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ABSTRACT: Herein, we have synthesized a Co(II)-based 2D
coordination polymer [Co(5-AIA)(Imidazole)]n (CP1) (AIA = 5-
aminoisophthalic acid) via a solvothermal approach. SCXRD
(single-crystal X-ray diffraction) was utilized to analyze the crystal
structure of fabricated CP1. Moreover, PXRD, TGA, FTIR, and
SEM analyses were done to identify the structural features of
fabricated CP1. The standard rod depiction of CP1 exhibits hxl
underlying net topology, and the hydrogen-bonded network depicts
hcb underlying net topology. The fluorescence detection of
inorganic anions using CP1 showed a promising result of 90.3%
for MnO4

−. The electrochemical analysis of CP1 was done under a
basic medium utilizing a 3 M KOH electrolyte through CV (cyclic
voltammetry) and GCD (galvanic charge−discharge) techniques
which show a 134.75 F g−1 specific capacity at a current density of 1 A g−1. Furthermore, CP1 shows a 94% retention capacity after
2500 cycles at a 20 A g−1 current density.

1. INTRODUCTION
In the modern era, environmental pollution has turned into a
significant issue for the environment and public health, driven
by population growth and industrial development. There are
lots of pollutants in air and water pollution such as organic
compounds, toxic gases, and heavy metals which are the cause
of health risks.1 MnO4

− is a strong oxidizing agent. The
exploitation and capricious release of MnO4

− can trigger acute
detriment to humans, e.g., coagulative necrosis of the stomach,
esophagus, hemorrhage, and liver. Overdosing on MnO4

−

causes allergies, genetic abnormalities, cancer disorders, and
carcinogenic effects on cells.2 Therefore, the US Environ-
mental Protection Agency listed MnO4

− at the top of the
pollutants list.3 Hence, it is crucial to develop accurate
MnO4

−sensing materials to protect the environment, as well
as human health. However, owing to their similar strong
oxidizing characteristics, MnO4

−, CrO4
2−, and Cr2O7

2− are
typically difficult to separate from one another.4−6 The
development of materials with precise selectivity for MnO4

−

sensing is both highly significant and extremely difficult.
Hence, it is the need of the hour to develop more efficient and
reliable sensing devices. Fluorescence-based CPs are gaining
more attention in developing sensing devices owing to their
simplicity, operability, selectivity, and sensitivity.7−10

Alhaddad and El-Sheikh reported a Co(II)-MOF and
examined the detection of various anions. Co(II)-MOF
showed better detection of F− ions with a 0.24 μg/L limit of
detection and a 0.72 μg/L limit of quantification.11 Ma et al.
fabricated a new Eu-MOF by utilizing a 4,5-di(3,5-

dicarboxylphenoxy)phthalic acid ligand for sensing of MnO4
−

with an 88.2% detection limit.12

In recent times, as the population has grown enormously,
energy demand has also increased. This growing demand for
energy is encouraging scientists to develop new technologies to
deliver and store energy in more efficient and sustainable ways
as the depletion of fossil fuels, coal, and petroleum is also
occurring rapidly.13 The rapid advancement of electronic
devices and vehicles has created an urgent need for novel and
better energy storage solutions. Hence, researchers are
developing cost-effective, flexible, and high-performance super-
capacitor devices to fulfill all of the requirements. SC materials
are encouraging choices for energy storage applications.14−16

The essential functional components of SCs which are
responsible for improving power density, better cycling
stability, fast charge−discharge rate, and high performance
include two electrodes (cathode and anode) where an
electrochemical process takes place like charge storage, the
electrolyte, which permits ion transport and prevents electronic
conduction to complete the electric circuit. Hence, to fulfill all
of the properties of SCs, the materials should have enormous
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pore size, specific surface area, tunable morphology, good
electrical conductivity, and good chemical/mechanical stabil-
ity. CPs/metal−organic frameworks (MOFs) may meet the
criteria for SC materials.

