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Abstract

1. Remotely tracking distinct behaviours of animals using acceleration data and machine

learning has been carried out successfully in several species in captive settings. In order

to study the ecology of animals in natural habitats, such behaviour classification models

need to be transferred to wild individuals. However, at present, the development of those

models usually requires direct observation of the target animals. 2. The goal of this study

was to infer the behaviour of wild, free-roaming animals from acceleration data by training

behaviour classification models on captive individuals, without the necessity to observe

their wild conspecifics. We further sought to develop methods to validate the credibility of

the resulting behaviour extrapolations. 3. We trained two machine learning algorithms pro-

posed by the literature, Random Forest (RF) and Support Vector Machine (SVM), on data

from captive red foxes (Vulpes vulpes) and later applied them to data from wild foxes. We

also tested a new advance for behaviour classification, by applying a moving window to

an Artificial Neural Network (ANN). Finally, we investigated four strategies to validate our

classification output. 4. While all three machine learning algorithms performed well under

training conditions (Kappa values: RF (0.82), SVM (0.78), ANN (0.85)), the established

methods, RF and SVM, failed in classifying distinct behaviours when transferred from cap-

tive to wild foxes. Behaviour classification with the ANN and a moving window, in contrast,

inferred distinct behaviours and showed consistent results for most individuals. 5. Our

approach is a substantial improvement over the methods previously proposed in the litera-

ture as it generated plausible results for wild fox behaviour. We were able to infer the

behaviour of wild animals that have never been observed in the wild and to further illus-

trate the credibility of the output. This framework is not restricted to foxes but can be

applied to infer the behaviour of many other species and thus empowers new advances

in behavioural ecology.

Introduction

Animal-borne sensors such as temperature loggers, salinity loggers or microphones are used

to study a wide variety of parameters in wild animals without disturbance by human
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observers [1]. In the study of movement ecology of species [2], animal-borne sensors make it

possible to track the locations of wild animals. The first attempts to remotely track animal

locations were made in the 1960s through VHF telemetry [3]. In more recent years it has

become common practice to track animal locations with satellite systems [4], enabling

researchers to study where individuals dwell. However, the spectrum of ecological questions

that can be addressed by using location data alone is limited. By combining such data with

behavioural data, more in-depth studies of species will become possible [5]. Yet, in contrast

to recording locations, remotely tracking the behaviour of free-ranging animals is not well

established at this point.

The principal underlying remote-tracking of behaviour is to attach accelerometers to ani-

mals to record their body movement. The first major study utilizing acceleration data to study

the behaviour of animals was conducted in 1996 [6]. Since then, many studies have shown that

acceleration data can be used to infer the behaviour of animals by employing various machine

learning algorithms [5, 7]. To train these algorithms for pattern recognition and data classifica-

tion, the acquisition of acceleration data was coupled with direct observation of the behaviours

of the tagged animals. Using one portion of this ground-truthed data set to train the algorithm

and another portion to infer behaviour from it allows validation of the inferred behaviour.

Extrapolating behaviours from acceleration data of wild individuals is a challenge since it is

often impossible to test whether the extrapolated behaviours are correct or not. Some models

were trained and validated on the same wild individuals [8–10], which requires direct observation

of the studied individuals at least for a certain period of time. However, the promising advance of

behaviour classification through machine learning is the ability to study the behaviour of wild

animals without observing (and possibly disturbing) them. Furthermore, direct observation may

often not be a feasible option, especially when target species are elusive or cryptic.

For other models, additional sensors such as GPS [11] or depth and speed sensors for

aquatic species [9, 10, 12] were employed to identify the behaviours executed. In these cases,

the information from the additional sensors was used to investigate the behavioural context

the animal was in at the time of data recording, in order to delimit likely behaviours. For stud-

ies in which no validation was possible, various behaviours were grouped into broad, easily

distinguishable categories to reduce confusion of similar behaviours [13, 14]. Thus, accurately

inferring distinct behaviours of wild individuals still poses a problem.

The Random Forest (RF) and the Support Vector Machine (SVM) are popular approaches

to infer animal behaviour from acceleration data and have yielded good results under training

conditions [5, 15]. Yet, to our knowledge, there are no studies successfully transferring a

behaviour classification model trained on captive individuals to wild individuals.

To study the complex behaviour- or movement ecology of wild animals, however, a

valid data set of linked GPS locations and behavioural data is needed. In this study, we,

therefore, aim to test the capacity of different machine learning algorithms in inferring the

behaviour of wild foxes (Vulpes vulpes) from acceleration data. We provide a framework to

infer the behaviour of wild red foxes based on an Artificial Neural Network (ANN) trained

on captive red foxes.

Our framework further addresses the issues of working with small training data sets (a com-

mon obstacle in wildlife- and conservation research) by using a new approach to efficiently

exploit the given data set. Finally, we suggest how to validate the inferred behaviours when

observation of free-ranging individuals is not a feasible option. We propose four strategies to

assess the credibility of the output by combining the classified behaviour with GPS and tempo-

ral information. The study set-up, together with our novel approach, enables us to test the use

of machine learning for behaviour classification and to empower behaviour classification of

wildlife through acceleration data in the future.
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Material and methods

Data collection and acceleration logger setup

Animal catching and handling have been approved from the State Office for Health and Social

Affairs, department of veterinary affairs (permit number: IC113-G0211/15) and the ethics

committee of the Leibniz Institute for Zoo and Wildlife Research in Berlin (permit number:

2015-03-04) and have been conducted according to applicable national and international

guidelines. Approvals have been received prior to beginning research. To reduce stress during

handling, all foxes got anesthetized before the deployment of radio collars. For anaesthesia we

first used a long established mixture of Xylazin (10-16mg/kg) and Ketamin (12-20mg/kg) and

later switched to an improved mixture of Ketamin (4mg/kg), Medetomidin (70μg/kg) and

Midazolam (0,6mg/kg) that is better tolerated.

For gathering the acceleration and GPS data sets, used in this study, we deployed

UHF-GPS collars (“1C-light” and “1C-heavy”, E-obs GmbH, Munich, Germany; Fig 1) on

adult red foxes, both, in captivity and in the wild. Both captive and wild individuals were

tagged with the same type of sensors and acceleration data logger settings. Captive individ-

uals were observed to train and test the models and wild individuals were used to apply

them. For the training data set, two individuals (female, approx. 8 years old) were collared

in a game park enclosure in the north-west of Berlin between November 2015 and June

2016. Their enclosure mainly consisted of a sandy and stony substrate and was partially

covered with concrete, grass and weeds. Several trees, tree roots, piles of stones and

cement tubes provided a heterogeneous environment with both opportunities to hide

and climb. One of the cement tubes led to an artificial, observable den. The two foxes

were chosen to be collared, because of their lacking fear towards visitors and noises and

the resulting possibility to be observed outside their den for several hours per day. For the

field dataset, data from wild foxes were used that were radio-collared by Kimmig et al. in

the city of Berlin, Germany, between 2015 and 2018. In total 17 wild individuals (10

female, 7 male) were caught. Out of those, for 9 individuals (7 females, 2 males), three

consecutive months of data were available and they were therefore included in the analy-

sis. All individuals were adults (with ages ranging from 1.5 to 7 years) and their urban and

suburban habitats were characterized by a heterogeneous structure, including green spaces

as well as concrete.

