar Purkinje neuron circuit (Wang 
et al., 2012a). In vitro, bursting firing activities resulted from 
a simultaneous increase in extracellular K+ and decrease in 
Ca2+ concentrations have been recorded from granule cells of 
the dentate gyrus (Bazhenov et al., 2004). In external stim-
ulation-initiated seizure, excessive electrical discharge pro-
voked outward flow of K+ exceeding the capacity of the glial 
potassium buffering system – resulting in periodic bursting. 
Intriguingly, glial cells obtained from immediate biopsied 
tissue of the seizure focus from patients inflicted with intrac-
table mesial-temporal lobe epilepsy have impaired K+ buff-
ering (Rangroo Thrane et al., 2013), which is modulated by 
astrocyte. 

Current Understanding of Astrocytic 
Modulation of K+

The [K+]o is continuously modulated by K+ pumps and K+ 
currents in neurons and astrocytes. Accumulation of K+ in 
the extracellular space can cause depolarization of neurons, 
further disturb neuronal signaling. Astrocytes play an es-
sential role in maintaining extracellular K+ at a compatible 
level and continuing normal neuronal function (Seifert and 
Steinhauser, 2013). Astrocytic transmembrane modulation 
of K+ conductance exceeds all other conductance (Seifert et 
al., 2018). In vitro, external stimulation-induced elevation 
of K+ are accompanied with K+ accumulation in astrocytes, 
which reflects their role in potassium regulation (Larsen et 
al., 2014). The K+ level is mediated by the collaborative func-
tions of K+ pumps and glial buffering mechanism. Undoubt-

ably, increase of K+ will ensue from failure of either function, 
eventually invoking paroxysmal bursting. 

Astrocytes are linked with abundant gap junctions that are 
permeable to K+. This provides an expansive network that 
facilitates a swift K+ redistribution through areas of different 
neuronal activities levels (Walz, 2000). As a major mecha-
nism of K+ clearance, spatial buffering was initially reported 
by Orkand in 1960 (Kofuji and Newman, 2004). Briefly, 
spatial buffering theory asserts that the positive charged K+ 
enters and travels through the cytoplasm, it then exits again 
as positive charged K+ at a location distant from the active 
neurons. The overall effect is that, instead of accumulating 
intracellularly, K+ would be passively shipped from an extra-
cellular space of a high K+ concentration to that of a low K+ 
concentration, in the absence of an increase of intracellular 
K+ concentration (Walz, 2000; Bellot-Saez et al., 2017). 

Spatial buffering involves K+ influx possibility facilitat-
ed through astrocytic Kir4.1 K+ channels (Steinhauser et 
al., 2012; Elorza-Vidal et al., 2019), which are expressed 
in astrocytes surrounding both synapses and blood ves-
sels in the brain. Consistently, astrocyte-specific knockout 
of Kir4.1 results in seizure activity and premature death 
(Djukic et al., 2007; Stewart et al., 2010; Tong et al., 2014). 
Brain-derived neurotrophic factor (BDNF) has been found 
to be expressed in astrocytes besides neurons. By forming a 
tripartite synapse, it can regulate neuronal activity. Interest-
ingly, evidence has shown that Kir4.1 channel modulate the 
expression of BDNF in astrocytes (Miklic et al., 2004). Apart 
from attenuated K+ buffering and increased extracellular K+, 
dysfunctional astrocytes with inhibited Kir4.1 channel pro-
motes BDNF expression, which triggers elevated neuronal 
discharges (Ohno et al., 2018). This has been speculated to 
contribute to epileptogenesis (Mukai et al., 2018).

