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Abstract: Background: HER2-based retargeted viruses are in advanced phases of preclinical devel-
opment of breast cancer models. Mesothelin (MSLN) is a cell-surface tumor antigen expressed in
different subtypes of breast and non-breast cancer. Its recent identification as a marker of some
triple-negative breast tumors renders it an attractive target, presently investigated in clinical trials
employing antibody drug conjugates and CAR-T cells. The availability of MSLN-retargeted oncolytic
viruses may complement the current immunotherapeutic panel of biological drugs against HER2-
negative breast and non-breast tumors. Methods: A fully virulent, tumor-targeted oncolytic Herpes
simplex virus-1 (MSLN-THV) with a selectivity for mesothelin-expressing cancer cells was generated.
Recombineering technology was used to replace an essential moiety of the viral glycoprotein D with
antibody fragments derived from clinically validated MSLN monoclonal antibodies, and to allow
IL12 cargo expression in infected cells. Panels of breast and female reproductive system cell lines
were used to verify the oncolytic potential of the viral constructs. A platform for production of
the retargeted viruses was developed in HEK 293 cells, providing stable expression of a suitable
chimeric receptor. Results: We demonstrated the selectivity of viral infection and cytotoxicity by
MSLN-retargeted viruses in a panel of mesothelin-positive cancer cells, originating from breast and
female reproductive system tumors. We also developed a second-generation oncolytic MSLN-THV,
encoding IL12, to enhance the immunotherapeutic potential of the viral backbone. A non-tumor
cell line expressing a chimeric MSLN/Nectin-1 receptor, de-sensitized from antiviral responses by
genetic inactivation of the Stimulator of Interferon Genes (STING)-dependent pathway was engi-
neered, to optimize viral yields. Conclusions: Our proof-of-concept study proposes MSLN-retargeted
herpesviruses as potential cancer immunotherapeutics for assessments in preclinical models of
MSLN-positive tumors, complementing the available panel of oncolytic viruses to HER2-negative
breast tumors.

Keywords: oncolytic virus; triple negative breast cancer; malignant mesothelioma; targeted ther-
apy; MSLN

1. Introduction

Over the last two decades, the deep molecular characterization of tumors led to the
development of targeted therapeutics for individualized approaches in cancer therapy.
The foundation of cancer precision medicine is the selection of an optimal targetable
tumor associated antigen (TAA) that should be selectively expressed by cancerous cells
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and absent in healthy tissues and organs. Monoclonal antibodies and antibody fragment-
based therapeutics (e.g., BiTEs, CAR-T cells, Antibody Drug Conjugates) represent the
most implemented tools in targeted therapy. A potential drawback of targeted therapy is
the acquired resistance that relies on cancer evolution and immunoediting that drive the
loss of target expression under the selective pressure of the treatment. To overcome this
limitation, a stronger contribution of the immune system is desirable, to elicit antitumor
immunity against the targeted TAA and an epitope spreading to different tumor antigens
and neoantigens. Oncolytic viruses (OVs) are emerging immunotherapeutics able to kill
selectively cancerous cells, leaving healthy tissues undamaged [1–5]. The foundation of
oncovirotherapy is currently established to rely on pleiotropic mechanisms, based on both
cancer cell lysis and elicitation of systemic antitumor immunity leading to abscopal effect.
The immunogenic way by which cancer cells succumb to viruses, namely immunogenic
cell death (ICD), is actually the core activity of OVs [1,6]. Indeed, the OV-mediated
lysis of cancer cells induces the release of tumor antigens that are captured by antigen
presenting cells (APCs) that also “sense” the damage- and pathogen-associated molecular
patterns (DAMPs, PAMPs), becoming activated. Engulfed antigens are processed and
presented to adaptive immune compartment awakening the effector functions of anergic
T lymphocytes and activating new anti-tumor reactiveness [7]. With the approval of
Imlygic™ (T-VEC, Talimogene laherparepvec), many clinical trials have arisen, to treat
different cancer indications as single agents, as well as in combination with checkpoint
inhibitors [8–13]. Except for a few examples of viruses with a natural tropism for receptors
overexpressed in tumors, OVs may typically infect both cancerous and healthy cells [14].
Even though the OV’s abortive infection of healthy tissues may be well tolerated (thanks to
attenuating modifications within viral genomes), it limits the opportunity to use high doses
for systemic delivery [15]. Targeted oncolytic viruses offer the possibility to implement fully
virulent viruses with a tropism redirected to any tumor antigen of interest. Herpes simplex
type 1 (HSV-1) is one of the most implemented OVs for retargeting, thanks to the extensive
knowledge of viral receptors and the easiness to manipulate its large genome [7,16–22].
Similarly to CAR-T cells, targeted Herpes viruses (THVs) can be potentially redirected to
any tumor antigen of interest, by substitution of an essential moiety of viral glycoproteins
(i.e., gD) with a TAA-targeting antibody fragment (scFv). The use of THVs allows to exploit
the best of both targeted therapy and cancer immunotherapy, as recently demonstrated
in preclinical combination settings with PD-1 inhibitor [7,23]. The self-origin of such
tumor associated antigens (e.g., HER2) increases the potential risk of deleterious on-target,
off-tumor toxicity; for these reasons, we recently published a proof-of-concept of dual
restriction by combining the retargeting to HER2 to replicative conditioning to cancer cells
by the SurE_oHSV hosting surviving promoter driving ICP4 expression [7].

