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Glutamic acid (Glu) and aspartic acid (Asp) are acidic amino acids with regulatory roles in nutrition,
energy metabolism, and oxidative stress. This study aimed to evaluate the effects of low-protein diets
supplemented with Glu and Asp on the intestinal barrier function and energy metabolism in weaned
piglets challenged with hydrogen peroxide (H2O2). Forty piglets were randomly divided into 5 groups:
NC, PC, PGA, PG, and PA (n ¼ 8 for each group). Pigs in the NC and PC groups were fed a low-protein diet,
while pigs in the PGA, PG, or PA groups were fed the low-protein diet supplemented with 2.0% Glu þ1.0%
Asp, 2.0% Glu, or 1.0% Asp, respectively. On day 8 and 11, pigs in the NC group were intraperitoneally
injected with saline (1 mL/kg BW), while pigs in the other groups were intraperitoneally administered
10% H2O2 (1 mL/kg BW). On day 14, all pigs were sacrificed to collect jejunum and ileum following the
blood sample collection in the morning. Notably, low-protein diets supplemented with Glu or Asp
ameliorated the intestinal oxidative stress response in H2O2-challenged piglets by decreasing intestinal
expression of genes (P < 0.05) (e.g., manganese superoxide dismutase [MnSOD], glutathione peroxidase
[Gpx]-1, and Gpx-4) encoding oxidative stress-associated proteins, reducing the serum concentration of
diamine oxidase (P < 0.05), and inhibiting apoptosis of the intestinal epithelium. Glu and Asp supple-
mentation attenuated the upregulated expression of energy metabolism-associated genes (such as
hexokinase and carnitine palmitoyltransferase-1) and the H2O2-induced activation of acetyl-coenzyme A
carboxylase (ACC) in the jejunum and adenosine monophosphate-activated protein kinaseeacetyl-ACC
signaling in the ileum. Dietary Glu and Asp also ameliorated intestinal barrier damage as indicated by
restored intestinal histology and morphology. In conclusion, low-protein diets supplemented with Glu
and Asp protected against oxidative stress-induced intestinal dysfunction in piglets, suggesting that this
approach could be used as a nutritional regulatory protectant against oxidative stress.
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the roles of amino acids in nutrition, antioxidative functions, in-
testinal barrier remodeling, and metabolism in healthy and
pathological models (Birsoy et al., 2015; Duan et al., 2016; Wang
et al., 2017). Generally, Glu and Asp are mainly utilized in the
intestine to yield adenosine triphosphate (ATP) for enterocytes
(Nakamura et al., 2013; Rezaei et al., 2013). Approximately 35%
of the total energy produced in the intestine is estimated to
be derived from dietary Glu (Stoll et al., 1999), thus highlighting
the pivotal role of this amino acid in intestinal homeostasis. Both
Glu and Asp are required to synthesize proteins and other bio-
logically active molecules, including glutamine (Gln), glutathione
(GSH), arginine, purines, and pyrimidines (Blachier et al., 2009;
Lane and Fan, 2015; Wu et al., 2013). Furthermore, Glu has various
beneficial functions in lipid and nitrogen metabolism (Boutry et
al., 2012; Chen et al., 2014), intestinal barrier function (Jiao
et al., 2015), antioxidative ability (Wu et al., 2014a), and
protects animals from damage caused by exposure to toxins
(Duan et al., 2014;Wu et al., 2014b). Meanwhile, Asp could restore
the intestinal barrier and improve intestinal and liver energy
metabolism in piglets challenged with lipopolysaccharide (LPS)
(Kang et al., 2015; Pi et al., 2014). Asp also plays essential roles in
cell viability and proliferation, including in a model of mito-
chondrial electron transport chain dysfunction (Birsoy et al.,
2015). However, although Glu and Asp have long been consid-
ered as non-essential nutrients in mammals, their regulatory
roles in nutrition, metabolism, and even oxidative stress remain
unclear.

The intestine provides an open interface for luminal microbes
and antigens and is constitutively exposed to multiple specific or
non-specific stimuli or stressors. The host intestinal barrier
forms a sophisticated defensive line against the invasion of
bacteria and exogenous antigens to maintain intestinal homeo-
stasis (Camilleri et al., 2012; Guttman and Finlay, 2009). How-
ever, studies of animals (e.g., pigs) have shown that the intestinal
barrier function is prone to be disturbed in response to an
exogenous stimulus such as hydrogen peroxide (H2O2) (Duan
et al., 2016; Yin et al., 2015a).