The acceleration loggers that were embedded in the UHF-GPS collars were set up to mea-

sure acceleration in short intervals at a frequency of two minutes. Data was recorded for three

axes perpendicular to each other at a sampling rate of 33.33Hz per axis. There were 110 accel-

eration measurements taken for each axis in each measurement interval. Resulting from the

sampling rate and the number of measurements for each axis the duration of each recording

interval was 3.3 seconds. We refer to a single recording interval as a burst.

To train the algorithms we used the raw ground-truthed data of the captive foxes that were

observed during the recording of acceleration data. A specific UHF-pinger signal indicated

the start of each burst for the observer who then noted the displayed behaviour. All measured

behaviours had been previously classified in an ethogram that was established through obser-

vations before and after collaring the individuals (with all steps conducted by the same

observer). It contained the following behaviours: feeding, grooming, resting, caching, trotting

and walking (for a detailed description of the behaviours see S1 Table). The pinger signal

could be detected acoustically with a UHF Wide Range Receiver that was set to the unique

frequency of the collars (see [16]) and was not audible to the foxes.

During a burst, the animal in focus was observed closely and the behaviour was noted. Each

observation was linked to the corresponding acceleration burst via the unique timestamp.
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Due to slight shifts in the collars’ timestamps, the raw acceleration data of a number of con-

secutive bursts—ideally encompassing a distinctive change in behaviour (e.g. resting followed

by trotting)—was visually inspected and compared to the noted behaviours. The timestamps

of observations were corrected accordingly.

After excluding all bursts containing more than one behaviour, 4159 bursts of six different

behaviour classes were used as the input for the model training (feeding: 367, grooming: 1140,

resting: 2114, caching (bury food to consume it later): 197, trotting: 179, walking: 162).

Data preparation

We calculated summary statistics from the raw acceleration data, separately for each burst, to

serve as predictors for the machine learning algorithms. The following predictors were calcu-

lated per axis: mean, standard deviation, inverse coefficient of variation, variance, skewness

and kurtosis. Additional predictors represent combinations of all three axes and were calcu-

lated according to the corresponding literature: q [5], pitch and roll [17] and overall dynamic

body acceleration (ODBA) [18]. In addition to the summary statistics, we added the whole

spectrum of a Fast Fourier Transformation of each axis to the set of predictors. As most of the

Fig 1. Camera trap picture of a wild red fox (“Gerlinde”), collared in Berlin in 2016. The arrows symbolize the X-, Y- and Z-axis (corresponding to

sway-, surge- and heave-motion).

https://doi.org/10.1371/journal.pone.0227317.g001
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time-related information in the raw acceleration data is lost when calculating the summary sta-

tistics we decided to use the full spectrum to utilize this information. For a complete list of pre-

dictors see S2 Table. We performed all data transformations and the construction of the ANN

in R [19] and Rstudio [20]. The sum_data function in the accelerateR package (W. Rast,

unpublished data.) was used for summary statistics and Fast Fourier Transformation

calculation.

Data classification

Established methods: Support vector machines (SVM) and random forest (RF). Sup-

port Vector Machines separate data of different classes from each other by constructing a

hyperplane between them. Classification of new data is subsequently based on their relative

position to the hyperplane. By default, the classification is binary. For applications with multi-

ple classes, more hyper-planes between classes will be constructed [21]. We used the imple-

mentation of an SVM in the R package “e1071” [22] with the kernel type “radial”.

Random Forests are an improvement of the classical Classification and Regression Trees

(CART) [23]. While in CART all predictors are used, the RF picks a random subset of predic-

tors to fit a tree. This is repeated several times, and the final prediction is the result of all trees

combined by a majority rule [24]. We used the implementation of an RF in the R package

“randomForest” [25] with the standard settings using 500 trees.

Artificial neural network (ANN). ANNs are similar to biological neural networks and

consist of multiple nodes that are distributed over several layers and interconnected [26].

Nodes are activated based on the input variables (predictors) and an activation function. In the

simplest cases, this function is a summation of all input variables that are passed to a specific

node. These functions also include weights that change the influence of every input variable

and are set during the training phase. For training, a ground-truthed data set is needed on

which the ANN establishes the node connections and the weights so that the output of the

ANN corresponds to the target classes of the model data. The activation or non-activation of

nodes serve as input for the next layer of nodes. The last layer usually consists of nodes repre-

senting the target classes. Their activation leads to the assignment of data to a class.

For our study, we chose a three-layer network with the output of the last layer being a spe-

cific behaviour class. We used a feed-forward type architecture for the ANN and used the

Keras package [27] to implement it.

Moving window

One strategy that has been tested with continuously recorded data is to apply a moving win-

dow to partition the acceleration data and to compute summary statistics for each of the result-

ing segments. In different studies, these windows could partially overlap or not overlap at all

[28–30]. An application example very similar to our approach is the assessment of car driver

aggressiveness using continuous data by Ferreira et al. [31]. However, to our knowledge, this

approach has never been used on burst data in wildlife ecology.

We applied a moving window to every recorded burst to increase the sample size of our

data set since it was found that ANNs show better performance with increasing sample size

[32, 33] and require large training data sets [34]. In the first set, this window reduced the

amount of data within the burst from the original 110 measurements down to a subset of the

window length. We then computed the summary statistics and Fast Fourier Transformation

(S2 Table) for this subset. In a second step, the window was moved by one position so that the

first measurement of every axis was removed and one new measurement for every axis was

added to the end of the window (see Fig 2). We then computed all variables for the second
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window and so forth. The window was moved until it included the last measurement of the

original burst, resulting in a number of predictor sets representing the same burst. In contrast

to extracting random subsets, this approach preserves the order of the data for a specific behav-

iour, and we were able to calculate the Fourier spectrum which is dependent on the correct

order of measurements.

Model evaluation

To evaluate the model performance of all three machine learning algorithms, we trained them

on 70% of the data (training data). We then inferred the behaviour for the remaining 30% (test

data) by classifying them with the trained model and assigning a specific behaviour to each

burst accordingly (or assigning “other”, respectively as described below). Since the number of

observations per behaviour class differed, we split the data of each behaviour class separately

in a random fashion so that the original proportions of behaviour counts were similar in the

training and test data sets. We applied the moving window to the training and test sets after

the split. We calculated the recall (true positives / (true positives + false negatives)) and preci-

sion (true positives / (true positives + false positives)) [7] for each behaviour. For the sake of

completeness, we also calculated the accuracy ((true positives + true negatives) / total number

of samples). For comparison with other models we calculated Cohens Kappa with Kappa = (po
−pe)/(1 − pe) with po ¼

Pc
1
ðTPc=nÞ and pe ¼

Pc
1
ððTPc þ TNcÞ=n � ðTPc þ FPcÞ=nÞ. With

<n> being the total sample size and<c> the number of classes [35].