Human mesothelin (MSLN) is a tumor associated antigen overexpressed in several
aggressive, poor prognosis, and orphan-drug tumors. MSLN was discovered in the 1990s
by Ira Pastan and Mark Willingham as a marker for human malignant mesotheliomas and
ovarian cancers recognized by the K1 antibody. Immunohistochemical studies confirmed
the limited expression of MSLN in healthy tissues (mesothelial cells of the pleura, peri-
cardium, peritoneum, fallopian tubes, and tonsils), underlining the potential to exploit it
as target for cancer therapy [24]. Some years later, MSLN was revealed as broadly over-
expressed in many others cancer indications, including squamous cell carcinomas of the
esophagus, pancreas, lung, stomach, bile ducts, colorectal, and breast cancer, where its
expression correlates with a worse prognosis [25–28]. MSLN is a glycophosphatidylinositol
(GPI)-anchored plasma membrane glycoprotein synthesized as a 71 kDa precursor, rapidly
cleaved in its N terminus domain. The resulting 40 kDa C-terminal protein anchored to the
cell membrane is known as mature MSLN, whereas the shed N-terminal fragment is the
megakaryocyte potentiating factor (MPF) [29]. Recently, a soluble form of mature MSLN
(soluble mesothelin-related protein, SMRP) derived by alternative splicing or protease
cleavage, was also reported, and it is currently assessed as a tumor biomarker [30–32].
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Currently, MSLN-targeted therapies are investigated in many clinical trials for dif-
ferent solid tumor indications using different agents including CAR-T cells, monoclonal
antibodies (e.g., Amatuximab, MORAb-009), drug conjugates, Immunotoxins (e.g., SS1P),
T cell-engaging bispecific antibody (BiTEs) and cancer vaccines [33–40]. To date, clinical
trials testing biodistribution, toxicity, and objective response of MSLN-targeted therapeu-
tics showed no severe adverse effects and promising efficacy spurring clinicians to further
explore this target in phase II clinical trials and combination studies [25,33,41,42].

Among the cancer indications expressing MSLN, we focused our efforts on breast
and female reproductive system tumors. The poor prognosis and the lack of targets (e.g.,
hormonal and HER2) amenable by therapeutic antibodies or hormone blocking drugs, still
makes triple-negative breast cancer (TNBC) a major clinical challenge. MSLN has a high
level of expression in a large percentage (up to 63%) of TNBC, in which it promotes invasion
and metastasis, and correlates to decreased disease-free survival [43–45]. Accordingly,
mesothelin may represent a novel target, complementary to HER2-based THVs, to be
added to the growing arsenal of retargeted oncolytic viruses to treat breast as well as, in
principle, any mesothelin-positive cancer.

The current success of OVs, especially as sensitizer to immune checkpoint inhibitors
(e.g., PD-1, PD-L1, CTLA-4), could in a next future pave the way to a broadened clinical
use, raising the issues of: (i) reducing costs and (ii) improving viral yield for high-titer
testing [1,7,11–13,46]. Thus, the implementation of an efficient virus manufacturing strategy
is desirable. We recently demonstrated that the genetic material of viruses is probably the
main pathogen associated molecular pattern (PAMP) recognized by intracellular Pattern
Recognition Receptors (PRR) [47]. Interestingly, beyond toll-like receptors (TLRs) expressed
by specialized immune cells, emerging evidence is revealing novel constitutive PRR genes
widely expressed in all tissues and organs. We and others revealed that the sensing of viral
DNA by STING axis (cGAS, STING, TBK1, IRF3) restricts the replication and maturation of
HSV-1 [48–52].

In the present paper, we describe the generation of MSLN-targeted herpes oncolytic
viruses engineered through the insertion of different antibody fragments within the viral
glycoprotein D; the selected backbone was also improved by adding a IL12 cargo as an
adjuvant transgene to increase the immunolytic potential of MSLN+ tumors. By function-
ally inactivating STING gene in HEK 293 cell line we generated a virus high-yielding cell
line for oncolytic virus manufacturing. By further engineering the STING KO cell line
with a chimeric non-secretable MSLN receptor for proper MSLN-THV manufacturing,
our proof-of-concept study proposes MSLN-THV as potential candidates for preclinical
evaluation of breast cancer models [53–55].

2. Results
2.1. Generation of Oncolytic Herpes Viruses with a Specific Tropism for Human Mesothelin

In the effort to generate an oncolytic Herpes simplex Virus 1 retargeted to mesothelin-
expressing cells, we searched scientific literature for characterized antibody fragments
(scFvs), useful to retarget HSV-1 virus to human MSLN, by selecting the most appropriate
protein epitope for viral entry; the insertion site for the scFvs was selected into a well
characterized viral glycoprotein D (gD) deletion (aa 6 to 38), which was proven to be
effective for HER2 retargeting [7,17,18]. Mature MSLN is structurally divided into three
regions: starting from N- to C-terminuses (N-terminus region I, intermediate region II,
juxtamembrane region III). Despite most of the MSLN-specific antibodies recognizing
region I, the membrane proximal region III may also represent an attractive target, as
revealed in studies developing CAR-T and cytotoxic antibodies formats [56,57]. To target
region I, we selected SS scFv and its affinity-matured derivative SS1, based on the validated
efficacy and safety of their immunotoxin (SS1-immunotoxin, SS1P) and antibody (MORAb-
009, Amatuximab) formats in human cancer patients bearing MSLN+ tumors [29,42,58–61].
In order to target region III of MSLN, we hypothesized that the docking of a retargeted
virus to such cell surface-proximal epitope could have facilitated the interactions between
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viral glycoproteins (gH/gL and gB) and host cell ligands for the fusion of the viral envelope
to host cell membrane [62]. We selected the human single-domain (VH) SD1, instead of a
full scFv, to facilitate the access to the epitope, in a position very close to the cell surface [63].
Starting from a wild-type recombinant BAC-Herpes simplex Virus 1 (R-LM55), the three
THVs were obtained by recombineering through the substitution of the essential moiety
of viral glycoprotein D (aa 6 to 38) with the three different antibody fragments SS, SS1,
and SD1 (Figure 1a,b) [7,17,18]. This modification in gD was demonstrated to confer both
the complete detargeting from endogenous ligands of HSV-1, and proper retargeting to
the selected TAAs. THV_SD1, THV_SS, and THV_SS1 BAC DNAs were transfected in
SKOV3 cell line to recover infectious viral particles (passage 0, P0). The reporter eGFP gene,
inserted within BAC region under the control of an immediate early viral promoter, was
useful to monitor the viral infection and spread. The fluorescence images in Figure 1c show
the presence of sparse single cells (SD1) or clustered plaques of eGFP-positive populations
(SS and SS1), suggesting a better performance of THV_SS and THV_SS1, compared to
THV_SD1. The infection of freshly seeded SKOV3 cells (P1) with cell lysates obtained
from P0 samples confirmed the inability of SD1 antibody fragment to mediate an effective
viral entry, presumably due to steric hindrance of viral particle (Figure 1c). THV_SS and
THV_SS1 were successfully recovered, as inferred by eGFP expression by the whole cell
monolayer at P1 (Figure 1c).