The mechanism by which oxidative stress damages the in-
testinal barrier function has been widely investigated. Many
compelling investigations have revealed that oxidative stress
compromises intestinal cell proliferation and mucosa devel-
opment, disrupts intestinal tight junction protein expression,
distribution, and organization, and increases intestinal
apoptosis (Bhattacharyya et al., 2014; Duan et al., 2015; Nathan
and Cunningham-Bussel, 2013; Shen et al., 2006). Intriguingly,
some researchers have focused on the relationship between
the intestinal barrier and intestinal energy metabolism (Le
Drean and Segain, 2014). Glover et al. (2013) revealed a
fundamental link between cellular bioenergetics and the
mucosal barrier. Under conditions of energy stress, activation
of the liver kinase B1/adenosine 50-monophosphate (AMP)-
activated protein kinase (AMPK) signaling pathway prevents
cell apoptosis, implying that disturbed intestinal energy
metabolism in oxidative stress may contribute to intestinal
barrier dysfunction (Shaw et al., 2004). Therefore, Glu and Asp
might serve as intestinal energy sources to alleviate oxidative
stress-induced intestinal injuries.

Given the versatile functions of Glu and Asp, we hypothesized
that dietary Glu and Asp supplementation would alleviate intesti-
nal damage. Therefore, we aimed to explore the effects of these
amino acids on various markers of oxidative stress, such as ab-
normalities in antioxidative-associated gene expression (i.e., su-
peroxide dismutase, catalase, and glutathione peroxidase),
apoptosis, energy metabolism, and intestinal barrier function, in
weaned piglets challenged with H2O2.
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2. Materials and methods

All experiments were performed under the relevant guidelines
and regulations and were approved by the Laboratory Animal
Welfare Commission of the Institute of Subtropical Agriculture,
Chinese Academy of Sciences.

2.1. Animals and experiment design

This study was designed as described in our earlier publication
(Duan et al., 2016). Forty weaned piglets (Landrace � Large White,
20 castrated males and 20 females, BW ¼ 10.96 ± 0.61 kg) were
randomly divided into 5 groups: 1) control group (NC); 2) H2O2
group (PC); 3) PCþ Gluþ Asp group (PGA); 4) PCþ Glu group (PG);
5) PC þ Asp group (PA). Pigs in the NC and PC groups were fed a
low-protein diet containing 18% crude protein and other nutrients
according to the 2012 requirements of the National Research
Council (Appendix Table 1). Pigs in the PGA, PG, and PA groupswere
fed the low-protein diet supplemented with 2.0% Glu þ1.0% Asp,
2.0% Glu, or 1.0% Asp, respectively. Pigs in the NC group were
intraperitoneally injected with saline, i.e., 1 mL/kg BW once on day
8 and repeated on day 11, whereas pigs in the other 4 groups were
intraperitoneally injected with10% H2O2, i.e., 1 mL/kg BW once on
day 8 and repeated on day 11. The H2O2 dosage (Duan et al., 2016;
Yin et al., 2015a) and Glu and Asp supplementation dosages were
based on our previous work (Kang et al., 2015; Yin et al., 2015). The
contents of Glu and Asp and other amino acids in diets were
measured, and Glu and Asp were added to replace L-alanine (Ala).

The piglets were housed individually in an environmentally
controlled facility with hard plastic slatted flooring maintained at
an ambient temperature of 25 ± 2 �C and had free access to diets
and drinking water. The experiment durationwas 14 days. All blood
samples were collected from the jugular vein on themorning of day
14 after a 12-h fasting period. Subsequently, the piglets were
sacrificed, and approximately samples of 1 cm long from the upper
part of the jejunum and lower part of the ileumwere collected after
flushed with normal saline. The blood samples were centrifuged at
2,000�g for 10 min to separate the serum. All samples were snap-
frozen in liquid nitrogen and stored at �80 �C before further
processing.