To reduce confusion of behaviours, a threshold was set for the ANN assignments. Only

behaviour assignments that exceeded a probability of 0.7 were accepted. All assignments below

that threshold were classified as “other” behaviour. This was necessary to account for the fact

that captive individuals may not execute the full range of behaviours available to the species,

which would lead to some behaviour (e.g. hunting or fighting) not being included in the

model. If wild individuals displayed any of these behaviours, they could be incorrectly classi-

fied as one of the behaviours included in the model. We expect that such classifications would

Fig 2. Schematic representation of the moving window approach: Starting at the beginning of a data set (“burst”,

here n = 10), a fixed number of consecutive data (“window”, here n = 4) is taken out and analysed. In the further

step-by-step analysis, the window is shifted by one data set until the window has reached the end of the complete data

set (7 steps in the schematic example).

https://doi.org/10.1371/journal.pone.0227317.g002
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be assigned at low probability so that we can avoid these errors by implementing the threshold.

Similarly, recordings in which the individual changed its behaviour during a burst should not

be characteristic for any specific behaviour and therefore should also fall below the threshold.

Model selection

Artificial Neural Networks are used for a variety of tasks such as image recognition, sentiment

analysis or regression. The necessary sample size and ANN architecture depend on the specific

task [36]. Finding the optimal properties for the best performing ANN is not achieved by a sci-

entific method but rather by trial and error [33]. To find the best window size we trained the

ANN on window sizes from 20 to the full 110 and finally decided on 79. We evaluated all mod-

els by calculating the recall, precision and the proportion of “other” behaviours. As recall and

precision are calculated for each behaviour, we first computed their means and then calculated

the mean of the resulting mean recall and precision as well as the proportion of “other” behav-

iours. The latter was subtracted from one to be on the same scale as recall and precision. A

General Additive Model (GAM) was applied to the calculated means for all window sizes. We

calculated the slope m of the GAM fit for each window size using the difference quotient m =

(Δyn-Δyn-1)/(Δxn-Δxn-1). Variable x corresponds to the window size and y to the calculated

model performance, n corresponds to a specific window size and n-1 to the previous window

size. A window size of 79 provided the best trade-off between small window size and high per-

formance (see “Model selection” in the Results).

Application to wild individuals

For our subsequent analysis of behaviour inference, we selected wild foxes for which at least

three consecutive months of acceleration data were available (N = 9). We considered all

months in which data was recorded for at least half of the month. In addition to the accelera-

tion data, the tags recorded GPS locations every four minutes for the first eight weeks, after

that every 20 minutes (GPS for fox “Gerlinde” was only recorded every 20 minutes). Using

acceleration informed GPS measurement, this interval was reduced to every four hours when

a fox was inactive. We trained all three classification models on the complete ground-truthed

dataset of the captive foxes and applied the trained model to classify the data of the wild foxes.

As the moving window results in multiple behaviour outputs for each burst, only one behav-

iour was assigned to each burst, following majority rule. We consider all classifications within

one burst as equal and determine the absolute majority.

Validation of behaviour assignments

We assessed the plausibility of the ANNs’ behavioural assignments by examining the following

four aspects: (i) biological credibility of the behaviour assignments (ii) consistency over indi-

viduals and time (iii) coherence with the GPS data and (iv) coherence with ODBA.

To address biological credibility (i), we calculated the time-dependent composition of

behaviours throughout the day and compared it to the literature on fox behaviour. As seasonal

shifts can influence behavioural compositions, we separated the behaviour assignments by

month. For each day within a single month, we counted the number of assignments of each

behaviour (for each minute covered by the tag schedule) in the 24 hours. We further used the

corresponding plots to (ii) visually compare the daily patterns over time and between individu-

als. (iii) We incorporated the given GPS information of the free-ranging individuals because

we expected the GPS data to correspond with specific behavioural classes. For instance, spatial

clustering of GPS data should correspond with stationary resting behaviour. We treated points

as a cluster when consecutive GPS points were within a 50m radius of the first GPS point of
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that cluster. Points recorded more than 50m away were defined as the first point of a new clus-

ter. Since it was possible that clusters consisted of only a single point, we only considered

behaviour assignments to be spatially clustered when at least 10 classified behaviour items

were assigned to the same cluster. We then calculated for each behaviour the proportion of

behaviour assignments that were within a cluster. In addition, we investigated the coherence

of GPS based speed measure and movement-related behaviour classifications (trotting and

walking). We, therefore, calculated the speed of the moving animal based on the spatial and

temporal distances between consecutive GPS points. Due to independent schedules, GPS and

acceleration data were not recorded exactly simultaneously. Hence acceleration data that was

recorded within 10 seconds of a GPS measurement were considered. Finally, we (iv) compared

the temporal distribution of ODBA values and behaviour assignments by constructing acto-

grams using accelerateR.

Results

Training conditions: Captive foxes

We could classify all six behaviours during the validation using SVM and RF. Classification

success differed between the behaviour classes for both algorithms. We achieved the best classi-

fication success for resting and the lowest for caching and walking (Table 1). The confusion

matrices (S3 and S4 Tables) showed that grooming and walking were confused more often

compared to other behaviours. Recall can be interpreted as the proportion of behaviour events

that were correctly classified. Feeding (SVM), for example, had a recall of 0.43, meaning that

43% of all feeding events were correctly classified as feeding. Precision can be interpreted as

the probability for an assignment to be correct. Feeding had a precision of 0.58, meaning that

a single assignment of feeding is correct with a chance of 58%. Both algorithms show compara-

ble results only for resting. The SVM performs worse for all other behaviours. Our initial test-

ing showed that the SVM performed better without the addition of the FFT spectrum but we

kept the model this way to ensure the comparability of all three models. We added the accu-

racy metric that is often used for model evaluation but will not endorse its use for this study:

As accuracy uses the true negatives it is influenced by the large number of resting observations

that we got. Since most of the resting data is classified correctly these data is treated as true

Table 1. Recall and precision of the classification output compared for support vector machine (SVM), random forest (RF) and artificial neural network (ANN).

All algorithms are capable of classifying and inferring fox behaviour with a high success rate (exceptions are caching and walking for SVM and RF).

Feeding Grooming Resting Caching Trotting Walking

SVM

recall 0.43 0.33 0.98 0.37 1.00 0.27

precision 0.58 0.70 0.98 0.21 0.19 0.36

accuracy 0.92 0.77 0.94 0.90 0.81 0.95

RF

recall 0.70 0.93 0.92 0.68 0.96 0.43

precision 0.71 0.80 0.99 0.59 0.91 0.84

accuracy 0.94 0.91 0.95 0.96 0.99 0.98

ANN

recall 0.83 0.88 0.96 0.67 0.96 0.74

precision 0.84 0.95 0.98 0.83 0.91 0.71

accuracy 0.93 0.92 0.95 0.95 0.96 0.95

https://doi.org/10.1371/journal.pone.0227317.t001
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negatives for all other behaviour classes and thus resulting in higher accuracy values for those

behaviour classes.