To confirm that infection of SS_ and SS1_THVs was actually occurring via mesothe-
lin, a neutralization assay was carried out with saturating amount of the α-MSLN mon-
oclonal antibody Amatuximab for competition with THV_SS and THV_SS1 challenge
(Figure 1d) [60,61]. The inhibition of infection by Amatuximab confirmed the THV_SS- and
THV_SS1-retargeting to human mesothelin (Figure 1d).

Next, we asked whether the improved affinity of SS1 to MSLN, compared to SS
scFv [61], could have enhanced the ability of the corresponding virus to infect cancer cells.
Thus, cells were challenged to increasing concentrations of Amatuximab and, after 2 h
of incubation, they were infected with THV_SS1 at 1 MOI. The number of eGFP-positive
(infected) cells was analyzed 24 h post infection (Figure 1e). Although the neutralization by
Amatuximab at the >0.1 µg/mL concentration range was highly effective for both viruses,
THV_SS1 showed to be able to infect more cells, compared to THV_SS, thus confirming an
increased affinity to MSLN, also in the context of a targeted Herpes viral backbone.

Mature MSLN is actively secreted in fluids (ascites and blood) of tumor-bearing pa-
tients, as the result of aberrant splicing or juxtamembrane cleavage (soluble mesothelin re-
lated protein, SMRP) [30]. The possible competition of SMRP with the cell-anchored MSLN
could, accordingly, contribute to neutralization of MSLN-targeting therapeutics [38,39].
For this reason, we verified the presence of soluble MSLN in cancer cell supernatants
and its impact on viral infection and spread as, in principle, SMRP could occupy and
neutralize scFvs on THV’s envelope. SMRP was quantified from SKOV3 cell supernatants,
demonstrating a remarkable accumulation over time, from 1 to 5 days after cell seeding
(Figure 2a). Interestingly, SMRP concentration into the cell supernatant was comparable
to those observed in body fluids as diagnostic and prognostic tumor biomarker (10 to
50 ng/mL) [64,65]. To assess the impact of soluble MSLN on THVs’ infection, the con-
ditioned supernatants from SKOV3 cells containing increasing concentration of SMRP
(Figure 2a) were used to precondition viral particles before infection of freshly seeded
SKOV3 cells. To this end, THV_SS and THV_SS1 were pre-incubated for 2 h with SMRP-
containing media to allow SMRP to interact with scFv on THV envelope. The impact of
SMRP on mesothelin THVs’ entry was assessed as number of eGFP positive cells 24 h
post-infection and expressed in terms of percentage compared to viruses pre-incubated
with non-conditioned medium (0 ng/mL SMRP). As for CAR-T cells, only the highest
concentrations of SMRP slightly affected THV infection; thus, both THV_SS and THV_SS1
retained their ability to efficiently infect MSLN+ cells in the presence of the soluble mesothe-
lin (SMRP) at the concentrations observed in cancer patients. Interestingly, no statistically
relevant differences were observed between THV_SS and THV_SS1 (Figure 2b). The same
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SMRP-competition experiment was performed with parental non-retargeted R-LM55 virus
that resulted, as expected, not affected by SMRP (data not shown).
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Figure 1. Generation of Herpes simplex type 1 (HSV-1)-based oncolytic viruses retargeted to Mesothelin (MSLN). (a) Three
targeted Herpes viruses (THVs) were generated by substitution of the essential moiety of viral glycoprotein D (aa 6 to 38)
with three different antibody fragments recognizing MSLN: SD1 (orange), SS (light blue), and its affinity matured form SS1
(green) (b) targeting two different domains of MSLN. (c) THV-SS, THV-SS1, and THV-SD1 Bacterial Artificial Chromosome
(BAC) DNAs were transfected in SKOV3 cells to produce infectious viral particles (top panels); THV-SD1 failed to be
recovered in first passage of infection (P1) (bottom panel). (d) Viral infection and spread were analyzed in presence of
the monoclonal antibody Amatuximab (α-MSLN) used at saturating concentration (150 µg) to compete with THV-SS and
THV-SS1 viruses. (e) The Amatuximab antibody was used at increasing concentrations and the number of eGFP-positive
(infected) cells was determined. The statistical significance was calculated by Student’s t-test and resulted p < 0.05 in the
range of Amatuximab concentration between 0.1 and 50 µg/mL.
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Figure 2. Soluble MSLN does not interfere with virus spread and mIL12 production. (a) Secreted soluble MSLN in
supernatant of SKOV3 cell line was quantified by ELISA assay up to 120 h post seed. Dashed lines define the range of
soluble mesothelin (SMRP) concentration in tumor patients. The statistical significance was calculated by Student’s t-test
and resulted p < 0.05 * comparing 24 and 48 h, p < 0.005 ** comparing 48 and 72 h/72 and 96 h/96 and 120 h. (b) The same
conditioned media described in panel A were used to infect fresh SKOV3 cells with THV_SS (light blue) and THV_SS1
(green) resulting in limited alteration of viral entry at the highest SMRP concentrations. The statistical significance was
calculated by Student’s t-test and resulted not significant (NS) comparing THV_SS and THV_SS1 at each time point
and p < 0.05 * comparing both THV_SS and THV_SS1 at 0 and 60 ng/mL. (c) Schematic cartoon of second generation
THV_SS1 encoding mIL-12 (THV_SS1-IL12); the mIL-12 expression cassette was inserted into the intergenic region US1/US2.
(d) Production of mIL-12 cytokine quantified by ELISA assay from 48 to 96 h.

An emerging approach to maximize the efficacy of oncolytic viruses involves arm-
ing them with payloads to enhance antitumor immunity [1]. We and others recently
demonstrated that interleukin 12 (IL12) significantly enhanced the antitumor efficacy of a
retargeted oncolytic virus through T cell activation [23,66]. Based on these evidences, we
devised an arming strategy to insert IL12 into the intergenic site between viral US1 and
US2 genes of THV_SS1 (Figure 2c) as preparatory for preclinical translation. Quantification
of the secreted cytokine by the newly generated THV_SS1-IL12 virus resulted in the actual
accumulation of the functional mIL12 p40/p35 heterodimer, as revealed by ELISA assays
(Figure 2d).