At the same time, K+ leak channels also have prominent 
impact in this process as well as the high resting K+ conduc-
tance. The two-pore-domain K+ channels are the first to be 
reported of the potassium leak channels family. Although 
their fundamental roles in the generation of membrane po-
tential were well recognized at the dawn of electrophysiology 
(Minieri et al., 2013), the molecular entities responsible for 
the background K+ currents, however, have remained ob-
scure for nearly half a century. In 1995, K+ channels with 
two-pore-domain in tandem were successfully cloned and 
expressed with their functionality preserved. From 1996 to 
2003, 14 new members joined the family of background K+ 
leak channels that were further divided into six subfamilies 
(TWIK, TREK, TASK, TALK, THIK, and TRESK) according 
to the sequence similarity and functional resemblance. All 
15 types of K+ leak channels are encoded by different genes, 
yet sharing the same general molecular architecture that 
upholds characteristic features of relative time- and volt-
age-independence and K+ selectivity (Talley et al., 2003). The 
two-pore-domain channels are regulated by a variety of bi-
ological and chemical stimuli, intracellular and extracellular 
pH regulated by carbon dioxide, physiological fluctuation of 
oxygen tension and osmolarity, least but not last membrane 
stretch (Lesage et al., 2000). 
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Besides spatial buffering, additional mechanisms of potas-
sium regulation have found to contribute to extracellular K+ 
homeostasis as well. Astrocytes intercellular communication 
is mainly fulfilled by gap junction channels (GJCs) consist-
ed of connexin-based channels (Rovegno and Sáez, 2018). 
During synchronization of neuronal discharges, astrocytic 
GJCs expedite the clearance of extracellular K+. Studies in-
vestigating the role of Na+,K+-ATPase in the process of clear-
ing K+ from extracellular space revealed that when extracel-
lular K+ concentration was raised to 10 mM, a net increase 
of intracellular K+ concentration could reach up to 25 mM 
(Walz and Wuttke, 1999). This amplitude has been observed 
in astrocytes both in vivo and in vitro across studies (Ransom 
et al., 2000; Xiong and Stringer, 2000; Wang et al., 2012b). 
Disturbance of K+-Na+ exchange in the membrane promoted 
by ouabain-induced inhibition of Na+,K+-ATPase activity, 
on the other hand, has yielded an instantaneous decrease in 
the K+ concentration (Walz and Wuttke, 1999). In addition, 
there is a lack of difference in the diffusion coefficients for 
the extracellular K+ between normal and gliotic cortex (Walz 
and Wuttke, 1999). These altogether indicate that brain 
Na+,K+-ATPase also mediates the potassium clearing process 
in the extracellular space. 

Loss of intracellular K+ to the extracellular space in neu-
rons is recovered mainly through the activities of neuronal 
Na+,K+-ATPase. Glial cells, as described previously, employ 
various mechanisms to achieve a transient intracellular K+ 
accumulation, or redistribution through spatial buffering. 
Post-stimulus recovery of activity-dependent increase in 
[K+]o can be attributed to the activities of Na+,K+-ATPase 
in both neurons and glial cell- with the glial uptake con-
tributing to the early stage of rapid fall in [K+]o, and neu-
ronal uptake prevailing in the late stage of slow decrease 
in [K+]o (Ransom et al., 2000). During an extensive and 
intense neuronal stimulation, bulk K+ would accumulate 
in the extracellular space. Recovery of [K+]o mediated by 
Na+,K+-ATPase activities can be exceedingly slow and in-
efficient. Diffusion of K+ is anticipated to occur. In this cir-
cumstance, the Kir4.1 potassium channels are presumed to 
be greatly involved in regulating extracellular clearance of 
K+, either by spatial buffering or temporary storage (Meeks 
and Mennerick, 2007). 

Effects of Extracellular K+ on Intracellular Cl–

The intracellular Na+ concentration of astrocyte ranges 
from 10 to 15mM (Rose and Karus, 2013). This is evidently 
inadequate for a 1:1 or 3:2 exchange of Na+ by K+ while the 
Na+,K+-ATPase functions at a high uptake rate. A transmem-
brane Na+ cycle has been proposed by Walz to explain the 
supplementation of intracellular Na+ (Rose and Karus, 2013). 
This cycle is mainly operated and fulfilled by the Na+,K+-AT-
Pase and Na+-K+-Cl– co-transporter-1 (NKCC1) (Amadeo 
et al., 2018). As extracellular K+ is pumped into the intra-
cellular space by Na+,K+-ATPase, intracellular Na+ will be 
exchanged to the extracellular space. This maneuver creates 
an electrochemical gradient of sodium across the membrane, 
which in turn provides the energy required by the NKCC to 

actively transport Na+,K+, and Cl– into the cell body with a 
stoichiometry of 1Na:1K:2Cl (Haas and Forbush, 2000). 

While NKCC1 actively replenishes intracellular Na+ by 
transporting Na+ into the cells, it simultaneously creates a 
continuing influx of Cl–, which is believed to contribute to 
the active intracellular astrocytes Cl– accumulation (Liang 
and Huang, 2017). Active accumulation of Cl– has been 
demonstrated with GABA currents or Cl– substitution ex-
periments (Walz and Wuttke, 1999), and observed in cortical 
astrocytes (Rangroo Thrane et al., 2013). The astrocyte in-
tracellular Cl– concentration approximates 20–40 mM (Walz 
and Wuttke, 1999), with an average resting Cl– values around 
30 mM. The inhibition of the NKCC1 induced with 1 uM 
bumetanide has reduced this resting Cl– by 50% in astrocyte 
(Su et al., 2000). 