The Kappa values for the RF and SVM are 0.81 and 0.51 respectively. Our initial testing

with training both models without the Fast Fourier Spectrum resulted in Kappa values of 0.81

and 0.78 for RF and SVM respectively. The performance of the RF remains the same while the

performance of the SVM decreased due to the addition of the Fast Fourier spectrum.

Like RF and SVM, the ANN could predict all six behaviours during validation. Also, classi-

fication success differed between behaviour classes. The performance of the ANN is overall

comparable to the RF but performs better than the SVM. The confusion of walking behaviour

with grooming is reduced compared to the SVM and RF (S6 Table). The kappa value of 0.85

for the ANN was also higher than for the RF (0.81) and SVM (0.51). The proportion of assign-

ments that did not surpass the threshold was 0.04.

Model performance of the ANN appears to be dependent on the window size (Fig 3) and

decreases towards both ends of the window size spectrum. Smaller window sizes seem to have

a stronger impact on model performance than larger window sizes. The GAM fit has its maxi-

mum at window size 79, with the slope of the GAM fit close to 0. We thus considered 79 to be

the best trade-off between model performance and window size and used it for the final model

(see Discussion).

Field conditions: Application to wild foxes

We here show the results for all wild foxes and plots for those two wild foxes (“Que” and “Ger-

linde”), whose collars yielded data over a whole year. Graphic representation of all remaining

individuals is presented in the supplemental material (S1–S7 Figs).

Fig 3. ANN model performance in relation to window size. Black dots show the computed performance values. The

blue line is the result of a General Additive Model, k = 40 [37] fit. The y-axis on the left side labelled “Model

Performance” corresponds to the Model Performance line (blue) and Raw Metrics points (black). The orange line is

the calculated slope of the model performance, which corresponds to the y-axis on the right side labelled “Slope”. The

green vertical line represents the best window size of 79.

https://doi.org/10.1371/journal.pone.0227317.g003
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When the trained SVM and RF models were applied to classify the behaviour of the nine

wild foxes, all bursts were classified as grooming. No resting, caching, feeding, trotting or walk-

ing events were detected (Table 2). When applying the trained ANN to the wild fox data, all six

behaviour categories were assigned in all nine individuals (Table 3). For the field data of “Que”

and” Gerlinde”, a proportion of 1% did not exceed the 70% threshold and was therefore

labelled “other”. For both foxes feeding, caching and walking were assigned at low rates.

Validation and credibility of the behaviour assignments

Biological credibility of the behaviour assignments (i) and consistency over individuals

and time (ii). Looking at the time-dependent composition of each individual’s behaviour

(Fig 4, S1–S7 Figs), a similar pattern of behavioural composition over time is clearly noticeable

(months without full data recording ought to be excluded for feasible interpretation). Clearly,

there is a high proportion of resting behaviour during the middle of the day, while trotting is

mostly inferred during dark hours. Trotting is also inferred more often than walking. There

seems to be a seasonal change in resting behaviour, with resting events being more explicitly

limited to the daytime in summer months. Feeding events are more often inferred during dark

hours than during the daytime, when mostly resting and some grooming are classified.

In the comparison between individuals some differences emerge. Some individuals, e.g.,

show less trotting (S2 Fig), more walking (S3 Fig) or much more grooming than others (S7

Fig). Despite this variation, the general pattern of behaviour composition appears very similar

across all individuals.

(iii) Coherence with GPS. Resting behaviour appears to be highly associated with GPS

clusters (Fig 5A), while all other behaviours are inferred mostly outside of clusters. This also

Table 2. Number of occurrences of every classified behaviour for the wild foxes. Count of all behaviour assignments compared for support vector machine (SVM) and

random forest (RF). Overall, all foxes show similar proportions of behaviours throughout their measurement periods. As all individuals were tagged for different time peri-

ods, the absolute number of assignments differs between individuals.

Individual Measure feeding grooming resting caching trotting walking other

SVM

Gerlinde count 0 289248 0 0 0 0 0

Gisel count 0 102920 0 0 0 0 0

Hazel count 0 103951 0 0 0 0 0

Ida count 0 110337 0 0 0 0 0

Jack count 0 243742 0 0 0 0 0

Kyna count 0 159211 0 0 0 0 0

Nikita count 0 72653 0 0 0 0 0

Porthos count 0 149254 0 0 0 0 0

Que count 0 274792 0 0 0 0 0

RF

Gerlinde count 0 289248 0 0 0 0 0

Gisel count 0 102920 0 0 0 0 0

Hazel count 0 103951 0 0 0 0 0

Ida count 0 110337 0 0 0 0 0

Jack count 0 243742 0 0 0 0 0

Kyna count 0 159211 0 0 0 0 0

Nikita count 0 72653 0 0 0 0 0

Porthos count 0 149254 0 0 0 0 0

Que count 0 274792 0 0 0 0 0

https://doi.org/10.1371/journal.pone.0227317.t002
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applies to all other wild foxes (S8A–S14A Figs). For the analysis of the correspondence

between behaviours and GPS based speed measurements, we used only acceleration data

recorded within 10 seconds of a GPS fix (for Que: 7%; Gerlinde: 5%). Resting events were

classified at lower GPS-based speed than trotting events (Fig 5B, S8B–S14B Figs).

(iv) Coherence with ODBA. The actograms show that trotting is predominantly classified

at times when ODBA values are high. Trotting, as well as high ODBA, occur mostly during

night-time. Resting, in turn, is most often classified at times with low ODBA values (Fig 6).

This is also valid for all remaining foxes (S15–S21 Figs).

Discussion

In the present study we sought to advance the abilities to remotely assess the behaviour of ani-

mals in the wild without directly observing (and respectively disturbing) the target animals.

We therefore, tested the capacity of three machine learning algorithms (SVM, RF and ANN)

to infer wild fox behaviour after training with a ground-truthed data set of two captive red

foxes. The performances of the RF and the ANN were on similar levels under training condi-

tions, the SVM overall performed worse than the other two. The ANN with the moving win-

dow approach, however, was able to infer caching and walking behaviour much better than

the other two. Both RF and SVM generally performed well in inferring behaviour during vali-

dation (Table 1) and showed comparable results to other studies [5, 38, 39]. When applied to

the wild foxes, however, they both failed to discriminate the different behaviours (Table 2).

The application of a model trained on one individual to a conspecific (that the model was

not trained on), is crucial to bring this method into practical use, yet this remains a major

obstacle. One rare example for a study classifying behaviours of conspecifics is the study

Table 3. Number of occurrences of every classified behaviour for the wild foxes. Count and proportion of all behaviour assignments of the artificial neural network

(ANN). Overall, all foxes show similar proportions of behaviours throughout their measurement periods. As all individuals were tagged for different time periods, the abso-

lute number of assignments differs between individuals.