2.2. THV_SS1 Exerts Mesothelin-Dependent Cytotoxicity in Human Cells

To correlate the specificity of viral entry into host cells to cellular toxicity, we searched
for a cell line not expressing human MSLN, in which to obtain stable expression of the tumor
antigen. This approach was aiming to generate a pair of genetic background-matched
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cell lines for clear attribution of the cytotoxicity to MSLN. HEK293 cells, physiologically
negative for MSLN [67], were proven not to express endogenous MSLN (data not shown);
thus, they were stably transduced with exogenous MSLN to allow infection by THV_SS1.

Wild-type (Figure 3a) and MSLN+ HEK293 (Figure 3b) cells were infected with differ-
ent dosage of THV_SS1 (MOI 0.001, 0.01, 0.1, 1 for HEK293-MSLN; MOI 1 for HEK293),
and viral spread was monitored until reaching the infection of the whole cell monolayer.
Wild-type R-LM55 HSV-1 was used as a positive control of infection (Figure 3a). The capac-
ity of viruses in entry and spreading in the two cell lines was analyzed via fluorescence
of eGFP-positive cells. As expected, HEK293 cells were efficiently infected by wild-type
R-LM55, but resulted in being not infected by THV_SS1 virus, due to lack of MSLN as SS1
ligand (Figure 3a). In contrast, THV_SS1 resulted in a proficient infection of HEK293-MSLN
cells, where a full cytopathic effect (CPE) was reached in a dose-dependent manner at the
different time points post-infection (Figure 3b and Figure S1). In addition to virus entry,
we investigated viral replication via detection of viral genome copies. The replication of
THV_SS1 and of the parental R-LM55 was evaluated in HEK293-MSLN cell line; both
wild-type and retargeted viruses replicated with similar effectiveness in the mesothelin-
expressing cells (Figure 3c). The cytopathic effect was also evaluated in HEK293 and
HEK293-MSLN cell lines infected with THV_SS1 and with the parental wild-type R-LM55
virus at different MOIs. The time-course analysis of cytotoxicity was carried out up to six
days post-infection in the presence of 10% FBS. As expected, the wild-type virus R-LM55
infected and killed HEK293 as efficiently as HEK293-MSLN cell line, independently from
human MSLN expression (Figure 3d). In contrast, the ability of THV_SS1 in infecting
and killing cells resulted in being tightly dependent on human mesothelin display on cell
surface, as the percentage of live HEK293 cells remained around 100% even at the highest
dosage of THV_SS1 (10 MOI). The full virulence of the retargeted THV_SS1 virus was
evident, as it lysed HEK293-MSLN cells in a similar fashion to wild-type R-LM55 virus
assessed by Alamar Blue assay (Figure 3d) and bright field microscopy (Figure 3b).

With the purpose to develop a targeted therapy for MSLN-positive breast and non-
breast tumors, we tested our candidate oncolytic THV_SS1 in cancer cell lines of different
origin. A panel of cell lines was selected, based on MSLN expression, as initially assessed
by analysis of RNAseq repository database (GENEVESTINGATOR) [68]. HEK293 were
reported as reference negative cell line. Cell lines derived from either female non-breast
(SKOV3, OVCAR3 of ovarian cancer origin; HeLa for cervical cancer) or breast triple nega-
tive (CAL-120, BT-549, HCC1937, and MDA-MB-231) tumors were chosen as representative
targets. HeLa, OVCAR3, and CAL-120 cell lines were, indeed, annotated with the highest
MSLN expression. BT-549, MDA-MB-231 resulted slightly positive, while HEK293 cells
were confirmed as negative for MSLN expression (Figure 4a). MSLN expression at the pro-
tein level by western blot analysis pretty well recapitulated the ranking of MSLN transcript
expression in the selected panel of cell lines, with the exception of HeLa cells (Figure 4b).
The data shown in Figure 4c highlight that all the selected tumor cell lines were infected
by THV_SS1, although at different levels; considering that the cellular background may
also affect viral infection, the obtained results were in good agreement with the relative
MSLN expression data. A more detailed analysis, evaluating the relative percentages of
living cells after infection, showed that residual viability ranged from 80 to 45% into the
cell lines with remarkable MSLN expression. In particular, CAL-120, HCC-1937 TBNC cell
lines and SKOV3 cell lines resulted the most infected (about 45% of residual cells), while
OVCAR3 and HeLa were less (respectively 60 and 80%). FACS analysis of MSLN display
on OVCAR3 cells showed a heterogeneous cell population (Supplementary Materials,
Figure S2). Interestingly, the percentage of MSLN+ cells (30%) resulted remarkably similar
to those killed by THV_SS1. The viability of BT-549 and MDA-MB-231 cell lines resulted
almost unaffected by THV_SS1 infection.
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Figure 3. Cytopathic effect of THV_SS1 is tightly dependent on MSLN positive cells. (a) HEK293 cells (MSLN-) were infected from
wild-type virus R-LM55, but not from THV_SS1 virus, confirming the stringency of the retargeting. (b) HEK293 cells were stably
transduced with mesothelin protein and were efficiently infected (fluorescent positive cells) at different MOIs (MOI from 0.001 to
1) by THV_SS1, up to 120 h post-infection. Bright-field images show the cytotoxic effect of THV_SS1 virus (round detached cells).
(c) Mesothelin retargeting does not impact on viral replication in proficient cells, as THV_SS1 and parental R-LM55 viruses replicate
equally well in HEK293-MSLN cell line. (d) The cytotoxic effect of R-LM55 and THV_SS1 in HEK293 and HEK293-MSLN was assessed
by Alamar Blue. After 6 days from infection, R-LM55 reached 70% of cytopathic effect in both HEK293 cells (+/−MSLN), while
THV_SS1 reached 70% of cytopathic infect only in HEK293-MSLN and maintains 100% of live cells in wild-type HEK293 cells.