ClC-2, a voltage-gated chloride channel (CLC), is mainly 
expressed in the endfeet of astrocytes (Poroca et al., 2017). 
Upon depolarization, glial cell adhesion molecule (Glial-
CAM) will bind and modify CIC-2 to form a transmem-
brane complex, which then produce an influx of Cl– to coun-
terbalance the excess K+ concentration (Elorza-Vidal et al., 
2019). This compensatory mechanism can only occur under 
depolarization and may be required in certain high neuronal 
activity conditions (Estevez et al., 2018). A ClC-2 suppressed 
vacuolizing phenotype has been observed in the Kir4.1 ab-
lated vacuolization (Blanz et al., 2007). This indicated that 
ClC-2 also contributes to the associated influx of Cl– in the 
process of K+ siphoning in addition to NKCC1 (Blanz et al., 
2007; Sirisi et al., 2017; Elorza-Vidal et al., 2019). 

Regulation of Astrocytic Cell Volume and 
Extracellular Space
Potassium level may also serve as an important modulator 
of cell volume and extracellular space (Larsen et al., 2014). 
Elevation of extracellular K+ concentration activates both 
active and passive uptake of K+ through Na+,K+-ATPase and 
other ion channels on astrocyte membrane. Rapid reversible 
swelling of astrocyte occurs subsequently with a correspon-
dent decrease in extracellular space up to 30% (Risher et al., 
2009). In contrast, decline of cell volume and enlargement of 
the extracellular space are associated with a fall in extracellu-
lar K+ concentration (Dallwig et al., 2000). 

Astrocyte is particularly sensitive to the change in the 
extracellular fluid osmolarity. As extracellular osmolarity 
decreases following excessive uptake of K+, subsequent in-
flux of water ensues and leads to astrocytic swelling. The 
inflow of water from extracellular space was speculated to 
be mediated through aquaporin-4 (AQP4) channel, coupled 
with the water-impermeable potassium selective K+ channels 
(Simard and Nedergaard, 2004; Mack and Wolburg, 2013). 
However, this previous popular coupling theory has recent-
ly been overturned (Haj-Yasein et al., 2011). In substitute, 
NKCC has been identified to modulate stimulus-evoked cell 
swelling in astrocytes (MacVicar et al., 2002), as cell shrink-
age stimulates NKCC activity of astrocyte while NKCC in-
hibition reduces astrocyte swelling and K+ uptake. Following 



983

Wang F, Qi X, Zhang J, Huang JH (2020) Astrocytic modulation of potassium under seizures. 
Neural Regen Res 15(6):980-987. doi:10.4103/1673-5374.270295

swelling of glial cells, a corrective process aiming for cell 
volume recovery will be enacted through extrusion of intra-
cellular osmolytes consisting of K+ and Cl– and organic mol-
ecules including poly amines, taurine, GABA, glutamate and 
glycine. In addition, alternations of cell volume set off signal 
pathways that trigger swelling-activated channels (Kimelberg 
et al., 2006), which regulate the cell volume in return. 

Volume-regulated anion channel (VRAC) is widely ex-
pressed in various types of cell membranes including astro-
cytes. Under cell swelling, VRACs are activated and trans-
port anions and excitatory mediators outwards (Osei-Owusu 
et al., 2018). The exact role of VRAC is still largely under 
investigation. However, it has been postulated that the K+ 
spatial buffering triggers astrocytes swelling and lead to the 
activation of VRAC on astrocytic membranes, which facili-
tate the release of excitatory mediators and result in neuro-
nal excitability (Lutter et al., 2017; Elorza-Vidal et al., 2019). 

Astrocytic Ca2+ Signaling and Modulation
In the last two decades, it has been observed that astrocyte 
can transmit Ca2+ signal (Nedergaard, 1994; Parpura et al., 
1994). Meanwhile, an increase in cytosolic Ca2+ has been 
documented in astrocytes in responses to synaptic neu-
rotransmissions (Fiacco and McCarthy, 2004; Halassa et 
al., 2009). Neuroscientists have come to an agreement that 
astrocytic Ca2+ transients are of great importance in signal 
transmission between neurons and glial cells. The underly-
ing mechanism, however, has yet to be unraveled. 