Individual Measure Feeding Grooming Resting Caching Trotting Walking Other

Gerlinde count 2288 78194 171890 1016 30020 1664 4176

proportion 0.005 0.23 0.61 0.007 0.12 0.02 0.01

Gisel count 3019 16545 61405 1464 10766 7193 2528

proportion 0.03 0.16 0.60 0.01 0.10 0.07 0.02

Hazel count 2887 26014 57094 1319 8570 4874 3193

proportion 0.03 0.25 0.55 0.01 0.08 0.04 0.03

Ida count 1311 25162 65354 241 12848 1612 3789

proportion 0.01 0.23 0.59 0.002 0.12 0.01 0.03

Jack count 3420 136086 72507 523 17116 5092 8996

proportion 0.01 0.56 0.30 0.002 0.07 0.02 0.04

Kyna count 1070 45185 104491 266 6016 750 1433

proportion 0.007 0.28 0.66 0.001 0.04 0.005 0.009

Nikita count 2318 10430 47996 465 2678 7639 1127

proportion 0.03 0.14 0.66 0.006 0.04 0.11 0.02

Porthos count 1266 32624 91370 3555 16236 530 3673

proportion 0.008 0.22 0.61 0.02 0.11 0.004 0.02

Que count 1317 64092 166349 1875 32531 5749 2879

proportion 0.008 0.27 0.59 0.004 0.10 0.006 0.01

https://doi.org/10.1371/journal.pone.0227317.t003

PLOS ONE Using data from captive individuals to infer wildlife behaviours

PLOS ONE | https://doi.org/10.1371/journal.pone.0227317 May 5, 2020 11 / 25

https://doi.org/10.1371/journal.pone.0227317.t003
https://doi.org/10.1371/journal.pone.0227317


Fig 4. Time-dependent composition of behaviours of Que (I) and Gerlinde (II). Stacked bars represent the proportion of each behaviour at a

given time of day, in each month. The data showed here span from February 2018 to January 2019 for Que and from March 2016 to February

2017 for Gerlinde.

https://doi.org/10.1371/journal.pone.0227317.g004
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conducted by Moreau et al. [40] who used 3D-accelerometers on three goats to determine

their head position (at accuracies of 61–82%) but could only predict three different traits,

showing that inter-individual model projection leads to a reduction in the prediction’s

accuracy.

Fig 5. Behaviour assignments of Que (I) and Gerlinde (II) in relation to GPS clusters (A) and speed (B). The

numbers in the brackets indicate the sample size of each behaviour class. (I) Resting shows the highest association with

GPS clusters (71%) and trotting the lowest (9%). Resting events are associated with significantly lower speed than

trotting events (Wilcoxon rank sum test, W = 3024826, p< 0.001). (II) Resting shows the highest association with GPS

clusters (53%) and trotting the lowest (5%). Resting events are associated with significantly lower speed than trotting

events (Wilcoxon rank sum test, W = 2286090, p< 0.001).

https://doi.org/10.1371/journal.pone.0227317.g005

PLOS ONE Using data from captive individuals to infer wildlife behaviours

PLOS ONE | https://doi.org/10.1371/journal.pone.0227317 May 5, 2020 13 / 25

https://doi.org/10.1371/journal.pone.0227317.g005
https://doi.org/10.1371/journal.pone.0227317


Support Vector Machine (SVM) and random forest (RF)

When applied to the data from wild foxes, SVM and RF classified all behaviours as grooming.

Considering that these datasets contain measurements for at least three months and that the

GPS signal clearly showed the animals covering large distances, this classification is clearly

Fig 6. Temporal distribution of trotting (A), resting (B) and ODBA values (C) for Que (I) and Gerlinde (II). The red lines indicate sunset and

sunrise. (A) Black spaces indicate times at which trotting behaviour was classified, whereas white spaces indicate the classification of all other

behaviours. (B) Black spaces indicate times at which resting behaviour was classified, whereas white spaces indicate classifications of all other

behaviours. (C) Higher ODBA values are indicated by darker spaces.

https://doi.org/10.1371/journal.pone.0227317.g006
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unrealistic. In all cases, the models were trained and validated on measurements from the

same captive individuals. Since both models correctly inferred behaviours of those captive

individuals during validation, we suggest that SVM and RF thus failed to recognize similar

patterns between wild and zoo-kept individuals because wild foxes showed characteristics in

their behaviour that were too different from the captive foxes to be detected by those

approaches.

This could be solved by training the model on ground-truthed data obtained from observ-

ing wild individuals that are logged [13]. However, as mentioned above, this is not always fea-

sible, so it would be highly desirable to do trait classification without the necessity to directly

observe wild animals. An additional problem of SVM and RF could be the recording of mixed

behaviours. During model training, all recordings with mixed behaviours within one burst

were excluded from the data set. However, it is a fair assumption that at least some recordings

from wild individuals do contain more than one behaviour. Even though we implemented a

probability threshold to account for these mixed bursts and—in the best case—classify them as

"other" behaviour, these recordings might still pose an unclassifiable problem. Another issue

is that grooming is classified to such a high proportion by both SVM and RF. As grooming

behaviour is complex and may include different actions like licking, nibbling or scratching

(see also S1 Table), the resulting behaviour class probably includes a broad range of character-

istic summary statistics and may thus be more easily confused with other behaviour classes.

Lastly, we cannot consider natural behaviours that usually are not or very rarely observed in

zoo-kept animals such as mating or territorial behaviour. These behaviours (as well as other,

unknown behaviours) might very well have occurred in the wild where they could not have

been classified because the algorithms were not trained on them. As possible for the mixed

bursts, these untrained behaviours could be detected through the probability threshold and

classified as “other”.

Another cause of the poor performance of the SVM and RF in predicting wild fox behav-

iour could be the small sample size of the data set of the captive foxes. With more observational

data of the captive foxes, we might have been able to train a more robust model. An ideal

model would thus be trained on more data. However, many studies in the field of wildlife ecol-

ogy and conservation research face the problem of small sample sizes. Species may either be

hard to observe or assess (e.g. due to remote or impassable habitats or an elusive nature of the

species) or simply by cause of being too rarely distributed and/or barely zoo-kept. By introduc-

ing the moving window approach to wildlife behaviour recognition, we may actually have

found a promising possibility to deal with these challenging conditions.

The artificial neural network (ANN)

The ANN showed comparable results to SVM and RF in model validation and consequently to

the literature as cited above. However, when applying it to the same wild individuals the SVM

and RF failed on, it classified a very different set of behaviours (Table 3). If we had only tested

the two established approaches, we would have concluded that the transfer of a behaviour clas-

sification model trained on captive foxes to wild individuals is not possible. In contrast, the

ANN with a moving window shows promising results that hopefully prompt further investiga-

tion into its potential use for wildlife ecology. The approach brings two additional advantages,

besides the increased sample size: First, the likely better handling of recordings with mixed

behaviours: By reducing the number of measurements per burst, the proportion of a potential

second behaviour in the same burst is reduced. In some cases, this reduction may be enough

to calculate similar summary statistics to a burst with only one of the behaviours. Second, the

introduction of an ensemble learning effect: In case of a specific behaviour being performed in
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an unusual way or a burst containing more than one behaviour, it will be harder to infer the

correct behaviour. As the moving window creates 32 subsamples of the original burst, using a

majority vote for the resulting 32 assigned behaviours can reduce the uncertainty of the assign-

ments. This framework could be a useful tool for future studies in wildlife research, especially

for the study of species that are rarely kept in zoos or the study of behaviours that are hard to

observe even in captivity.

