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Abstract
Background: In a mammalian auditory system, when intrinsic noise is added to a subthreshold
signal, not only can the resulting noisy signal be detected, but also the information carried by the
signal can be completely recovered. Such a phenomenon is called stochastic resonance (SR).
Current analysis of SR commonly employs the energies of the subthreshold signal and intrinsic
noise. However, it is difficult to explain SR when the energy addition of the signal and noise is not
enough to lift the subthreshold signal over the threshold. Therefore, information modulation has
been hypothesized to play a role in some forms of SR in sensory systems. Information modulation,
however, seems an unlikely mechanism for mammalian audition, since it requires significant a priori
knowledge of the characteristics of the signal.

Results: We propose that the analysis of SR cannot rely solely on the energies of a subthreshold
signal and intrinsic noise or on information modulation. We note that a mammalian auditory system
expends energy in the processing of a noisy signal. A part of the expended energy may therefore
deposit into the recovered signal, lifting it over threshold. We propose a model that in a rigorous
mathematical manner expresses this new theoretical viewpoint on SR in the mammalian auditory
system and provide a physiological rationale for the model.

Conclusion: Our result indicates that the mammalian auditory system may be more active than
previously described in the literature. As previously recognized, when intrinsic noise is used to
generate a noisy signal, the energy carried by the noise is added to the original subthreshold signal.
Furthermore, our model predicts that the system itself should deposit additional energy into the
recovered signal. The additional energy is used in the processing of the noisy signal to recover the
original subthreshold signal.

Background
Stochastic resonance (SR) is a phenomenon resulting
from the interactions between stochastic processes and
many physical systems [1-4]. In the early 1990s, Moss and
colleagues [5] pointed out the importance of SR phenom-

ena in biological sensory systems. Subsequently, Moss
developed a more general theory (see reviews in [6,7]).
We will use the term "SR" for stochastic resonance in bio-
logical sensory systems [6]. As a stochastic phenomenon,
SR consists of three ingredients: a threshold, a subthresh-
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old signal (the original signal), and intrinsic noise. The
original signal is insufficient to reach threshold and stim-
ulate the appropriate sensory system unless it interacts
with some intrinsic noise. Such an interaction generates a
"noisy signal". When the derived noisy signal exceeds
threshold in a sensory system, a sequence of action poten-
tials (the spike train) is produced by the first stages of the
system. Subsequent neural processes use these spikes to
recover the information contained within the original sig-
nal. For a biological sensory system, SR enhances sensory
information processing, particularly near the system's
threshold.

As summarized in a recently published review [7], a core
idea of Moss' theory on SR is that "(t)he role of noise is to
sample the stimulus. This means that the larger amplitude
excursions of the noise cross the threshold and provide a
sample of the subthreshold signal's amplitude at a given
instant in time. For good information transmission, the
sampling rate should be greater than the stimulus fre-
quency." (p. 269). As noise takes samples (in amplitude)
from a subthreshold signal at a series of instants of time,
a noisy signal is created. This process can be formulated as
follows. An input to the mammalian auditory system,
which we will call the original signal, is commonly mod-
eled by a mathematical curve, a function h(t): t ∈ [0,1] #
�. Here, h is supposed, at least, to be continuous; t repre-
sents time; the time period is normalized as [0,1]; and h(t)
stands for the amplitude of the signal at time instant t. The
information carried by h is encoded in both amplitude
and frequency. Noise is commonly modeled by a random
variable, which in mathematical terms is a measurable
function e(t): t ∈ [0,1] # � where e(t) is the amplitude of
the noise at time instant t. The noise in a mammalian
auditory system is intrinsic. That is, the physiological evi-
dence suggests that noise is generated by the system inter-
nally. For the mammalian auditory system, we can set a
baseline such that the intensity is zero. Since amplitude is
measured by intensity against the baseline, we can let h(t)
> 0 and e(t) > 0 for all t ∈ [0,1]. The resulting noisy signal
is represented by

f(t) = h(t) + e(t)  (1)

which usually is quite irregular. As previously adopted in
the literature on SR in sensory systems [8], (1) indicates
that noise is additive with the original signal.

Thus, in the original formulation of Moss' theory [8], the
energies of signal and noise were not considered. The the-
ory simply required a mechanism by which addition of
the raw data of an original signal h(t) and noise e(t) would
eventually enhance mammalian auditory information
processing.