Coordination polymers (CPs) are a family of crystalline
materials consisting of metal nodes and organic linkers. CPs
show various properties, such as enormous pore size, tunable
morphology, specific surface area, chemical/mechanical
stability, and good electrical conductivity. CPs show a large
number of applications including adsorption,17−20 cataly-
sis,21−26 batteries,27−29 supercapacitors,30−35 drug deliv-
ery,36−38 sensing,39−41 magnetism,42−44 gas storage,45−47

wastewater treatment,48,49 separation,50 and so on.
Somnath et al. reported a 3D Co-MOF named KA@MOF-S

utilizing H3BTC = 1,3,5-benzenetricarboxylic acid and Bimb =
1,4-bis[(1H-imidazol-1-yl)methyl]benzene organic ligands
under solvothermal conditions. This fabricated MOF facilitates
an excellent specific capacity of 648 F g−1 at a current density
of 1 A g−1 with an 89.25% retention stability.51 Liu et al.
developed a two-dimensional nanosheet Co-BTB-LB via a
liquid−liquid interface-assisted approach.52 The developed
nanosheet demonstrated an outstanding capacity of 4969.3 F
g−1 at a current density of 1 A g−1.

A variety of CPs/MOFs (1D−3D) have been investigated in
the literature for energy storage and inorganic anion detection.
Nitrogen-rich organic ligands provide high basicity for
deprotonation and stability to the framework by conjugation
and provide versatility in creating functional groups. Moreover,
organic ligands having multiple carboxylic groups provide
multiple binding sites, higher surface area, fast redox activity,

flexibility, etc. Hence, to fulfill our requirement, we have used
imidazole and 5-amino isophthalic acid organic ligands to
synthesize our material. Herein, we reported the 2D Co(II)-
based coordination polymer (CP1) for the detection of
inorganic anions (F−, MnO4

−, Br−, HCO3
−, CO3

2−, and
SO4

2−). The synthesized CP1 facilitates outstanding selective
detection of MnO4

− with 90.3%; this result was obtained in
triplicate. CP1 showed good electrochemical energy storage
with a specific capacity of 134.7 F g−1 at 1 A g−1 (current
density) with a retention stability of CP1 of 94% up to 2500
cycles. Hence, CP1 can be used as a potential material for the
fabrication of electrodes for energy storage.

2. EXPERIMENTAL SECTION
2.1. Reagents and Materials. Cobalt nitrate hexahydrate

[Co(NO3)2·6H2O], imidazole, and 5-amino isophthalic acid
were purchased from Sigma Analytical grade (AR/ACS). All
the solvents as well as NaOH were procured from Thermo
Fisher Scientific, India, in AR grade. All the chemicals were
used without any modification.
2.2. Methods and Instrumentation. The FTIR spectrum

of CP1 was recorded on a Thermo Scientific Nicolet model
(iS50) using a KBr disk ranging from 4000 to 400 cm−1. For
thermal analysis of CP1, a Shimadzu TGA-50H instrument
was used. Powder X-ray diffraction patterns were recorded
using a Bruker D8 ADVANCE series 2 powder diffractometer
(Cu Kα radiation scan rate 30/min, 293 K) in order to analyze
the bulk phase purity of CP1. The surface morphology as well
as mapping and particle heterostructure of CP1 were analyzed
by a scanning electron microscope (JEOL JSM 6510LV

Scheme 1. Scheme for the Synthesis of CP1
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model) instrument coupled with JEOL/EO formate. The
electrochemical analysis of CP1 was carried out on an
electrochemical workstation (Metrohm Autolab M204) at
room temperature with a three-electrode system.
2.3. Single-Crystal X-ray Refinement. The crystallo-

graphic data of CP1 was acquired by employing “XtaLAB
Synergy, Rigaku, Japan” at a temperature of 293(2) K. The
radiation utilized was monochromatic Mo Kα radiation with a
wavelength of 0.71073 Å. The determination of the crystal
structure was done by utilizing Olex2,53 which was further
solved with the olex-2.solve54 structure solution program by
employing charge flipping. Subsequently, Gauss−Newton
minimization technology was implemented to improve the
structure using the olex2.refine54 refinement software. Table S1
summarizes the data pertaining to the crystal structure
refinement of CP1, as well as other evidence related to the
bond lengths and bond angles of CP1 (Tables S2 and S3).
2.4. Synthesis of CP1. The synthesis of CP1 has been

done via a solvothermal approach. A mixture of 10 mg of
imidazole (0.15 mmol) was taken in a beaker and dissolved in
distilled water with continuous stirring for 30 min, and 20 mg
of 5-aminoisophthalic (0.11 mmol) acid was taken in a
separate beaker and dissolved in ethanol with continuous