2.3. Implementation of a Cell Platform for THV_SS1 Oncolytic Virus Production

The nucleic acid sensing pathway based on STING protein is involved in recognition
of different species of both DNA and RNA viruses [69]. Accordingly, many viral species
have developed molecular mechanisms to inhibit STING axis at different levels of the
pathway cascade, to evade interferons-mediated viral clearance [70–78]. The conservation
of these escape mechanisms across different viruses underlines the key role that STING
gene plays in host and microbe interactions [79,80]. We have recently described how the
DNA sensing regulator STING is crucial to restrict the replication of an oncolytic HER2-
retargeted Herpes virus [47]. Based on this evidence, we speculated that the functional
inactivation of STING in a suitable producing cell line could improve the yield of oncolytic
vectors, including retargeted THV_SS1. In order to eliminate any possible bias by the
endogenously produced MSLN, we decided to use HEK293 cells, physiologically negative
for the protein. In fact, we demonstrated interference of high levels of SMRP to THV_SS1
infection, thus, a supraphysiological shedding of SMRP in long-term cell cultures used
for virus production could arise, decreasing the actual viral yields. Guide RNAs (gRNAs)
were designed, to target the first coding exons of STING by CRISPR/Cas9 system. Among
several STING knock-out subclones, we selected the best one, based on the absence of
Cas9 cloning residues (Figure 5a). The usefulness of STING knock-out was assessed in a
proof-of-concept experiment using the wild-type R-LM55 Herpes virus and the clinically
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validated T-VEC virus. The inactivation of STING resulted in an enhanced viral spread
(Figure 5b) and in a significant improvement in viral yields (Figure 5c,d).
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Figure 4. THV_SS1 infects breast and female reproductive system tumor cells in a MLSN-dependent manner. (a) Mesothelin
expression assessed by GENEVESTIGATOR software by interrogating RNAseq repository of breast (CAL-120, HCC-1937,
BT-549, MDA-MB-231) and female reproductive system (OVCAR3, HeLa, SKOV3) tumor cell lines. (b) MSLN expression in
selected cell lines was evaluated by Western blot and gamma-tubulin was used as standard. (c) Infection and (d) cytotoxicity of
THV_SS1 in tumor cell lines were assessed respectively by fluorescence/bright-field microscopy and trypan blue positive cells.
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Figure 5. Generation of improved oncolytic virus producing cell line. (a) STING gene was knocked out in HEK293 cells as
assessed by Western blot analysis; gamma-tubulin was used as standard. PCR screening confirmed the absence of eGFP
and Cas9 residues in genomic DNA; Cas9/eGFP-encoding vector was used as positive control (C+) and genomic DNA
from parental HEK293 cell was used as negative control (C−). (b) R-LM55 viral spread enhancement was demonstrated
in HEK293 STING KO cell line compared to HEK293 WT cell line. (c,d) Enhancement viral yield was demonstrated on
HEK293 STING KO vs. parental infected with R-LM55 and T-VEC viruses. The statistical significance was calculated by
Student’s t-test comparing HEK293 STING KO and HEK 293 WT and resulted p < 0.005 ** and p < 0.05 *, respectively, for
R-LM55 and T-VEC productivity.

We next decided to exploit HEK293 STING KO cells as a platform for THV-SS1 pro-
duction. As HEK293 STING KO cells do not express MSLN, its transduction was prepara-
tory to render these cells proficient for THV-SS1 infection. Thus, to overcome the poten-
tial drawback of supraphysiological shedding of SMRP, which can be occurring during
virus production, we designed a non-secretable, non-oncogenic human mesothelin variant
(transmembrane-MSLN, TM-MSLN) by fusing the minimal domain of MSLN recognized
by SS1 scFv to the C-terminus of transmembrane human Nectin-1 (Figure 6a). With this
aim, the N-terminal 66 amino acid-long fragment of MSLN (E296-Q362) [81] was inserted
downstream an Ig signal peptide (SP), and upstream the C-terminus of Nectin-1, including
the transmembrane and intracellular tail (M143-V517). Two linkers spaced MSLN fragment
from SP and Nectin-1 to improve the accessibility of THV-SS1. The expression of chimeric
TM-MSLN was evaluated by Western blot analysis recognizing the HA tag enclosed at
the N-terminus of TM-MSLN (Figure 6a). Among several clones, we selected the most
expressing one (clone H, hereinafter referred as HEK293_SKO_TM-MSLN) for further
characterizations (Figure 6b). The possible interference by secreted, soluble mesothelin,
on THV_SS1 spread and productivity, was finally evaluated in the HEK293_SKO_TM-
MSLN cells. Thus, a very low multiplicity of infection MOI (0.005) was used, to infect
HEK293_SKO_TM-MSLN cells; as a result (Figure 6c), the whole cell monolayer resulted
infected at 120 h post infection, demonstrating the absence of competition by SMRP poten-
tially accumulated in the cell medium. Consonant to this finding, SMRP was not detectable
in conditioned media from HEK293_SKO_TM-MSLN cells, even at 4 days from seeding
(Figure 6d). Finally, viral yield was evaluated for THV_SS1 in HEK293_SKO_TM-MSLN at
different viral dosages (MOI range from 0.001 to 0.5). Cell lysates were harvested when full
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cytopathic effect was reached (72-, 96-, 120 h respectively for 0.5 and 0.1, 0.05 and 0.01, 0.005
and 0.001 MOI) and infectious viral particles were quantified by plaque assay (Figure 6e).
The THV_SS1 production in HEK293_SKO_TM-MSLN was compared to the THV_SS1
production in the cell line expressing wild-type mesothelin (SKOV3), resulting in a 40-fold
improvement in viral particles (Figure 6e). Thus, the combination of STING-knockout and
high expression levels of non-secretable MSLN by the modified HEK293 cells represented
an appropriate implementation for improved productivity of the THV_SS1 virus.