Energy Addition and Information Modulation
If the core idea of Moss' theory [8] is valid for mammalian
auditory information processing (as we strongly believe),
one has to accept that a mammalian auditory system is
capable of recovering an original signal h(t) from the
noisy signal f(t) expressed in (1). Guided by Occam's
razor, we expect the mechanism of (1) to be generally
applicable in the mammalian auditory system. As a first
step, it is natural to analyze the energies carried by the sig-
nal h(t) and noise e(t). Indeed, in many cases, e.g. [9], the
energy addition of the signal and noise is sufficient to
explain SR. Moss and his coworkers categorized such SR as
Type E (for energy). However, SR has also been observed
when the energy addition of the signal and noise is not
sufficient to explain the enhancement in sensory percep-
tion [10]. Moss et al. used the concept of information
modulation to explain this observation and categorized
such SR as Type I (for information). In other words, the
occurrence of of Type I SR relies on characteristics of the
signal other than energy. Still, the distinction between
Types E and I SR has the disadvantage of requiring evolu-
tion of multiple mechanisms for SR in the mammalian
auditory system, which would seem less likely than evolu-
tion of a single unitary mechanism.

At this point, it is instructional to consider the historical
progression of research on signal processing in the latter
half of the twentieth century. (We refer the reader to sec-
tion 1 of [11] for a summary of this history.) Filtering out
noise from a noisy signal f(t) as expressed in (1) is a major
concern of the community of signal processing, where this
task is termed "de-noising". Early researchers developed a
substantial number of algorithms for de-noising. How-
ever, most of the de-noising algorithms were mathemati-
cally proven to be optimal when the characteristics of
original signal h(t) could be known to the algorithm in
advance. De-noising was thought to require information
modulation. In 1994, Donoho and Johnstone [12] dra-
matically changed the modern understanding of de-nois-
ing by proposing wavelet shrinkage. Importantly, wavelet-
based algorithms do not require a priori knowledge of the
characteristics of the signal (see below) and can be imple-
mented more efficiently than earlier methods such as the
fast Fourier transform (FFT).

Wavelet Shrinkage

Since our proposed model employs a recent improvement
on analysis of wavelet shrinkage, we will mention some
details related to this algorithm. Recall that an original sig-

nal is modeled by a function h(t): t ∈ [0,1] # �+. In the
mammalian auditory system, h(t) necessarily has a certain
degree of "smoothness". In the literature on signal
processing, this is formulated as a requirement that h(t)

belongs to a Hölder class. Recall that a Hölder class Λα(M)
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is a family of functions, which is determined by two

parameters α and M as follows: Let �[0,1] denote the set of

all functions defined on [0,1]. For 0 <α ≤ 1, Λα(M)  {h

∈ �[0,1]: (∀x1, x2 ∈ [0,1]), |h(x1) - h(x2)| ≤ M|x1 - x2|α}. For

1 <α, Λα(M)  {h ∈ �[0,1]: (∀x ∈ [0,1])|h'(x)| ≤ M, hQαN

exists, and (∀x1, x2 ∈ [0,1])|hQαN (x1) - hQαN (x2)| ≤ M|x1 - x2|α

- QαN}. It is straightforward to see that the concept of Hölder
class contains information modulation. For example, a

sine wave belongs to a Hölder class with 1 <α; however,
the higher the frequency of the wave is, the larger the M
must be. Before the advent of wavelet shrinkage, proposed

de-noising algorithms required α and M as part of their
inputs. Unlike the earlier algorithms, wavelet shrinkage
only requires that h(t) belongs to a Hölder class, without

further knowledge of α and M. Therefore, wavelet shrink-
age provides a universal solution for de-noising. Strik-
ingly, it was mathematically proven that the recovery of a
signal by wavelet shrinkage is as good as that obtained by

earlier algorithms requiring specific knowledge of α and
M [12]. Therefore, based on wavelet shrinkage we can pro-
pose a model that universally explains SR, including both
Types E and I in the same model.

To realize the new model, we must first overcome a math-
ematical difficulty. Throughout the rest of this paper, we

will always denote by (t) the signal recovered from a
noisy signal as expressed in (1). In signal processing, the
performance of a de-noising algorithm is mainly judged

by the closeness between the recovered signal (t) and
original signal h(t), and this closeness is measured in

terms of L2 norm || (t) - h(t)||2 .