2.2. Serum diamine oxidase

The serum diamine oxidase (DAO) concentrations were
measured using a Porcine Diamine Oxidase ELISA kit (Shanghai
Bluegene Biotech Co., Ltd., Shanghai, China) according to the
manufacturer's recommendation.

2.3. Morphological analysis

Hematoxylin and eosin (H&E) staining was used to observe the
morphology of the intestinal sections, according to our previously
published protocol (Chen et al., 2019). The jejunal and ileal tissue
samples were fixed with 10% neutral buffered formalin at 4 �C,
dehydrated in a gradient ethanol series, and embedded in paraffin
wax according to routine histological methods. Six-micrometer
thick sections were then cut from the embedded tissue blocks
and stained with H&E. Imaging was performed using a light mi-
croscope (Nikon, Tokyo, Japan).

2.4. Real-time polymerase chain reaction (RT-PCR)

Total RNA was isolated from snap-frozen jejunal and ileal tissues
using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and treatedwith
DNase I (Invitrogen) according to themanufacturer's instructions. For
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each sample, the RNA quality was evaluated by 1% agarose gel elec-
trophoresis and gel staining with 10 mg/mL ethidium bromide. First-
strand cDNA synthesis was performed using oligo (dT) 20 primers
and Superscript II reverse transcriptase (Invitrogen, USA). Real-time
polymerase chain reaction was performed according to our previ-
ously published protocol (Chen et al., 2018). The target gene-specific
primers used in this study (Appendix Table 2) were designed using
Primer 5.0, according to the Sus scrofa gene sequence (http://www.
ncbi.nlm.nih.gov/pubmed/). Primers specific for b-actin mRNA
(housekeeping gene) were also used to provide a reference to
normalize the target gene transcript levels. The relative expression
was expressed as a ratio of the target gene to the housekeeping gene
using formula 2�(DDCt), where DDCt ¼ (CtTarget � Ctb�Actin) of
treatment � (CtTarget � Ctb�Actin) of control (Livak and Schmittgen,
2001).

2.5. Western blot analysis

The antibodies used in this study were purchased from the
following suppliers: caspase-3 (ab4051), occludin (ab31721), clau-
din1 (ab15098), and zonula occludens (ZO)-1 (ab59720) (Abcam,
Inc., Cambridge, MA, USA); B-cell lymphoma (Bcl)-2 (sc-783), Bcl-2-
associated X protein (Bax) (sc-493), and AMPKa1/2 (H-300; sc-
25792) (Santa Cruz Biotechnology, Inc., Dallas, TX, USA); and
phosphorylated (p)-AMPK (#5256), adenosine monophosphate-
activated protein kinaseeacetyl-coenzyme A carboxylase (ACC)
(#3676), p-ACC (#3661), apoptotic peptidase activating factor
(Apaf)-1, cytochrome (Cyt)-c (#11940), P53 (#2524), and b-Actin
(#4970) (Cell Signaling Technology, Inc., Danvers, MA, USA).

Approximately 100 mg of each intestinal sample was homoge-
nized in a 1.5-mL microcentrifuge tube containing ice-cold radio
immunoprecipitation assay (RIPA) lysis buffer (Beyotime Institute
of Biotechnology, Beijing, China) supplemented with phosphatase
inhibitor and protease inhibitor cocktail tablets (Roche Diagnostics
Ltd., Shanghai, China), according to the manufacturer's protocol.
After thoroughmixing of the samples and centrifugation (12,000�g
for 10 min at 4 �C), the supernatants were collected. The total
protein contents were measured using the Enhanced BCA Protein
Assay Kit (Beyotime Institute of Biotechnology, China) according to
the manufacturer's instructions. The Western blot (WB) analysis
was conducted as previously described (Yin et al., 2014).

2.6. Terminal deoxynucleotidyl transferase-mediated dUTP nick
end-labeling (TUNEL) staining analysis

In all groups of pigs, intestinal apoptosis was detected by TUNEL
staining with a commercially available kit (KGA7075, KeyGEN
TECH, Jiangsu, China) based on the manufacturer's protocol. Briefly,
fixed and embedded tissue sections were deparaffinized with
xylene, rinsed with phosphate-buffered saline (PBS), and hydrated
in a gradient ethanol series for 5 min per step. The washed sections
were treated with proteinase K for 30 min, rinsed with PBS, and
immersed in a pre-mixed buffer containing terminal deoxy-
nucleotidyl transformerase and fluorescein isothiocyanate (FITC)-
streptavidin in a humid chamber for 60 min at 37 �C. The samples
were again washed with PBS and stained with 40,6-diamidino-2-
phenylindole (DAPI) for 10 min at 37 �C to label the nuclei. Imag-
ing was performed using an Olympus fluorescent microscope
(Olympus Life Science, Tokyo, Japan).