1 
 

 
 

 

Figure 6. Generation of oncolytic virus HEK293 STING KO producing cell line stably expressing an engineered non-
secretable MSLN. (a) In the upper part is shown the chimeric MSLN-Nectin construct that consists of: Ig-κ signal peptide
(white box), HA tag plus GA-based linker (blue box), the N-terminus 66 amino acid fragment of MSLN (E296-Q362) (red box),
GSGA-based linker (green box), the C-terminus of Nectin-1 including the transmembrane and intracellular tail (M143-V517)
(light-blue boxes). In the bottom part is shown a cartoon model that depicts the interaction of THV_SS1 with GPI-MSLN,
SMRP, TM-MSLN proteins. Created by Biorender. (b) Western blot screening for HA tag to find TM-MSLN protein positive
clones; clone H was chosen, and gamma-tubulin was used as standard. (c) HEK293_SKO_TM-MSLN cell line were efficiently
infected by THV_SS1 at 0.005 MOI. (d) The secreted MSLN in SKOV3 and HEK293_SKO_TM-MSLN was quantified by
ELISA assay. (e) The productivity of THV_SS1 was evaluated in SKOV3 at 0.01 MOI and in HEK293_SKO_TM-MSLN at
different MOI (from 0.001 to 0.5). The statistical significance was calculated by Student’s t-test and resulted as not significant,
comparing the different MOI in HEK293_SKO_TM-MSLN cells (0.5, 0.1, 0.05, 0.01, 0.005, 0.001 MOI). The difference between
SKOV3 and HEK293_SKO_TM-MSLN resulted as significant (p < 0.05 *).

3. Discussion

During the last 40 years, the deep knowledge of the human genome, accompanied
by the development of novel technologies for genome editing of viruses, has revolution-
ized the modern medicine. The use of viral vectors for gene therapy, vaccine delivery,
and oncolytic viruses is now a reality, with thousands of clinical trials completed, on-
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going, or approved worldwide [1,3,82,83]. Oncovirotherapy with retargeted viruses is
revealing a promising potential for the treatment of many cancer indicators, including
breast cancer [7,23,47,66,84]. We recently characterized preclinical models of HER2-positive
tumors in the framework of combination with checkpoint inhibitors [7,23,47]. Among
breast cancer, triple-negative tumors are characterized by lack of canonical breast receptors
(i.e., HER2, ER, PR) amenable by targeted therapeutics. So, a potential to complement
innovative therapeutic tools for these neoplasms, by additional retargeting approaches
of herpetic viruses, is a current requirement. Accordingly, in this study we developed
novel HSV-1 based oncolytic viruses targeting mesothelin, a TAA frequently expressed
in triple-negative breast cancer, as well as in additional neoplasms, including the orphan
disease mesothelioma. Our proof-of-concept study took advantage from available antibody
sequences with a strong binding affinity to two different regions of mesothelin (region I,
region III). Interestingly, we proved that the docking of retargeted HSV-1 to membrane
proximal domain of target TAA does not necessarily improve infection but, on the contrary,
could hamper virus-host interaction presumably due to steric hindrance. The Amatuximab
derived SS and SS1 scFvs targeting region I of human MSLN were highly effective in
mediating THV infection of MSLN+ human cancer cells. Importantly, the infection was
unaffected by the presence of soluble mesothelin, SMRP, at a concentration range similar to
that exhibited by patients affected by mesothelin-expressing tumors. The infective potential
of the MSLN-THVs resulted in being strictly dependent on MSLN expression; analysis of a
panel of triple-negative breast cancer cells, and of cells from cervical and ovarian tumors,
showed good agreement of residual cell viability after infection with the expression levels
of mesothelin. Namely, triple-negative cell lines with higher levels of mesothelin were
effectively killed by MSLN-THV, while the cell lines showing the lowest levels of MSLN
expression were refractory to the retargeted virus; this may also take into account the
natural variability of different cellular backgrounds, in terms of susceptibility to viral
infection. The most effective mesothelin targeted herpes virus (THV_SS1) described in this
study was further implemented by encoding murine IL12 immunostimulatory cytokine as
the latter was recently demonstrated to synergize with HER2-retargeted herpes virus in
mediating systemic anti-tumor immunity [23,66]. The availability of an unarmed, and of
the corresponding IL12 armed viruses, will allow to initiate preclinical studies, evaluating
the suitability of these oncolytic constructs to co-operate with immune checkpoint blockade
in human mesothelin-tolerant, immunocompetent murine models.

Moreover, with the aim to implement a cell platform to improve viral yield for man-
ufacturing, we exploited the STING-based antiviral pathways. The choice for STING
inactivation was related to the intrinsic features for this gene, which is highly efficient in
restricting viral replication, so that most of the known viral species have evolved sophisti-
cated STING-specific escape mechanisms [54]. As antiviral pathways are often inactivated
in cancer cells, to restrict the oncolytic potential to tumor tissues, most of the OVs harbor
attenuating mutations that affect their anti-viral escape mechanisms (e.g., HSV-1 deletion
in γ34.5 gene). Based on this evidence, we functionally inactivated STING into a producing
cell line, taking the brakes off for viral replication. We validated the concept of STING
knock-out for viral manufacturing of both wild-type, unattenuated HSV-1, as well as for an
oncolytic virus with molecular features almost identical to those of the clinically approved
T-VEC, talimogene laherparepvec, Imlygic (34.5-/47-/GM-CSF). The higher enhancement
in viral yield of T-VEC, compared to wild-type (R-LM55) HSV-1 was presumably due
to the lack of STING-antagonist 34.5 gene in T-VEC genome, which renders wild-type
viruses more susceptible to STING restriction [78]. Thanks to the broad effect of STING
on many viral species, we presumed that the proof-of-concept of STING knock-out for
viral manufacturing could be applied immediately, not only to oncolytic viruses, but also
into the field of viral vectors for gene therapy and genetic vaccines. This could be of great
interest for manufacturing of recombinant viral vector vaccines targeting pandemic viruses
including SARS-CoV-2 currently responsible for COVID-19 pandemic [85–87].
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The STING knock-out cell line was further adapted to production of the SS1-THV,
by designing a novel non-secretable MSLN to face the potential limitation linked to the
accumulation of soluble MSLN (SMRP) in the supernatant of cells for MSLN-THV manufac-
turing. In fact, while the presence of SMRP in the tumor microenvironment is not expected
to interfere with the oncolytic potential of MSLN-based retargeted viruses, it could render
suboptimal their productivity and scalability for clinical applications. To that end, we
designed and stably expressed a chimeric MSLN receptor by fusing the scFv-targeted
minimal domain of MSLN to a transmembrane cellular adhesion molecule.