stirring for 30 min. 80 mg of cobalt nitrate was added to the
aqueous solution of imidazole with a few drops of NaOH to
make the solution slightly alkaline. After 30 min, an ethanolic
solution of 5-aminoisophthalic acid was poured into an
aqueous solution of imidazole and the mixture was stirred
for 10 min again. After stirring, the mixture was poured into a
stainless-steel Teflon autoclave and put into a hydrothermal
oven at 110 °C for 72 h. After 72 h, the mixture was cooled
down at its own temperature for the next 12 h and then the
mixture was filtered. Upon filtration, we got purple crystals
which were appropriate for SCXRD (Scheme 1). Yield: 82%,
IR (cm−1): 3445 (br), 3256 (d), 3073 (s), 2958 (m), 2397
(m), 1772 (s), 1623 (s), 1548 (s), 1364 (d), 1083 (m), 808
(m), 722 (m), 648 (m), 590 (m), 447 (m).
2.5. Fabrication of Electrodes. The electrochemical

study of CP1 was achieved by a three-electrode system in 3
M KOH. The reference electrode was fabricated with Ag/
AgCl, and the counter electrode was fabricated with platinum.
The working electrode was fabricated with CP1 (80%),
poly(vinylidene fluoride) (PVDF) (10%), and carbon black
(10%). The prepared electrode material was coated on a
circular graphitic rod. Thorough electrochemical analysis was
performed using various techniques like CV (cyclic voltam-

Figure 1. (a) Asymmetric unit of CP1, (b) 2D representation of CP1 along the b-axis, (c) 3D view of CP1 via hydrogen bonding.

Figure 2. (a) Molecular representation of CP1, (b) hydrogen-bonded 3D structure of CP1, (c) hxl underlying net representation, and (d)
hydrogen-bonded topological view of CP1 along the b-axis, with hcb underlying net topology.
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metry), GCD (galvanostatic charge−discharge), and EIS
(electrochemical impedance spectroscopy) using Metrohm
Autolab.
2.6. Efficiency Performance Evaluation. The specific

capacitance (in F g−1) of CP1 was evaluated by using the
equation given below

C
I t

m vp = ×
× (1)

in which I denotes constant current, m denotes the mass of the
electroactive material (i.e., I/m = current density), and Δt and
Δv signify constant discharge duration and potential window,
respectively.

3. RESULTS AND DISCUSSION
3.1. Structural Description and Topological Analysis

of CP1. Single-crystal X-ray diffraction was utilized for the
crystal analysis, and it showed that the crystal crystallizes in a
monoclinic system with the P21/c space group. The
asymmetric unit of CP1 governs a single unit of Co(II) ion,
5-amino isophthalic acid, and imidazole linker (Figure 1a) that
shows distorted tetrahedral geometry. The extended 2D
network of CP1 shows a stair pattern (Figure 1b). Further,
the hydrogen-bonding interaction constructs a 3D supra-
molecular network (Figure 1c). Topological analysis of CP1
was examined by utilizing Topos Pro software (Figure
2a,b).55,56 The standard rod net depiction of CP1 shows PS:
{36·46·53}, uninodal net that governs hxl underlying net
(Figure 2c). Further, simplifying the TTD collection of
hydrogen-bonded network of CP1 shows a point symbol for
the net: {43·62·8}{49·68·84}{6} with (2-c)(4-c)(7-c); 3-nodal
net with hcb underlying net topology (Figure 2d).
3.2. PXRD, FTIR, TGA, and SEM Analysis. A single-

crystal X-ray diffraction technique was employed to establish

the crystal structure of CP1. Other chemical and physical
analyses, for instance, bulk phase purity, thermal stability,
surface morphology, and functionality, were done by PXRD,
TGA, SEM, and FTIR techniques, respectively. The bulk phase
purity analysis was performed by powder X-ray diffraction
technique which reveals that the PXRD pattern is in good
agreement with the simulated pattern of CP1 (Figure S1).
Powder X-ray diffraction of CP1 is also performed after the
electrochemical study which reveals that PXRD patterns are
perfectly matched before and after the electrochemical study of
CP1 (Figure S1). TGA was performed under a N2 atmosphere
at the rate of 10 °C/min to examine the thermal stability. In
the TGA plot of CP1, three stages of weight loss are examined
in the temperature interval between 103 and 485 °C. The first
stage from 103 to 203 °C is due to the water loss. Moreover,
18% weight loss was observed at 225 °C which is attributed to
the elimination of the organic ligand (imidazole). The thermal
stability plateau at 225−410 °C is followed by a further weight
loss phase where the primary framework collapses. At 400 °C,
the disintegration process is complete, and weight loss is
gradual (Figure S2). The FTIR study reveals the vibrational
bands at various frequencies due to the presence of Co−N,
Co−O, C�N, C−H, C−N, C�O, and C�C bonds.57,58 The
FTIR spectrum exhibits a wide peak at 3445 cm−1