2.7. Statistical analysis

All statistical analyses were performed using SPSS 21.0 software
(IBM, Inc., Armonk, NY, USA). Levene's test was used to analyze the
normality and constant variance of the data, which were then
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subjected to a one-way analysis of variance followed by the Duncan
(D) multiple comparisons test. P < 0.05 was considered to indicate a
significant difference, and P-value between 0.05 and 0.1 was
considered to indicate a tendency toward significance. Data are
expressed as the means ± standard errors of the mean (SEM).

3. Results

3.1. Supplementation with Glu and Asp alleviated intestinal
oxidative stress in piglets challenged with H2O2

Challenge with H2O2 tended to decrease the jejunal abundance
of MnSOD mRNA (P < 0.1, Fig. 1A) but tended to increase the ileal
abundance (Fig. 1B). Glu and Asp supplementation reduced both
the jejunal and ileal abundance of MnSOD mRNA (Fig. 1A). Chal-
lenge with H2O2 also induced the jejunal and ileal expression of
Gpx-1 mRNA (Fig. 1), whereas ileal Gpx-1 mRNA expression was
decreased in the PGA, PG, and PA groups and jejunal Gpx-1
expressionwas decreased in the PGA group relative to the PC group.
Further, the challengewith H2O2 downregulated the catalasemRNA
abundance in the jejunum and upregulated it in the ileum (Fig. 1).
Similarly, Glu and Asp supplementation, either alone or combina-
tion, decreased the ileal catalase mRNA abundance, whereas the
combination of Glu and Asp increased this mRNA abundance
relative to the PC group (Fig. 1). Collectively, Glu and Asp supple-
mentation may ameliorate the intestinal oxidative stress response
induced by the H2O2 challenge but may exhibit a segmental effect,
especially for catalase.

3.2. Supplementation with Glu and Asp attenuated intestinal
apoptosis in piglets challenged with H2O2

TUNEL staining revealed apparent intestinal apoptosis in the
jejunum (Appendix Fig. 1A) and ileum (Fig. 2A) in response to
the H2O2 challenge. Increased jejunal (Appendix Figs. 1B and 3A)
and ileal (Fig. 2B, Appendix Figs. 2A, and Fig. 3B) caspase-3
mRNA expression and protein cleavage were observed
after H2O2 challenge. The ileum exhibited increased levels of
cleaved caspase-3 (Fig. 2B and Appendix Fig. 2A) and Bax
(Fig. 2B) and a reduced level of Bcl-2 (Fig. 2B) under the H2O2
challenge. In contrast, the jejunum exhibited no obvious changes
in the cleaved-caspase-3 protein levels (Appendix Fig. 1B) or
caspase-3 mRNA abundance (Appendix Fig. 3A) and varying Bax
levels across the treatment groups (Appendix Fig. 1B). Therefore,
we focused on the regulatory roles of Glu and Asp in ileal
apoptosis in the piglets.

Dietary supplementation with Glu or Asp alone significantly
attenuated ileal apoptosis, evidenced by decreased TUNEL staining
and reduced cleaved caspase-3 protein levels (Fig. 2B and Appendix
Fig. 2A), and downregulated caspase-3 mRNA expression
(Appendix Fig. 3B). We next used WB to detect the Cyt-C, Apaf-1,
and caspase-8 protein levels in the ileum (Fig. 2C, Appendix Figs. 2A
and 3B). Although the H2O2 challenge had no apparent effects on
the Cyt-C and Apaf-1 protein levels, this challenge increased the
caspase-8 level. Dietary supplementation with Glu or Asp
decreased the protein levels of both Cyt-C and caspase-8 (Fig. 2C).
However, we failed to identify a causal relationship between
apoptosis and the Jun N-terminal kinase (JNK) and p53 pathway
(Fig. 2D).