In conclusion, our study describes the suitability of our proof-of-principle, proposing
MSLN as a good candidate for retargeting by oncolytic viruses. The availability of these
novel MSLN-targeted herpetic THVs, combined to the generation of the cell platform
we developed for viral manufacturing, will allow a rapid translation to preclinical triple-
negative breast cancer models.

4. Materials and Methods
4.1. Cell Culture, Manipulation, and Characterization

SKOV3, BT-549 cell lines were cultured in RPMI 1640 Medium GlutaMAXTM Sup-
plement; CAL-120, MDA-MB-231, HEK293, HEK293 STING KO, HEK293-MSLN, and
HEK293_SKO_TM-MSLN cell lines were cultured in Dulbecco’s Modified Eagle Medium
(DMEM); HCC-1937 cell line was cultured in Iscove’s Modified Dulbecco’s Medium
(IMDM). All media were supplemented with 10% heat-inactivated fetal bovine serum
(FBS) (except for HCC-1937 cell line with 20% FBS), 50 UI/mL penicillin, 50 µg/mL strepto-
mycin, 2 mM glutamine (except for HCC-1937, CAL-120 and MDA-MB-231 cell lines with
4 mM glutamine). HEK293-MSLN (bulk population) and HEK293_SKO_TM-MSLN media
were supplemented with hygromycin for human MSLN transgene expression. BT-549 cell
line was supplemented with 10 mM HEPES. All the reagents for cell culturing were from
GibcoTM, Thermo Fisher Scientific (Waltham, MA, USA). Cell lines were purchased from
the American Type Culture Collection (ATCC) and from CEINGE Biotecnologie Avanzate
cell bank facility.

Sting knockout was carried out by CRISPR/Cas9 with gRNA reported in Table 1. The
presence of eGFP and Cas9 was evaluated by PCR with oligonucleotide sequences reported
in Table 1. Knockout was assessed by Western blot analysis as reported in our previous
publication [88]. Briefly, the cell pellets were lysed in a buffer containing 20 mM Tris-HCl
(pH 7,5), 100 mM NaCl, 0.5% Triton X-100, 50 mM NaF, and 10 mM glycerophosphate in
the presence of protease inhibitors (Complete™ Protease Inhibitor Cocktail, Roche, Basel,
Switzerland). The extracts were clarified by centrifugation at 12,000 rpm at 4◦ after 20 min
in ice. Protein concentration was determined by Bradford colorimetric assay (Bio-Rad
Protein Assay Dye Reagent Concentrate, Biorad, Hercules, CA, USA). Western blot analysis
was carried out on cellular lysates; the latter were resolved on 4–12% SDS-PAGE gels
(Invitrogen, Carlsbad, CA, USA) and transferred to membrane (Invitrogen, Carlsbad, CA,
USA). Filters were probed with anti-MSLN, anti-STING, and anti-HA antibodies.



Int. J. Mol. Sci. 2021, 22, 477 15 of 20

Table 1. Oligonucleotide sequences.

Name Sequence

CAS9_Fwd 5′-gctctttgatgccctcttcg-3′

CAS9_Rev 5′-gctgaccctgacactgtttg-3′

GFP_Fwd 5′-cacgacttcttcaagtccgc-3′

GFP_Rev 5′-ggtgttctgctggtagtggt-3′

hSting gRNA1_Fwd 5′-caccggtgacccctgggacacggga-3′

hSting gRNA1_Rev 5′-aaactcccgtgtcccaggggtcacc-3′

hSting gRNA2_Fwd 5′-caccggctgggactgctgttaaac-3′

hSting gRNA2_Rev 5′-aaacgtttaacagcagtcccagcc-3′

Step I gD_Fwd 5′-agtgggcctccatggggtccgcggcaaatatgccttggcgacccctatttgtttatttttct-3′

Step I gD_Rev 5′-tggggggctggaacgggtccggtaggcccgcctggatgtgttatttgttaactgttaattgtc-3′

Step II gD_SD1_Fwd 5′-catggggtccgcggcaaatatgccttggcgcaggtgcagctggtgcagtc-3′

Step II gD_SS/SS1_Fwd 5′-agtgggcctccatggggtccgcggcaaatatgccttggcgcaggttcagctgcagcagtc-3′

Step II gD_SD1/SS/SS1_Rev 5′-tggggggctggaacgggtccggtaggcccgcctggatgtgagatcctccgcttccgctgc-3′

Step I US1/US2_Fwd 5′-cgtttgtcccagcgtcttaatggcgggaagacccctatttgtttattttt-3′

Step I US1/US2_Rev 5′-ccatgtacgcgtggtctgtttctctccgccttatttgttaactgttaatt-3′

Step II US1/US2_mIL12_Fwd 5′-cgtttgtcccagcgtcttaatggcgggaagacattgattattgactagtt-3′

Step II US1/US2_mIL12_Rev 5′-ccatgtacgcgtggtctgtttctctccgccgccatagagcccaccgcatc-3′

Taqman DNApol_Fwd 5′-catcaccgacccggagagggac-3′

Taqman DNApol_Rev 5′-gggccaggcgcttgttggtgta-3′

Taqman Probe FAM-ccgccgaactgagcagacacccgcgc-Tamra

FACS analysis was performed according to the procedure previously described [89].
Briefly, 1 × 106 OVCAR3 cells were detached by using PBS EDTA 5 mM and washed
2 times with PBS. Cells were stained with anti-MSLN antibody and were analyzed and
monitored by cell-sorter Becton Dickinson FACSAria.

To design a non-secretable human mesothelin that retained the interaction with scFv of
interest, a fusion protein was engineered. As the major cleavage sites of MSLN to generate
SMRP are near the cell membrane [90], the chimeric construct was engineered by fusing
nectin-1 C-terminus to N-terminus of human mesothelin interacting with SS and SS1 scFvs.

4.2. Modifications of BAC-HSV-1 Vectors

The sacB/ampR/lacZ recombineering system was exploited to modify HSV-1 vectors
as previously reported [7]. THV_SD1, THV_SS, and THV_SS1 were generated starting from
the wild type strain F HSV-1 (GenBank accession number: GU734771.1) derivative R-LM55
containing BAC insertion in UL3-UL4 intergenic region. The second generation THV
was generated starting from THV_SS1 virus, with mIL-12 insertion in US1-US2 intergenic
region [66].