corresponding to the −OH functional group. The vibrational
peak at 3256 cm−1 could be due to the presence of the −NH
functional group. The vibrational frequencies at 3073 and 2958
cm−1 could be due to the presence of −CH bonds of the
benzene ring of the complex. The vibrational frequencies at
722 and 648 cm−1 correspond to the presence of Co−O
bonds, and the other vibrational bands at 590 and 447 cm−1

correspond to the presence of Co−N bonds (Figure S3). To
determine the surface morphology of CP1, SEM analysis was
performed at various magnification ranges (Figure 3). The
SEM images of CP1 revealed that CP1 contains a granular

Figure 3. SEM images of CP1 at various magnification ranges (a−c).

Figure 4. Elemental mapping of CP1 was recorded at a 1 mm mixed selective area (a−e).
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morphology at various magnification ranges. The granular
morphology could be ascribed to offering a larger surface area
that enhances more reactive sites for the electrochemical
process and also reduces the diffusion length to boost the
reaction rate. Moreover, the elemental composition of CP1
was estimated by elemental mapping at the 1 mm range of
specific elements (Figure 4).
3.3. Electrochemical Studies. Coordination polymers

(CPs) are competitive materials for energy storage applications
as they have tunable structural topology, prominent pore size,
and large surface area. CPs containing metals like Co, Ni, and
Cu have been shown to outshine the pseudocapacitive nature
for energy storage applications. The electrochemical analysis of
the fabricated electrode with CP1 was performed using CV at
several scan rates (2−200 mV s−1) within the potential window
(−0.2 to 0.4 V) in 3 M KOH. Cyclic voltammetry discloses
various features of working electrodes. CP1 showed differ-
entiable peaks at 0.16 and 0.07 V corresponding to the redox
couple of Co(II)/Co(III), which show its electrochemical
activity. Again, the alignment of the CV spectrum of CP1 with
the EDLC (electric double-layer capacitance) mechanism
shows semirectangular features which reveal effective charge
propagation on the surface of the electrode material.

Figure 5a shows the CV plots of the active electrode material
across several scan rates varying between 2 and 200 mV s−1.
Additionally, the area inside every CV curve grows as scan
rates rise for both redox peaks. Particularly, the integrated
surface area of the CP1 electrode surpasses, resulting in a
significant increase in specific capacitance. But at greater scan
rates, the electrode tends to take on a semirectangular shape,
indicating that electrolyte ions diffuse faster. This process
probably helps to boost the energy storage efficiency, as seen in

Figure 5a. The CP1 structure facilitates more effective charge
transfer by expanding the system’s area of contact and modes.

GCD analysis was accomplished within a potential window
of −0.2 to 0.4 V at several current densities from 1 to 20 A g−1

for the evaluation of the capacitive behavior of the fabricated
electrode CP1 in a 3 M KOH aqueous electrolyte solution, as
shown in Figure 5b. The discharging time decreases as the
current density increases, and capacitance also decreases.
When the current density is 1 A g−1, CP1 demonstrates a
134.75 F g−1 specific capacitance. The GCD curves are not
perfectly triangular shapes with nonlinear characteristics which
indicates that CP1 shows pseudocapacitive behavior. Fur-
thermore, as the current density increases from 1, 2, 3, 5, 10, to
20 A g−1, the specific capacitance drops from 134.75, 117.3,
109.5, 100, 85.8, to 71.6 F g−1, respectively. The redox
characteristics at the electrode/electrolyte interface may be
caused by the decrease in specific capacitance with an increase
in the current density. This exceptional specific rate perform-
ance of CP1 could be ascribed to its porous features and
electron hoping due to 5-amino isophthalic acid as well as
imidazole linkers. Hence, based on the aforementioned results,
CP1 could be a good electrode material for energy storage.