3.3. Supplementation with Glu and Asp restored intestinal energy
metabolism in piglets challenged with H2O2

Challenge with H2O2 increased the jejunal abundance of
isocitrate dehydrogenase b (ICDHb) mRNA (Fig. 3A) and the ileal

http://www.ncbi.nlm.nih.gov/pubmed/
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Fig. 1. Dietary supplementation with Glu and Asp regulated intestinal antioxidative gene expression in piglets challenged with H2O2. (A) Abundances of mRNA (MnSOD, ZnCuSOD,
Gpx-1, Gpx-4, and catalase) encoding anti-oxidative proteins in the jejunum. (B) Abundances of mRNA (MnSOD, ZnCuSOD, Gpx-1, Gpx-4, and catalase) encoding anti-oxidative
proteins in the ileum. The data are presented as means ± standard errors of the means (n ¼ 8). a, b Bars with different superscript letters are significantly different (P < 0.05).
NC, control group; PC, H2O2-challenged group fed the basal diet; PGA, H2O2-challenged group fed the basal diet þ2% Glu þ1% Asp; PG, H2O2-challenged group fed the basal diet þ2%
Glu; PA, H2O2-challenged group fed the basal diet þ1% Asp. MnSOD ¼ manganese superoxide dismutase; ZnCuSOD ¼ zinc/copper superoxide dismutase; Gpx ¼ glutathione
peroxidase.
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abundances of hexokinase (Hexok) (Fig. 3B) and carnitine
palmitoyltransferase-1 (CPT-1) mRNA (Fig. 4 A), but had no sig-
nificant effect on the expression of other glucose metabolism-
related genes [e.g., citrate synthase (CS), pyruvate dehydroge-
nase (PDH), and phosphoenolpyruvate carboxykinase 1 (PCK-1)]
(Fig. 3) or lipid metabolism-related genes [e.g., ACC and fatty acid
synthase (FAS)] (Fig. 4A and B). Dietary supplementation with a
combination of Glu and Asp restored the abundances of Hexok
(Fig. 3) and CPT-1 mRNA (Fig. 4) in the jejunum and ileum.

Challenge with H2O2 enhanced the level of p-ACC but decreased
the level of p-AMPK (Fig. 5A) in the jejunum and activated the
AMPKeACC pathway in the ileum of the piglets, as demonstrated
by the elevated levels of p-AMPK and p-ACC (Fig. 5B and Appendix
Fig. 2B). However, dietary supplementationwith Glu and Aspmight
inhibit the AMPKeACC signaling pathway (Fig. 5A and B and
Appendix Fig. 2B) in the ileum and the ACC signaling pathway in
the jejunum.
3.4. Supplementation with Glu and Asp repaired the ileal barrier
function in piglets challenged with H2O2

Challenge with H2O2 also impaired the intestinal barrier, as
evidenced by the images of H&E-stained intestinal tissues, which
revealed sloughing of intestinal epithelial cells in the villus cavities
in the jejunum and ileum (Fig. 6A). The challenge was also associ-
ated with increased serum DAO concentrations (Fig. 6B). Unsur-
prisingly, dietary supplementation with Glu and Asp partly
repaired the intestinal barrier, as evidenced by a more intact
morphology in the jejunum and ileum (Fig. 6A) and decreased
serum DAO concentrations (Fig. 6B). However, WB revealed similar
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levels of the tight junction proteins claudin-1, occludin, and ZO-1
between the groups (Fig. 6C to D).

4. Discussion

The amino acids Glu and Asp have recently garnered attention
because of their essential functions in nutrition, antioxidative ef-
fects, and mycotoxin-induced damage repair (Duan et al., 2016; Jiao
et al., 2015). We previously demonstrated that both Glu and Asp
alleviate the oxidative stress response, including growth suppres-
sion, in piglets challenged with H2O2 and diquat (Duan et al., 2016;
Yin et al., 2015b). This study demonstrated that dietary supple-
mentation with Glu and Asp regulated apoptosis, energy meta-
bolism, and the epithelial barrier function in piglets' intestines
challenged with H2O2.