The best size for the moving window was determined based on the maximal performance

and slope of the GAM fit in the simulation plot (Fig 3). Our aim was to find a window size

with a high mean performance that is small enough for generating sufficient data. Unfortu-

nately, reducing the window size was found to negatively impact model performance [15]. Per-

formance seemed to be at its maximum at window size 79. Larger windows would result in

fewer subsets at worse performance, while performance also decreased for window sizes

smaller than 79. Considering the slope of the GAM fit, the performance changed only margin-

ally at window sizes 78 and 80 compared to 79. Therefore, we expect the model to perform

similarly well at these window sizes. We suggest considering the slope because this approach

may not always show a clear maximum like in our case. In cases of multiple maxima or plateau

formations, the slope will help to inform on the smallest window size with the best

performance.

A problem that may occur with the moving window approach is incorrect classification

through overfitting [41]. By creating several similar subsets of the same burst, the ANN could

build a model that fits the training data too well, i.e. even slight differences between training

data and new data of the same behaviour class would result in the classification of different

behaviours, with an overfitted model. Variation within the behaviour classes could also cause

incorrect classifications if a single behaviour is realised outside the normal variation. There is

no clear method to distinguish between these two causes of incorrect classifications. However,

in the following we discuss the credibility of the assigned wild fox behaviour and argue that the

moving window approach does not introduce overfitting.

Output credibility

The classification results of the classic methods appear to be obviously incorrect. At first

glance, the output of the ANN appears more plausible than the output of RF and SVM, on

account of all six behaviours getting classified. Still, the actual accuracy cannot be determined

as wild individuals could not be observed. Since this may be true for most tagged wildlife, we

provide four strategies to indirectly assess the credibility of the ANN output.

When looking at the time-dependent composition of behaviours, they appear quite

consistent over individuals and time. Generally, some variation between individuals is

apparent and some behaviour events seem to be misclassified. Individual differences in

moving behaviour, for example, may result in the assignment of either walking or trotting

when the algorithm is not accurate enough. However, an overall pattern is evident for most

of the foxes and the temporal distribution appears plausible: The ANN output suggests that

the foxes predominantly rest during the day and are active at night as well as during twilight

(Fig 4, S1–S8 Figs) which corresponds well with described nocturnal-crepuscular activity

patterns of red foxes (e.g. [42, 43]).

There also seem to be seasonal changes in these patterns, with fewer resting events during

dark hours in the summer months. Although there are only two complete year-round datasets

available, this pattern appears reasonable as the nights in summertime at this longitude are

much shorter than during winter months (in Berlin, the daily dark period ranges from 7 to 17

hours during the course of a year). Thus, foxes should use the full night-time spectrum in
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summer for their activities, while during winter the higher availability of potential activity time

allows nocturnal resting events. This behavioural plasticity in activity has also been shown by

Ricci et al. [44] who found that foxes are active in different zones and hours of the day, accord-

ing to the season.

Like trotting and walking, feeding is mostly classified at night-time. Feeding events occur in

no clustered manner. The mixture of movement and feeding events reflects the feeding ecol-

ogy of foxes which do not feed on large prey. Foxes mostly hunt for small prey like mice and

voles and often rather scavenge than hunt, especially in urbanized areas [45, 46].

While the behaviour composition is very similar across all individuals we cannot rule out

the possibility that the wild foxes performed a behaviour that is very similar to another behav-

iour class that we did not observe in the captive foxes. Consequently this behaviour class would

have been misclassified as one of the behaviour classes that we did observe in the captive foxes.

Due to the nature of our study we do not have the possibility to test whether that was the case

or not because we do not have access to the actual behaviour of the wild foxes. In any case, this

behaviour class or classes would have to be behaviour that are universal in wild foxes but are

not or very rarely performed by captive foxes. Obtaining observation and acceleration data of

such behaviour for the training of any machine learning algorithm would be quite challenging.

Generally, similar results do necessarily indicate correct predictions, but dissimilarities between

individuals could hint to poor model performance. Anyhow, the credibility of the output has to

be addressed by using different approaches. Therefore we also used GPS data to relate the

occurrence of GPS-clusters as well as GPS-based speed values to the assigned behaviour classes.

In particular, we focused on resting and movement behaviour (trotting and walking), with

an obvious connection to be expected. Resting as a stationary behaviour should get classified

predominantly at locations where GPS points are clustered (Fig 5). We found that 38% to 74%

of resting bursts were located within such a cluster. The remaining bursts may reflect cases

when the individual had just temporarily stopped moving. Standing still or sitting briefly during

an active phase would also be classified as resting but may not be associated with a GPS-cluster.

Trotting as a locomotive behaviour was expected to show low association with GPS-clusters

and was only classified at a cluster for 2% to 9% of all bursts (Fig 5, S8–S14 Figs). As foxes

move away from or to a resting site, it is reasonable for some trotting to be classified within

GPS clusters. The analysis did not target feeding, caching or grooming, as those behaviours

can be performed in a clustered or non-clustered manner. The analysis of behaviour assign-

ments in relation to speed shows a reverse picture: Behaviours that show a weak association

with GPS clusters show a higher speed and vice versa (S8–S14 Figs). However, we could use

only 5% to 15% of all data for the speed analysis (S6 Table). The method described here is

hence more applicable when the recording of location and acceleration data is better

synchronised.

Finally, we analysed the ODBA, an indicator of body movement [18] that was shown to cor-

respond well with the activity level of specific behaviours [15]. When we compared the tempo-

ral distribution of ODBA values to that of the classified trotting and resting events, we saw an

association of high ODBA values and trotting behaviour and low ODBA values and resting

behaviour, respectively. Again, the nocturnal-crepuscular activity pattern was visible (Fig 6,

S15–S21 Figs).

While the above mentioned examples appear conceivable, the interpretation of some behav-

iours may be puzzling, and their biological credibility is difficult to gauge. For instance, we

could not identify any pattern for caching behaviour, and grooming seems to be generally

over-classified. Its complexity and the resulting variability in the training data set may increase

misclassification of unknown behaviours, especially when considering that six behaviours do

not represent the full variety of behaviour that this mobile carnivore displays in the wild. The

PLOS ONE Using data from captive individuals to infer wildlife behaviours

PLOS ONE | https://doi.org/10.1371/journal.pone.0227317 May 5, 2020 17 / 25

https://doi.org/10.1371/journal.pone.0227317


latter is clearly more significant for fast-moving animals like the highly agile red fox that dis-

plays a variety of complex movement patterns. Generating as precise outputs as they, for exam-

ple, have been shown for grazing animals with their limited body flexibility and behavioural

repertoire (see [28, 47]), therefore remains a challenge. In another study on captive red foxes

Painter et al. [48] could classify three exhibited behaviours with an accuracy of 95.7% when

training on one individual, and predicted the behaviour of a second individual at an accuracy

of 66.7%, suggesting that the classifier can extract behaviours across multiple foxes.