Moreover, in Figure 6, the EIS spectrum is plotted for the
quantitative evaluation of SC electrodes over the 100 kHz−
0.01 Hz frequency range at a 10 mV potential amplitude. The
EIS spectrum reveals that the CP1 electrode can feature lower
series resistance (Rs, encompassing solution resistance, contact
resistance, etc.) and charge-transfer resistance (Rct). Electrical
resistance may be due to the rapid flow of electrons and
electrolytic ions. The Nyquist plot for the CP1 electrode
exhibits a pattern consisting of a slight semicircle that is
attributed to the high-frequency region and a straight line in
the low-frequency region, depicting solution resistance and

Figure 5. (a) CV profile of CP1 at various scan rates and (b) GCD of CP1 at various scan rates.

Figure 6. (a) Nyquist plot for the CP1 electrode material (inset figure for fitted circuit) and (b) cyclic stability of CP1 at a current density of 20 A
g−1.
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linear diffusion, respectively, as depicted in Figure 6a. EIS data
were fitted to an equivalent circuit; the Rs value calculated from
the points where the curves intersect the Z′ axis (real axis) was
952 mΩ, signifying minimum resistance in the CP1 electrode
material. Furthermore, the simulated C (pseudo-capacitance)
and CPE (double layer) values were obtained to be 49.6 mF
and 2.19 mΩ−1·sN (N = 0.998), respectively, attributed to
charge storage via the redox reaction and electrode/electrolyte
junction interface.59,60 In the higher-frequency region, a slight
semicircle appeared for Warburg (27.0 mΩ−1·s1/2) that
denoted linear diffusion. These findings demonstrate that the
best conditions for creating the CP1 electrode material are a
lower concentration and a longer soaking time.

Furthermore, the long-term stability of the electrode
material (CP1) was examined using charging−discharging at
a 20 A g−1 current density with the same potential window of
CV and GCD that shows ∼94% retention capacity after
completing 2500 cycles, as shown in Figure 6b. The specific
capacitance also increased as compared to the obtained GCD
at 20 A g−1, and this phenomenon could have occurred due to
pore expansion after electrolyte insertion/desertion or rapid
electrolyte ion transport into the electrode material. We have
compared several reported Co(II) based CPs, showing that
CP1 is suitable for an electrode material (Table S4).
3.4. Luminescence Sensing. In order to obtain a more

thorough understanding of the sensing capacities of the
produced CP1, we investigated sensing experiments in several
solvents. To perform fluorescence sensing, a 3 mg sample of

crystalline CP1 was immersed in 4 mL of different solvents,
including water (H2O), tetrahydrofuran (THF), methanol
(MeOH), chloroform (CHCl3), acetonitrile (CH3CN), and
acetone. For 30 min, the solution was subsequently exposed to
ultrasonic treatment and kept for 24 h to create stable
suspensions. The fluorescence emission of the suspensions was
monitored across the 200−600 nm range at ambient
temperature after being excited at 300 nanometers. The
fluorescence intensity levels of stable solutions of CP1 varied
according to the solvent used (Figure 7a). The water solution
of CP1 exhibited a remarkable emission intensity of 545 nm
upon excitation at 300 nm (Figure 7b). To get the efficiency of
luminescence emission (Q), eq 2 was utilized. Fluorescence
quenching was also examined through the application of
Stern−Volmer (S−V) eq 3.

Q I I I(%) ( )/ 1000 0= { } × (2)

I I K M/ 10 SV= + [ ] (3)

where KSV implies the quenching constant and [M] signifies
the molar concentration of the material. I0 and I represent
fluorescence emission intensities, respectively, before and after
the introduction of the samples.61

3.5. Detection of Anions. To find out how well CP1 can
find inorganic anions, water solutions were mixed with 5 ×
10−4 M of various KnX (X = MnO4

−, Br−, CO3
2−) and NanX

(X = F−, HCO3
−, SO4

2−) anions. Figure 8a shows the relative
levels of CP1 fluorescence intensities in water solutions (5 ×
10−4 M) of different inorganic anions. It was found that the

Figure 7. (a) Levels of fluorescence intensity for CP1 at different solvent concentrations and (b) relative efficiencies of fluorescence quenching for
CP1 in water-based solutions with different solvent concentrations.