Physiologically, Glu and Asp are metabolized extensively in
the intestine. The carbon backbones derived from these amino
acids are oxidized to yield ATP, whereas nitrogen is used mainly
to synthesize other amino acids such as Ala, Gln, and citrulline
(Nakamura et al., 2013). Glu is also a component of GSH, a vital
antioxidant and immune regulator. Glu is primarily extracted
(95%) during the first pass through the small intestine in pigs
(Brosnan and Brosnan, 2013; Burrin and Stoll, 2009). Asp plays an
essential role in cell viability and proliferation. Many compelling
studies have shown that Glu and Asp can attenuate the oxidative
stress response and intestinal damage in pigs challenged with
H2O2 (Duan et al., 2016), mycotoxin (Duan et al., 2014), deoxy-
nivalenol (Wu et al., 2014a), and diquat (Yin et al., 2015b). Dietary
Glu supplementation increased the expression of CuSOD and Gpx-
1 mRNA in Cyprinus carpio var. Jian, whereas Asp reversed cata-
lase and Gpx-1 gene expression in the LPS-induced oxidative



Fig. 2. Dietary supplementation with Glu and Asp decreased ileal apoptosis in piglets challenged with H2O2. (A) Representative images of transferase-mediated dUTP nick end-
labeling (TUNEL)-stained ileal tissues to determine the degree of apoptosis. (B to D) Green speckles represent apoptosis-positive cells. The Western blot was to detect the pro-
tein levels of cleaved and pro-caspase-3, Bcl-2, Bax, Apaf-1, Cyt-c, caspase-8, p-JNK, JNK, and p53. Beta-actin was used as a loading control. NC, control group; PC, H2O2-challenged
group fed a basal diet; PGA, H2O2-challenged group fed the basal diet þ2% Glu þ1% Asp; PG, H2O2-challenged group fed the basal diet þ2% Glu; PA, H2O2-challenged group fed the
basal diet þ1% Asp. Bcl-2 ¼ B-cell lymphoma 2; Bax ¼ Bcl-2-associated X protein; Apaf-1 ¼ apoptotic peptidase activating factor-1; Cyt-c ¼ cytochrome C; JNK ¼ Jun N-terminal
kinase.
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injury of ovine intestinal epithelial cells and upregulated catalase
and Gpx gene abundances in young grass carp (Wang et al., 2015;
Zhang et al., 2019; Zhao et al., 2019). These findings
demonstrated the regulatory roles of Glu and Asp in oxidative
stress-associated gene expression and corroborated the findings
in this study.

Dietary supplementation with Glu and Asp attenuated the in-
testinal oxidative stress response and intestinal barrier damage in
H2O2-challenged piglets, as evidenced by the restored intestinal
histology and morphology, decreased serum DAO concentrations,
and reduced intestinal apoptosis observed in this study. Plausibly,
the intestinal barrier was impaired by H2O2, a common ROS that
can induce an oxidative stress response in tissues challenged with a
supra-physiological dosage. Emerging evidence indicates that
oxidative stress disturbs the intestinal barrier function by dis-
rupting the expression, organization, and distribution of tight
junction proteins (Shen et al., 2006) and inducing apoptosis
(Baregamian et al., 2011), and both of these phenomena profoundly
contribute to intestinal barrier disorders (Roth et al., 2005). How-
ever, it remains unclear how Glu and Asp maintain intestinal bar-
rier. Recently, Xiao et al. (2014) showed that Glu could prevent
intestinal atrophy in a mouse model of total parenteral nutrition. In
that study, Glu stimulated the expression of taste-sensing receptors
(e.g., T1R3, mGluR5, and G-protein subunit G) to reactivate the
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luminal sensing signaling pathways, promoted intestinal epithelial
cell proliferation via phosphorylated-protein kinase B/mammalian
target of rapamycin signaling, and modulated intestinal mucosa
development, trans-epithelial electrical resistance, permeability,
and the barrier function (Xiao et al., 2014). In another study, Glu
supplementation prevented jejunal atrophy in piglets during the
first week postweaning and improved the D-xylose-absorbing ca-
pacity of the small intestine (Liu et al., 2002). Asp could enhance
intestinal integrity and energy status via NF-kB and p38 signaling
(Pi et al., 2014; Wang et al., 2017). Glu and Asp promoted the
expression of Gpx-4, CuZnSOD, and catalase mRNA in the testis and
epididymis of H2O2-challenged piglets but did not affect Gpx-1
(Tang et al., 2020). Thus, we can ascribe Glu and Asp's beneficial
effects to their regulatory roles in the contexts of nutrient sensing,
cell proliferation, and energy maintenance. Furthermore, Glu and
Asp are substrates of Gln, which specifically regulates the intestinal
barrier (Wang et al., 2016). Thus, the protective roles of Glu and Asp
may also involve the synthesis of Gln. However, further studies are
needed to support this hypothesis.