In the present study, a broader training dataset of more captive individuals could possibly

improve the output of the ANN for the wild foxes and permit more precise recognition of spe-

cific behaviours. However, our results suggest that the behaviour inferred by the ANN corre-

sponds well with the actual behaviour of the logged foxes. Despite some unsolved issues, the

ANN thus seems to be a promising approach to infer wildlife behaviour, even in cases where

methods suggested by existing literature fail.

Conclusion

We here compare the relative predictive power of different machine learning approaches in

inferring wildlife behaviour and we could show that good results for the validation of the mod-

els will not necessarily lead to good results when these models are applied in the field. We

provide a framework to use acceleration data and an Artificial Neural Network to infer the

behaviour of wild foxes, using a training data set obtained from captive individuals. We also

present four strategies to address the plausibility of such behaviour classification output when

no direct validation is possible. Although not all validation strategies may be applicable for

every species, this framework should not be restricted to the studied species. The successful

application of the ANN for behavioural classification on field data offers exciting potential to

study the behaviour of animals in the wild without direct observation.

Supporting information

S1 Fig. Time-dependent composition of behaviours of fox “Gisel”. Stacked bars represent

the proportion of each behaviour at a given time of day, in each month. The data shown here

span from September 2016 until March 2017. Plots for September and March are only based

on 2 and 7 days, respectively, and cannot be interpreted. Because of a logger failure the Febru-

ary plot is only based on 12 days and should also not be considered. Gisel shows more walking

and feeding than most other individuals.

(TIF)

S2 Fig. Time-dependent composition of behaviours of fox “Hazel”. Stacked bars represent

the proportion of each behaviour at a given time of day, in each month. The data shown here

span from October 2016 until February 2017. Hazel shows more feeding than most other indi-

viduals.

(TIF)

S3 Fig. Time-dependent composition of behaviours of fox “Ida”. Stacked bars represent the

proportion of each behaviour at a given time of day, in each month. The data shown here span

from November 2016 until April 2017. Ida shows almost no walking.

(TIF)

S4 Fig. Time-dependent composition of behaviours of fox “Jack”. Stacked bars represent

the proportion of each behaviour at a given time of day, in each month. The data shown here

span from January 2017 until December 2017. The plot for January is only based on 7 days and

should not be interpreted. Jack shows much more grooming than all other individuals, as well
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as much less resting.

(TIF)

S5 Fig. Time-dependent composition of behaviours of fox “Kyna”. Stacked bars represent

the proportion of each behaviour at a given time of day, in each month. The data shown here

span from February 2017 until November 2017. The logger failed between the 15th of June

and the 26 of July. The June plot looks jagged because of the resulting lack of data. The July

plot cannot be interpreted because it only relies on 6 days. Generally, less trotting is predicted

for Kyna compared to the other foxes.

(TIF)

S6 Fig. Time-dependent composition of behaviours of fox “Nikita”. Stacked bars represent

the proportion of each behaviour at a given time of day, in each month. The data shown here

span from September 2017 until January 2018. The September and January plots cannot be

interpreted because both are based on 5 days only. For this fox much more walking than trot-

ting is predicted. In addition, much more feeding is predicted than for most other individuals.

(TIF)

S7 Fig. Time-dependent composition of behaviours of fox “Porthos”. Stacked bars represent

the proportion of each behaviour at a given time of day, in each month. The data shown here

span from October 2017 until June 2018. The logger failed for 15 days in March and for 8 days

in April. The March plot therefore shows only half as much data as the other plots and looks

more jagged. The October plot is only based on 6 days and can thus not be interpreted prop-

erly.

(TIF)

S8 Fig. Behaviour assignments of “Gisel” in relation to GPS clusters (A) and speed (B). The

numbers in the brackets indicate the sample size of each behaviour class. (A) Resting shows

the highest association with GPS clusters (57%) and trotting the lowest (2%). (B) Behaviour

prediction in relation to speed. Resting appears at significantly lower speeds than trotting

(Wilcoxon rank sum test, W = 727995, p < 0.001).

(TIF)

S9 Fig. Behaviour assignments of “Hazel” in relation to GPS clusters (A) and speed (B).

The numbers in the brackets indicate the sample size of each behaviour class. (A) Resting

shows the highest association with GPS clusters (38%) and trotting the lowest (9%). Resting is

predicted much less in clusters than in most other study foxes. (B) Behaviour prediction in

relation to speed. Resting appears at significantly lower speeds than trotting (Wilcoxon rank

sum test, W = 489223, p< 0.001).

(TIF)

S10 Fig. Behaviour assignments of “Ida” in relation to GPS clusters (A) and speed (B). The

numbers in the brackets indicate the sample size of each behaviour class. (A) Resting shows

the highest association with GPS clusters (46%) and trotting the lowest (9%). Resting is pre-

dicted much less in clusters than in most other study foxes. (B) Behaviour prediction in rela-

tion to speed. Resting appears at significantly lower speeds than trotting (Wilcoxon rank sum

test, W = 803283, p< 0.001).

(TIF)

S11 Fig. Behaviour assignments of “Jack” in relation to GPS clusters (A) and speed (B).

The numbers in the brackets indicate the sample size of each behaviour class. (A) Resting

shows the highest association with GPS clusters (74%) and trotting the lowest (6%). Resting is
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predicted much less in clusters than in most other study foxes. (B) Behaviour prediction in

relation to speed. Resting appears at significantly lower speeds than trotting (Wilcoxon rank

sum test, W = 295149, p< 0.001).

(TIF)

S12 Fig. Behaviour assignments of “Kyna” in relation to GPS clusters (A) and speed (B).

The numbers in the brackets indicate the sample size of each behaviour class. (A) Resting

shows the highest association with GPS clusters (57%) and trotting the lowest (3%). (B) Behav-

iour prediction in relation to speed. Resting appears at significantly lower speeds than trotting

(Wilcoxon rank sum test, W = 428274, p < 0.001).

(TIF)

S13 Fig. Behaviour assignments of “Nikita” in relation to GPS clusters (A) and speed (B).

The numbers in the brackets indicate the sample size of each behaviour class. (A) Resting

shows the highest association with GPS clusters (69%) and trotting the lowest (8%). (B) Behav-

iour prediction in relation to speed. Resting appears at significantly lower speeds than trotting

(Wilcoxon rank sum test, W = 327626, p < 0.001).

(TIF)

S14 Fig. Behaviour assignments of “Porthos” in relation to GPS clusters (A) and speed (B).

The numbers in the brackets indicate the sample size of each behaviour class. (A) Resting

shows the highest association with GPS clusters (68%) and trotting the lowest (8%). (B) Behav-

iour prediction in relation to speed. Resting appears at significantly lower speeds than trotting

(Wilcoxon rank sum test, W = 4454986, p< 0.001).