Agonists such as glutamate and GABA combine with 
Gq-coupled plasma membrane receptors, which activate 
phospholipase C. Activated phospholipase C then hydro-
lyzes phosphatidylinositol 4,5-bisphosphate into the second 
messengers inositol 1,4,5-trisphosphate and diacylglycerol, 
which trigger endoplasmic reticulum to release calcium 
into the cytosol (Bosanac et al., 2002; Dickson et al., 2013; 
Sakuragi et al., 2017). This provides the majority of Ca2+ in 
the astrocytic soma. In the astrocytic processes, however, 
ion channel mediated influx of Ca2+ consists nearly half 
of the Ca2+ transients. Increase of astrocytic Ca2+ in turn 
provokes release of astrocytic gliotransmitters that mediate 

neuronal excitability. Modern computerized model has also 
depicted that astrocytes synchronize an extensive network 
of neurons through a spaciotemporal characteristic of cal-
cium dynamics. Our recent study has demonstrated the 
activation of Na+,K+-ATPase by astrocytic Ca2+ wave (Figure 
1) induced by agonists, such as ATP and glutamate (data
not published). This supplemented the current knowledge
and understanding of second messenger Ca2+ regulated
Na+,K+-ATPase activities.

Multiple pathological conditions including ischemia, hy-
poglycemia, and seizures have demonstrated a decrease in 
extracellular Ca2+. It has been well established that clinical 
hypocalcemia is closely associated with seizure activities 
(Han et al., 2015). When extracellular Ca2+ concentration 
falls to the range of 0.001–0.1 mM, it will constantly evoke 
glial signaling (Tsumura et al., 2010). Decreased extracellular 
Ca2+ may mediate and increase neuronal excitability through 
four ways (Pan and Stringer, 1997): 1) subdue inhibitory 
interneurons functions by blocking neurotransmitters re-
lease; 2) suppress the afterhyperpolarization by decreasing 
the Ca2+-sensitive K+ conductance; 3) increase excitability 
by modulating surface charge density; 4) repress the normal 
function of the Na+,K+-ATPase. Both K+ and Ca2+ can, either 
directly or indirectly, affect neurons and generate bursting. 
It has been hypothesized that increase in [K+]o could be a 
primary factor in inducing low extracellular Ca2+ burst initi-
ation and propagation (Ghai et al., 2000). 

Modulation of the extracellular Ca2+ can be attributed to 
the Na+-Ca2+ exchanger, a bidirectional transporter that is 
activated by high intracellular Na+. Contingent on the elec-
trochemical gradient of the substrate, Na+-Ca2+ exchanger 
promotes the electrogenic exchange of 3 or 4 Na+ for 1 Ca2+ 
(Tsumura et al., 2010), controls the resting Ca2+, and medi-
ates the clearance of Ca2+ during agonist activation (DiPolo 
and Beauge, 2006; Reyes et al., 2012). Submerging hippo-
campal slice in a high K+ (over 5 mM) and low Ca2+ (below 0.5 
mM) solution produced non-synaptic epileptiform activities 
(Feng and Durand, 2004). Similar epileptiform activities can 
be provoked in rat with 6.5 mM K+ and 5 mM EGTA in-
duced low hippocampal extracellular Ca2+. This low-Ca2+ ep-

Figure 1 Agonist-induced Ca2+ signaling in 
astrocytes might work through lowering 
extracellular K+ to affect synaptic activities. 
Agonist-induced astrocytic Gq-linked recep-
tors trigger release of intracellular IP3 and 
mobilize Ca2+ endoplasmic reticulum (ER) 
Ca2+. Intracellular Ca2+ is transported out-
wards across the membrane by the Na+,Ca2+ 
exchanger (NCX) at the expense of Na+ influx. 
In turn, elevation of cytosolic Na+ activates 
the Na+,K+-ATPase, leading to a decrease in 
extracellular K+. The effect of Ca2+ wave on 
glutamate clearance is unclear. The figure is 
modified from Wang et al. (2013). CRAC: 
Ca2+ release activated Ca2+.
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ilepsy model possesses characteristics of a focal hippocampal 
seizure, including a focal origin, local spread, a progressive 
increase in synchronicity, and post-event refractoriness (Ghai 
et al., 2000). Moreover, in vitro and in situ studies (Ghai et 
al., 2000) have shown that seizure associated neuronal ac-
tivity increment results in increased K+ concentration and 
lowered Ca2+ levels in brain tissue. Initiation of epilepsy may 
arise from multiple pathways involving a concurrent disrup-
tion of both Ca2+ dependant astrocyte-neuro communication 
and K+ clearance mechanism (Li et al., 2019).