Studies of the intestine have revealed an association of barrier
function with energy metabolism (Le Drean and Segain, 2014)
and a fundamental link between cellular bioenergetics and the
mucosal barrier (Glover et al., 2013). Generally, cellular energy
metabolism is controlled by AMPK, an energy sensor that



Fig. 3. Dietary supplementation with Glu and Asp regulated intestinal glucose metabolic gene expression in piglets challenged with H2O2. (A) The abundance of mRNA (CS, Hexok,
PDH, ICDHb, PKC-1) encoding glucose metabolic proteins in the jejunum. (B) The abundance of mRNA (CS, Hexok, PDH, ICDHb, PKC-1) encoding glucose metabolic proteins in the
ileum. The data are presented as means ±MES (n ¼ 8). a, b, c Bars with different superscript letters are significantly different (P < 0.05). NC, control group; PC, H2O2-challenged group
fed the basal diet; PGA, H2O2-challenged group fed the basal diet þ2% Glu þ1% Asp; PG, H2O2-challenged group fed the basal diet þ2% Glu; PA, H2O2-challenged group fed the basal
diet þ1% Asp. CS ¼ citrate synthase; PDH ¼ pyruvate dehydrogenase; PCK-1 ¼ phosphoenolpyruvate carboxykinase 1; Hexok ¼ hexokinase; ICDHb ¼ isocitrate dehydrogenase b.
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regulates energy availability in various host tissues (Lage et al.,
2008). The ratio of AMP to ATP regulates the status of AMPK: a
higher ratio activates AMPK, whereas a lower ratio maintains
inactivation (Mihaylova and Shaw, 2011). Under conditions of
stress (e.g., LPS treatment), ATP will be depleted, leading to an
increased AMP-to-ATP ratio, which leads to AMPK activation and
ultimately affects the intestinal energy status and barrier func-
tion (Pi et al., 2014). However, these adverse effects can be
reversed by dietary Asp supplementation (Pi et al., 2014). Thus, in
this study, we tested whether supplementing low-protein diets
with Glu and Asp could restore intestinal metabolism via the
AMPKeACC signaling pathway. As expected, dietary Glu and Asp
supplementation attenuated the increases in Hexok and CPT-1
expression and AMPKeACC signaling pathway activation in the
jejunum and ileum in response to the H2O2 challenge. Hexok and
CPT-1 are rate-limiting enzymes in glycolysis and mitochondrial
b-oxidation, respectively (Thupari et al., 2002; Wolf et al., 2011).
These observations suggest that intestinal metabolism may shift
to glycolysis and fatty acid mitochondrial b-oxidation, as
observed in some immune cells (e.g., macrophages) under in-
flammatory conditions (O'Neill and Hardie, 2013) and cancer cells
under metabolic stress (Sun et al., 2015). However, we only
explored the gene expression of some proteins related to meta-
bolism and AMPKeACC signaling and cannot conclude defini-
tively that intestinal cells undergo such a metabolic switch.