(TIF)

S15 Fig. Temporal distribution of trotting (A), (B) resting and (C) ODBA values of

“Gisel”. The red lines indicate the sunset and sunrise. (A) Black spaces indicate times at which

trotting behaviour was predicted whereas white spaces indicate assignments of all other behav-

iours. Trotting is predominantly predicted during the night. (B) Black spaces indicate times at

which resting behaviour was predicted whereas white spaces indicate assignments of all other

behaviours. Resting is predominantly predicted during the day. The switch between trotting,

resting and other behaviours is mostly oriented at the sunset and sunrise. (C) Higher ODBA

values are indicated by darker spaces. ODBA values are higher at night than during daytime.

Discontinuities in the red line are caused by missing data due to the logger not recording data

at the time.

(TIF)

S16 Fig. Temporal distribution of trotting (A), (B) resting and (C) ODBA values of

“Hazel”. The red lines indicate the sunset and sunrise. (A) Black spaces indicate times at

which trotting behaviour was predicted whereas white spaces indicate assignments of all other

behaviours. Trotting is predominantly predicted during the night. (B) Black spaces indicate

times at which resting behaviour was predicted whereas white spaces indicate assignments of

all other behaviours. Resting is predominantly predicted during the day. The switch between

trotting, resting and other behaviours is mostly oriented at the sunset and sunrise. (C) Higher

ODBA values are indicated by darker spaces. ODBA values are higher at night than during

daytime.

(TIF)

S17 Fig. Temporal distribution of trotting (A), (B) resting and (C) ODBA values of “Ida”.

The red lines indicate the sunset and sunrise. (A) Black spaces indicate times at which trotting

behaviour was predicted whereas white spaces indicate assignments of all other behaviours.
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Trotting is predominantly predicted during the night. (B) Black spaces indicate times at which

resting behaviour was predicted whereas white spaces indicate assignments of all other behav-

iours. Resting is predominantly predicted during the day. The switch between trotting, resting

and other behaviours is mostly oriented at the sunset and sunrise. (C) Higher ODBA values

are indicated by darker spaces. ODBA values are higher at night than during daytime.

(TIF)

S18 Fig. Temporal distribution of trotting (A), (B) resting and (C) ODBA values of “Jack”.

The red lines indicate the sunset and sunrise. (A) Black spaces indicate times at which trotting

behaviour was predicted whereas white spaces indicate assignments of all other behaviours.

Trotting is predominantly predicted during the night. (B) Black spaces indicate times at which

resting behaviour was predicted whereas white spaces indicate assignments of all other behav-

iours. Resting is predominantly predicted during the day. The switch between trotting, resting

and other behaviours is mostly oriented at the sunset and sunrise. (C) Higher ODBA values

are indicated by darker spaces. ODBA values are higher at night than during daytime.

(TIF)

S19 Fig. Temporal distribution of trotting (A), (B) resting and (C) ODBA values of

“Kyna”. The red lines indicate the sunset and sunrise. (A) Black spaces indicate times at which

trotting behaviour was predicted whereas white spaces indicate assignments of all other behav-

iours. Trotting is predominantly predicted during the night. (B) Black spaces indicate times at

which resting behaviour was predicted whereas white spaces indicate assignments of all other

behaviours. Resting is predominantly predicted during the day. The switch between trotting,

resting and other behaviours is mostly oriented at the sunset and sunrise. (C) Higher ODBA

values are indicated by darker spaces. ODBA values are higher at night than during daytime.

Discontinuities in the red line are caused by missing data due to the logger not recording data

at the time.

(TIF)

S20 Fig. Temporal distribution of trotting (A), (B) resting and (C) ODBA values of

“Nikita”. The red lines indicate the sunset and sunrise. (A) Black spaces indicate times at

which trotting behaviour was predicted whereas white spaces indicate assignments of all other

behaviours. Trotting is predominantly predicted during the night. (B) Black spaces indicate

times at which resting behaviour was predicted whereas white spaces indicate assignments of

all other behaviours. Resting is predominantly predicted during the day. The switch between

trotting, resting and other behaviours is mostly oriented at the sunset and sunrise. (C) Higher

ODBA values are indicated by darker spaces. ODBA values are higher at night than during

daytime.

(TIF)

S21 Fig. Temporal distribution of trotting (A), (B) resting and (C) ODBA values of

“Porthos”. The red lines indicate the sunset and sunrise. (A) Black spaces indicate times at

which trotting behaviour was predicted whereas white spaces indicate assignments of all other

behaviours. Trotting is predominantly predicted during the night. (B) Black spaces indicate

times at which resting behaviour was predicted whereas white spaces indicate assignments of

all other behaviours. Resting is predominantly predicted during the day. The switch between

trotting, resting and other behaviours is mostly oriented at the sunset and sunrise. (C) Higher

ODBA values are indicated by darker spaces. ODBA values are higher at night than during

daytime. Discontinuities in the red line are caused by missing data due to the logger not

recording data at that time.

(TIF)
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S1 Table. Ethogram for the captive foxes—Modified from [16]. Behavioural observations

were restricted to the listed categories. Each burst could only have one behaviour assigned.

Observations not matching any description as well as observations of more than one behaviour

per burst were excluded from the analysis.

(DOCX)

S2 Table. List of all predictors and how they were calculated. References refer to when the

respective predictor was first introduced in the context of behaviour prediction. All predictors

except the Fast Fourier Transformation can be considered summary statistics because they

result in a single number. We add the complete Fast Fourier Spectrum as predictors. The total

amount of predictors from the Fast Fourier Spectrum is therefore dependant on burst length.

(DOCX)

S3 Table. Confusion matrix for the support vector machine (SVM) validation. Columns

show expected behaviours known from observation, rows show behaviours assigned by the

SVM. Values on the diagonal (bold) represent behaviours assigned correctly. All values off the

diagonal are incorrect assignments that show which behaviours were confused with each other

(for example 16 events of feeding were incorrectly classified as grooming).

(DOCX)

S4 Table. Confusion matrix for the random forest (RF) validation. Columns show expected

behaviours known from observation, rows show behaviours assigned by the RF. Values on the

diagonal (bold) represent behaviours assigned correctly. All values off the diagonal are incor-

rect assignments that show which behaviours were confused with each other (e.g. 17 events of

feeding were incorrectly classified as grooming).

(DOCX)

S5 Table. Confusion matrix for the artificial neural network (ANN) validation. Columns

show expected behaviours known from observation, rows show behaviours assigned by the

ANN. Values on the diagonal (bold) represent behaviours assigned correctly. All values off the

diagonal are incorrect assignments that show which behaviours were confused with each other

(for example 15 events of resting were incorrectly predicted as feeding).

(DOCX)

S6 Table. Proportion of data used for the speed analysis. Most of the times GPS and acceler-

ation data were not recorded simultaneously. For the speed analysis we considered only accel-

eration data that was recorded within 10 seconds of a GPS recording.

(DOCX)
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