Effects of K+ on Astrocytic Modulation of 
Glutamate
Astrocyte plays a pivotal role in mediating extracellular glu-
tamate concentration. The astrocyte processes are enriched 
with high affinity glutamate transporters, mainly GLT-1 
transporter. This renders astrocyte the ability of transporting 
extracellular glutamate across the membrane into the intra-
cellular space. Without astrocytic modulation, glutamate as 
a neurotransmitter can be build up in the extracellular space 
and reach an excitotoxic level to the CNS. Astrocyte prevents 
this from happening by maintaining a low extracellular glu-
tamate concentration (Coulter and Eid, 2012; Gimenez-Cas-
sina et al., 2012).  

Astrocytic glutamate transporter harnesses the energy of 
electrochemical gradient of sodium produced by activity of 
Na+,K+-ATPase, moves one glutamate with three Na+ into 
the glial cell. Impairment of Na+,K+-ATPase function by ex-
tremely high extracellular K+ could impede the reuptake of 
glutamate. Once inside the astrocyte, glutamate is converted 
to glutamine astrocyte-specific glutamine synthetase enzyme 
(Coulter and Eid, 2012), which then will be released to the 
extracellular space to fuel neurons. Glutamine synthetase 
and glutamate transporters are key catalyzers in glutamate 
metabolism cycle. 

Astrocyte reacts to CNS epileptic changes comprehensive-
ly. Studies have shown an upregulation of glutamine syn-
thetase in reactive astrocytes, as well as a reduction of both 
glutamine synthetases and glutamate transporters in epilep-
tic hippocampus (Proper et al., 2002; Coulter and Eid, 2012). 
Astrocyte can potentially modify and extend peri-synaptic 
processes after detecting copious glutamate released by syn-
apses during a seizure attack (Coulter and Eid, 2012). 

Traumatic Brain Injury, Astrocyte, and 
Seizures
An increased astrocyte activity, or astrocytosis, is believed 
to be activated by mechanical stress in brain injury, followed 
by a cascade of complex astrocytic signaling (Karve et al., 
2016; Cheng et al., 2019). Astrocytosis entails changes in the 
number of astrocytes, astrocyte morphology, and gene ex-
pression. David et al. (2009) proposed that the disruption of 
blood brain barrier caused extravasation of albumin leading 
to modulation of astrocytic gene expression including down-
regulation of Kir4.1. This would reduce the K+ buffering and 
result in an accumulation of extracellular K+, followed by 

frequency-dependent facilitation of excitatory postsynaptic 
potentials and epileptiform firing. Astrocytes have a substan-
tial increase of ATP sensitive potassium channels in brain 
contusion specimens (Kir6.2), indicating astrocytes are in-
volved in potassium modulation in TBI (Castro et al., 2018).

Uncontrolled release of tremendous amount of excitatory 
amino acids after a severe traumatic brain injury (TBI) fur-
ther disturbs the ion hemostasis, along with a loss of K+ con-
ductance, eventually results in an increase in extracellular 
K+ concentration. As discussed previously, astrocytes exert 
homeostatic functions involving the balance of various ions 
including K+, Cl–, Ca2+. K+ efflux is specifically associated 
with excessive neuronal activity. An upregulation of NKCC 
and AQP4 in the astrocyte end-feet have also been observed 
in TBI, indicating that astrocytes are also involved in the TBI 
related brain edema (Lo Pizzo et al., 2013; Wang et al., 2017; 
Palazzo et al., 2019). Extracellular K+ clearance through the 
mechanism of K+ spatial buffering mediated by astrocytes is 
critical for homeostatic recovery (Du et al., 2016; Amadeo 
et al., 2018; Lykke et al., 2019). In the event of TBI, disrup-
tion of normal astrocyte function could lead to an persistent 
increase of extracellular K+ triggering paroxysmal neuronal 
activities, followed by abnormal neuronal phenomena in-
cluding seizures (Topolnik et al., 2003). This might be the 
underlying mechanism of posttraumatic epileptogenesis. 