Massive oxidative stress-mediated depletion of cellular ATP
might be the most likely cause of the observed effects on the
AMPKeACC signaling pathway. This phenomenon can increase
the AMP-to-ATP ratio, allowing AMP to bind directly to its g
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regulatory subunits and promoting AMPK activation (Mihaylova
and Shaw, 2011; Oakhill et al., 2011). However, it remains un-
clear how Glu and Asp regulate metabolic gene expression and
inhibit AMPKeACC signaling under oxidative stress conditions.
Previous studies suggest three perspectives that support our
findings. Firstly, Glu and Asp are major sources of ATP. When
supplied by the diet, both amino acids can be absorbed and
metabolized into ATP to restore the intestinal energy status,
which may inactivate the AMPKeACC signaling pathway. Indeed,
Kang et al. (2015) reported that Asp could restore the intestinal
ATP level and AMP-to-ATP ratio in LPS-challenged piglets. Sec-
ondly, Glu and Asp are required for the synthesis of tricarboxylic
acid cycle intermediates and other bioactive molecules, such as
nucleic acids and GSH; therefore, dietary supplementation may
enhance molecular synthesis and alleviate oxidative stress, as we
reported previously (Duan et al., 2016; Jiao et al., 2015). Thirdly,
Glu critically links glucose metabolism to incretin/cyclic AMP
action and amplifies insulin secretion (Gheni et al., 2014), and Asp
plays an essential role in the mitochondrial electron transport
chain (Birsoy et al., 2015). Therefore, we speculate that Glu and
Asp may regulate glucose metabolism, insulin secretion, and in-
testinal cell proliferation to maintain intestinal health. We also
observed that the protein abundance of p-AMPK is segment-
specific in the jejunum and ileum in H2O2-challenged piglets,
consistent with a previous report that different p-AMPK levels
between the intestinal segments might be associated with dif-
ferences in the mucosal pH (Klinger, 2020). However, further
studies are needed to determine how Glu and Asp modulate in-
testinal energy metabolism.



Fig. 4. Dietary supplementation with Glu and Asp regulated intestinal lipid metabolic gene expression in piglets challenged with H2O2. (A) Abundances of mRNA (ACC, CPT-1, FAS)
encoding lipid metabolic proteins in the ileum. (B) Abundances of mRNA (ACC, CPT-1, FAS) encoding lipid metabolic proteins in the jejunum. The data are presented as
means ± standard errors of the means (n ¼ 8). a, b, c Bars with different superscript letters are significantly different (P < 0.05). NC, control group; PC, H2O2-challenged group fed the
basal diet; PGA, H2O2-challenged group fed the basal diet þ2% Glu þ1% Asp; PG, H2O2-challenged group fed the basal diet þ2% Glu; PA, H2O2-challenged group fed the basal
diet þ1% Asp. ACC ¼ acetyl-coenzyme A carboxylase; CPT-1 ¼ carnitine palmitoyltransferase-1; FAS ¼ fatty acid synthase.

Fig. 5. The Western blot of AMPK and ACC protein levels in the jejunum (A) and ileum (B). Dietary supplementation with Glu and Asp affected the AMPKeACC signaling pathway in
the intestine of piglets challenged with H2O2. Beta-actin was used as a loading control. The data are presented as means ± standard errors of the means (n ¼ 8). NC, control group;
PC, H2O2-challenged group fed the basal diet; PGA, H2O2-challenged group fed the basal diet þ2% Glu þ1% Asp; PG, H2O2-challenged group fed the basal diet þ2% Glu; PA, H2O2-
challenged group fed the basal diet þ1% Asp. AMPK ¼ adenosine 50-monophosphate-activated protein kinase; ACC ¼ acetyl-coenzyme A carboxylase.
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5. Conclusion

Low-protein diets supplemented with Glu and Asp appeared to
attenuate oxidative stress-induced intestinal barrier dysfunction
362
and altered the intestinal energy metabolic gene expression in
H2O2-challenged piglets. Our results suggest that Glu and Asp may
be used as nutritional regulators to protect animals against oxida-
tive stress.



Fig. 6. Dietary supplementation with Glu and Asp enhanced the intestinal barriers in piglets challenged with H2O2. (A) Representative hematoxylin and eosin-stained sections of
the jejunum and ileum. (B) Serum diamine oxidase (DAO) concentrations. (C) The Western blot to detect tight junction protein levels (claudin-1, occludin, ZO-1) in the ileum. (D)
Abundances of occludin and ZO-1 mRNA in the ileum. Beta-actin was used as a loading control. The data are presented as means ± standard errors of the means (n ¼ 8). a, b, c Bars
with different superscript letters are significantly different (P < 0.05). NC, control group; PC, H2O2-challenged group fed the basal diet; PGA, H2O2-challenged group fed the basal
diet þ2% Glu þ1% Asp; PG, H2O2-challenged group fed the basal diet þ2% Glu; PA, H2O2-challenged group fed the basal diet þ1% Asp. DAO ¼ diamine oxidase; ZO-1 ¼ zonula
occludens-1.
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