Briefly, a DNA fragment containing the sacB/ampR/lacZ selection cassette with
40 base-pair homology arms to the region to be engineered was inserted through electropo-
ration into SW102 containing the BAC-HSV-1 (R-LM55 or THV_SS1). SW102 cells were
plated on LB agar plus 12.5 µg/mL chloramphenicol, 20 µg/mL ampicillin, 80 µg/mL
X-gal, and 200 µM IPTG; the blue colonies were cultured in LB medium and DNA was
extracted.

The second step of recombineering was performed by electroporation of the first-
step derivate SW102 cells with a homology arms flanked DNA fragments containing the
antibody fragments (SD1, SS, and SS1) or mIL-12. The negative selection was performed
on plates containing sucrose.

A detailed list of oligonucleotides is reported in Table 1.

4.3. Viral Rescue, Production, Titration, and Real Time PCR Analysis

The viruses were produced and titrated in SKOV3 cells according to the procedure
previously described [7]. Briefly, for viral rescue SKOV3 cells were transfected with BAC-
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HSVs DNA by Lipofectamine 2000 (Life Technologies, Carlsbad, CA, USA) and grown up
until full cytopathic effect (CPE) was reached.

Viral titration was made by plaque assays by 10-fold scaling dilutions and staining
with GIEMSA 150 h post infection.

Viral genome copies replication was titrated by TaqMan RealTime PCR (Taqman
universal PCR mastermix, Applied Biosystems, Foster City, CA, USA) from cell lysates.
Briefly, viral samples were treated with RNase-free, DNase I recombinant enzyme (Roche,
Basel, Switzerland) to eliminate envelope-free viral DNA. Viral DNA was thus extracted
from enveloped HSV-1 particles by SDS 0.1% (w/v, final concentration) and proteinase K
(Roche, Basel, Switzerland). The extracted viral particles were diluted and analyzed by
TaqMan RealTime PCR according to the manufacturer’s recommendations (oligoes and
probe in Table 1).

4.4. Tropism of the Recombinant Viruses

Amatuximab (α-MSLN) was used to verify the neutralization of THV_SS and THV_SS1
infection. Amatuximab was produced by ourselves by subcloning the variable region
of SS1_scFv into Fc-expressing vectors as described previously [91,92]. Antibody was
produced by transfection of the expression vectors into the production enhanced cell line
HEK293_ES1 [93] expressing the long non-coding SINEUP [94] targeting heavy and light
chains signal peptide on mRNAs. Monoclonal antibody was purified from cell supernatant
by protein A affinity chromatography. For neutralization assay, increasing concentration of
purified Amatuximab (from 150 to 0 µg/mL) were used to pre-incubate SKOV3 cell line at
37◦. After 2 h, cells were infected with THV_SS and THV_SS1 at MOI 1 (pfu/cell) adding
the virus mix into the conditioned medium. Pictures and number of eGFP positive cells
were analyzed after 24 h post infection.

4.5. Quantification of Soluble Proteins

The interference of soluble mesothelin (SMRP) during the THV_SS and TV_SS1 in-
fection was investigated through the dosage of the extracellular release of SMRP in the
medium. SKOV3 or HEK293_SKO_TM-MSLN cells were seeded in 12-well plates and
supernatant were collected from 24 to 96 h post seed after centrifugation at 200× g for
5 min to remove debris. SMRP was measured by LEGEND MAX™ Human Mesothelin
ELISA Kit (Biolegend, San Diego, CA, USA) according to the manufacturer’s protocol. The
same supernatants containing SMRP were used to precondition and infect fresh SKOV3
cells with THV_SS and THV_SS1 at MOI 0.1 pfu/cell. The size of viral spread plaques
was analyzed 48 h post infection by fluorescence microscope (DMI4000B, Leica, Wetzlar,
Germany).

The validation of the transgene production by second generation THV was investi-
gated through the extracellular release of the cargo (mIL-12). SKOV3 cells were seeded
in 12-well plates and infected with THV_SS1-IL12 at MOI 0.1 pfu/cell. The supernatants
were collected 48, 72, and 96 h post infection and debris were removed by 5′ centrifugation
at 200× g. Secreted mIL-12 was measured by ELISA Kit (Invitrogen, Carlsbad, CA, USA)
according to the manufacturer’s protocol.

4.6. Cytotoxicity Assay

On day −1, HEK293 and HEK293-MSLN cells were seeded in 96-well plates in the
presence on 10% FBS. To avoid cellular stress response related to 6 days culturing without
medium refresh, 1e5 cells per well were seeded to obtain a confluence of 60% on day 0.
Cells were infected with R-LM55 and THV_SS1 at MOI 0.1, 1 and 10 pfu/cell; after 2 h
incubation, conditioned media were replaced with 150 µL of fresh DMEM supplemented
with 10%FBS and 2 mM GlutaMAX GibcoTM, Thermo Fisher Scientific (Waltham, MA,
USA). AlamarBlue® (Biorad, Hercules, CA, USA) was added to the culture (10 µL/well)
and incubated 4 h at 37 ◦C from day 1 to day 6 after infection. The plates were read at
570 nm and 600 nm with EnVision Multimode Plate Reader (PerkinElmer, Waltham, MA,
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USA). The relative cytotoxicity was expressed as the percentage difference of infected over
not infected cells.

4.7. Figures and Statistical Analysis

Images were created using Biorender software, a web-based tool useful for generating
biomedical research drawings [95].

GraphPad Prism was used to perform the Student’s t-test statistical analysis. The
significance was reported according to the following code p < 0.05 *; p < 0.005 **.

5. Patents

The concept of Sting KO for enhancement viral production has been filed in a patent.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-006
7/22/2/477/s1. Supplementary Figure S1. Replication and cytopathic effect of THV_SS1 in MSLN
positive cells. HEK293MSLN cells were efficiently infected (fluorescent positive cells) by THV_SS1
and reach a complete full cytopathic effect (round detached cells) in dose- and time-dependent
manner. Supplementary Figure S2. FACS analysis of MSLN display on OVCAR3 cells surface.
OVCAR3 cells were stained with II Ab or with anti-human MSLN plus II Ab. The 30% of cell
population resulted as highly positive for MSLN.
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