Dysfunctional Astrocytes and Epilepsy
It is indisputable that astrocytes involve extensively in epi-
leptogenesis. Investigators have developed and studied nu-
merous epileptic models with a particular focus on astrocyte. 
In its expansive role of regulating ion homeostasis, astrocytes 
mediate extracellular K+ concentration through a concerted 
mechanism incorporating seamlessly K+ channels including 
Kir4.1 and Kir6.2 (ATP sensitive), AQP4 water channels, 
NKCC, and GJCs (Kadala et al., 2015; Haj-Mirzaian et al., 
2019). Specimen study from patients suffering temporal lobe 
epilepsy and epilepsy models have revealed dysfunctional 
astrocytes with altered expression of Kir4.1, AQP4 and con-
nexin-based channels (Steinhauser et al., 2016; Dossi et al., 
2018). Studies in computerized model, knock out animal 
epilepsy model, and epileptic patients have revealed that 
extracellular K+ accumulation as a consequence of dysfunc-
tional astrocytes further prompts seizure like neuronal dis-
charges (Grigorovsky and Bardakjian; Lu et al., 2019; Patel et 
al., 2019). Pannexins, a recently discovered innexins sharing 
similar topology with connexins, also contribute to GJCs. 
Pannexin-1 (Panx1) channels open in response to high ex-
tracellular K+  and release ATP, glutamate to the extracellular 
space firing up a series of excitatory neuronal activities that 
commence a seizure attack in animal models (Dossi et al., 
2018; Rovegno and Sáez, 2018; Aquilino et al., 2019). 

MicroRNAs (miRNAs), a group of non-coding small 
RNAs, have been discovered to regulate gene expression at 
a post-transcriptional level. Epileptic models have shown 
that many members of miRNAs found in the astrocytes are 
associated with pathophysiology of epilepsy. Korotkov et 
al. suggested that miRNA-132 in particular repress astro-
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cytic expression of pro-epileptogenic factors (Korotkov et 
al., 2019). Zheng et al. (2019) demonstrated suppression of 
astrocytic activation in mouse epilepsy model by inhibiting 
miRNA-103a and improving epileptic pathology. Downreg-
ulation of A-type potassium currents by miRNAs in epileptic 
mice (Tiwari et al., 2019) has also been observed, and A-type 
K+ currents contribute to neuronal excitability and in-vitro 
epileptic activity (Wu et al., 2015; Niespodziany et al., 2019) . 

Astrocytes’ wide implication in epileptogenesis have un-
doubtedly provided a reservoir of targets, such as pannexin 
and miRNAs, that hold great potential for instigating inno-
vative interventions to epilepsy.  

Conclusion
Traditionally known as a mere supportive subtype of glial 
cell, astrocyte has proven to neuroscientists its imperative 
role in regulating extracellular K+ level, mediating and main-
taining an internal K+ homeostasis (Wang et al., 2012b). 
Astrocytes fulfill this by employing two major systems: pas-
sive redistribution of K+ via spatial buffering, and active K+ 
uptake via Na+,K+-ATPase. The electrochemical gradient of 
sodium across the membrane produced in this process will 
provide energy to NKCC and glutamate transporters, which 
facilitate the reuptake of Cl– and glutamate from extracellu-
lar space.

Astrocytes respond to a number of external stimulations 
and changes by activation of Ca2+ signaling. However, the 
significance of astrocytic Ca2+ signaling remains largely un-
clear. Our studies indicated that agonist-induced increase in 
cytosolic Ca2+ modulates the astrocytic Na+,K+-ATPase activ-
ity, and furthermore neuronal excitability (Figure 2). Astro-

Figure 2 High extracellular K+ might act as a signaling in affecting 
many ion channels and transporters to induce seizures.  
High [K+]o activates Na+,K+-ATPase, which pumps K+ into the astro-
cytes and Na+ out of the astrocytes. Na+ will be transported back into 
the cell through Na+,Ca2+ exchanger (NCX), or Na+,K+,2Cl– co-trans-
porter (NKCC), accompanied by Ca2+ and Cl–, resulting in high intra-
cellular Ca2+ and Cl–. High intracellular Na+ might further block the 
uptake of glutamate from extracellular space. Aquaporin-4 (AQP4) is 
intimately involved in post-traumatic edema. Its astrocytic expression 
has also been altered in epileptic models. 

cytes diligently modulate epileptic activities owing primarily 
to their contribution to microenvironmental homeostasis 
and expansive integration within the neural network (Simard 
and Nedergaard, 2004). 

As a fundamental element of astrocyte physiological func-
tions, astrocytic modulation of potassium homeostasis will 
undoubtably attain mounting attention in the intense search 
of new targets for epilepsy treatment (Crunelli and Carmi-
gnoto, 2013). 
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