Figure 8. (a) The amount of fluorescence intensity and (b) the relative fluorescence quenching rates of CP1 in water solutions (5 × 10−4 M) of
different inorganic anions.
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quenching efficiencies are 57.5% (F−), 90.3% (MnO4
−), 25.7%

(Br−), 67.4% (HCO3
−), 17.5% (CO3

2−), and 9.8% (SO4
2−)

(Figure 8b). It is interesting that MnO4
− (90.3%) causes the

highest quenching efficiency compared with other anions. This
shows that MnO4

− is very selective for being detected out of all
of the anions that were tested. We tested how sensitive MnO4

−

is as a sensor in water by performing a quantitative
fluorescence titration experiment. A water-based solution (1
mM) of MnO4

− was added drop by drop to a stable CP1
solution that was spread out. After the solution became stable,
the fluorescence intensity was determined separately. Gradu-
ally increasing the concentration of anions decreased the
fluorescence intensity (Figure 9a). The Stern−Volmer (S−V)
equation was also used to find the value of KSV: I0/I = 1 +
KSV[M]. The experimental data show that there is a linear
association between the amount of MnO4

− (R2 = 0.99281) and
the calculated value of KSV at a low concentration of 6.1 × 104

M−1 for MnO4
−. The quench plot in Figure 9b shows that at

low amounts, the rate of quenching is related in a straight line.
Calculating LOD = 3σ/m (where m signifies the slope and σ is
used for the standard error) gives us the minimum detection
limit for MnO4

−, which is 2.1 × 10−6 M (0.331 ppm). This
means that CP1 can be utilized as a very sensitive fluorescence

sensing material to measure the amount of the MnO4
− anion

present.
3.6. Recyclability and Reusability. The purpose of

observing the fluorescence emission spectra of CP1 in an
aqueous solution was to determine its effectiveness as a
fluorescence sensor for the MnO4

− anions. It is possible to
reuse the fluorescence intensity of CP1 for a minimum of five
cycles, as shown in Figure 10a.
3.7. Possible Mechanism of Fluorescence Quenching.

Recent research has suggested that framework collapse, ion
exchange between different analytes, and competitive absorp-
tion/interaction mechanisms are frequently implicated in the
identification of inorganic anions and solvents.62 To get a
better understanding of how CP1 senses MnO4

− through
quenching impacts, supplementary analyses were executed.
The UV−vis spectra were used to recognize the inhibition
mechanism caused by MnO4

−. The breakdown of CP1 is
unreliable for fluorescence quenching.63,64 The energy transfer
reduction between the π & π* orbitals of the N-containing
ligands is responsible for the drop in fluorescence intensity
seen amid the electron-transfer transitions of MnO4

−. To
capture the sensing information, we used an excitation
wavelength of 300 nm. This particular wavelength was selected

Figure 9. (a) Illustrates the observed intensity of fluorescence emission as specific compounds are incrementally added to the aqueous solutions of
CP1. The panel displays the outcomes upon the addition of MnO4

−, and (b) shows the S−V plot of CP1 distributed in water following a
progressive injection of MnO4

− at a concentration of 1 mM. The graph shows the linear relationship between the concentration of MnO4
− and the

S−V curve of CP1 at low concentrations (inset).

Figure 10. (a) Recyclability and reusability of CP1 for each cycle for MnO4
− and (b) spectral overlap between the UV−vis absorption spectra of

anions with the excitation spectra of CP1.
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to ensure maximal absorption and effective excitation since it
matches the excitation peak fluorophore. We obtained the best
fluorescence emission at 300 nm, which improved the
sensitivity and accuracy of the experiment. Additionally, by
reducing the background influence, this decision produces
more accurate and consistent findings for the experimental
setup. The probability of resonance energy transfer is
established by the extent of spectral overlap between the
excitation bands of the fluorescence detectors CP1 and the
absorption bands of the inorganic anions (analytes). The
mechanism aligned with the ones reported by other teams.
MnO4

− is more likely to quench than other inorganic anions
because of its UV−vis absorption spectra that overlap with the
excitation spectra of CP1 (Figure 10b). From these variables, it
can be concluded that inorganic anions compete with organic
ligands for the absorption of excitation wavelength energy, as
indicated by the overlaps between CP1 and MnO4

− UV−vis
spectra. Quenching occurs as a result of this competition.65,66

4. CONCLUSIONS
In summary, the fabrication of a new 2D coordination
polymer, [Co(5-AIA)(imidazole)]n (CP1), was done through
the solvothermal method. CP1 exhibited a hcb underlying net
topology. CP1 exhibits outstanding specific fluorescence
detection characteristics for inorganic anions (MnO4

−).
Furthermore, CP1 facilitates better electrochemical energy
storage capacity in the 3 M KOH electrolyte. However, CP1
exhibits remarkable stability with a low Rct value and enormous
specific capacitance. So, CP1 can be potentially employed in
inorganic anion detection and electrochemical energy storage.
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