For SR in the mammalian auditory system, however,

when h(t) has few sharp transients which are lost in ,

one may still have || (t) - h(t)||2 ≈ 0. Of greater concern,

for a given original signal h(t), the recovered signal (t) is
random. This is because the noise e(t) is random, and
hence, the noisy signal f(t) = h(t) + e(t) is random. While
in signal processing, the performance of a de-noising algo-
rithm such as wavelet shrinkage (see [12]), is judged by E

[|| (t) - h(t)||2], the average closeness between (t) and

h(t), it would clearly be unacceptable to claim that SR
enhances mammalian auditory information processing on
the average. Fortunately, the performance of wavelet

shrinkage can be judged by sup1≤t≤1 | (t) - h(t)| with very

high probability [13]. That is, the signal recovered by
wavelet shrinkage is almost surely (with probability 1)
close to an original signal, even when examined in a poin-
twise fashion. In the next section, we will propose a model
for SR based on this new result of Hong and Birget [13].
Since in mammalian hearing any part of h(t) may contain
crucial information, a necessary condition to recover an
original signal h(t) from the noisy signal f(t) = h(t) + e(t)
is that the noisy signal be detectable. The proposed model
will show that in mammalian hearing, SR occurs if and
only if the noisy signal is detectable. In addition, we will dem-
onstrate that the model explains both so-called Types E
and I SR in a unitary mechanism.

In the final section, we will indicate how observed physi-
ological structures and functions in mammalian auditory
system are consistent with and suggest the proposed
model.

Results and Discussion
The proposed model
Recall that in SR the role of noise e(t) is to sample an orig-
inal signal h(t) generating a noisy signal f(t) = h(t) + e(t);
and that the sampling rate needs to be greater than the fre-
quency of h(t) [7]. Mathematically, the sampling of the
original signal by noise indicates that SR has a discrete
nature. A mammalian auditory system can therefore be
viewed as a "device" with the following characteristics. Let
n, a large positive integer, denote the sampling rate.

Input: At time instants t = , i = 1, 2, ..., n, an original

subthreshold signal h(t), t ∈ [0,1], is sampled by a noise

e(t). This results in the noisy samples f( ) = h( ) +

e( ).

Output: A recovered signal (t) obtained by processing

the noisy samples f( ), i = 1, 2, ..., n.

Since the noise e(t) is intrinsic, i.e., generated within the
mammalian auditory system, the intensity is clearly
always bounded. That is, the random variable e(t) is

bounded. We assume there are two constants 0 ≤ a <b such

that e(t) ∈ [a,b]. The criterion for the closeness between

the recovered signal (t) and original signal h(t) is

def
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where the meaning of the standard mathematical nota-
tion "sup" is as follows. Consider all upper bounds
forP(·) where (·) stands for an expression and P is a pred-
icate which the expression must satisfy. Then, supP(·) is
the smallest possible of all the upper bounds.

The procedure to process the noisy samples follows from
the notion of wavelet shrinkage in signal processing. It
consists of two linear transforms and one non-linear
thresholding. That is, we model a mammalian auditory
system as a non-linear system.

First, a linear transform is carried out to decompose the
noisy samples in the cochlea. For simplicity, in accord-
ance with (1) we denote the noisy samples by f. Auditory
information carried by the original signal h(t) is encoded
by the changes in both amplitude and frequency. Hence,
retrieval of the information from h(t) requires its decom-
position according to both amplitude and frequency.
Now, h(t) is mixed with a noise e(t), generating f(t); and
the function of the auditory system is to process the noisy
samples f. Thus, a decomposition of f is necessary at the
very beginning of the procedure. The principle for such a
decomposition is as follows: f is viewed as an element in
a function space, usually L2[0,1]; and then, with the
choice of a basis of L2[0,1], it finds the projections of f on
each component in the basis. Thus, the mathematical
quality of the decomposition is determined by the basis.
Technically, during mammalian auditory information
processing, the noisy samples f are decomposed to allow
recovery of h(t). Any basis that is chosen for the decompo-
sition must be sensitive in detecting changes in both
amplitude and frequency at the same time. It is mathe-
matically proven that a wavelet basis is the best choice for
such a decomposition. While there are many wavelet
bases, from the Haar to the Daubechies, we do not specify
a particular wavelet basis in the proposed model, except
that it is required to be orthonormal.

It must be noted that once a wavelet basis is chosen, the
linear transform is constant in the following sense. Recall
that in a standard way, a linear transform can be repre-
sented by a matrix and vice versa. The matrix representing
this linear transform is constant if all entries in the matrix
are constants. From a viewpoint of physiology, this indi-
cates that once a mammalian auditory system is devel-
oped, it may decompose signals to filter out noise in a
fixed manner.

Since the first linear transform decomposes the noisy sam-
ples, it is necessary to filter out the noise right after this

transform. A non-linear thresholding is applied immedi-
ately as the second step in the procedure. It also must be
noted that the threshold here is again a constant if the
sampling rate n is regarded as fixed. The output from the
second step is the decomposed noisy samples with the
noise filtered out. Thus, the third (final) step of the proce-
dure is to re-compose the filtered output of the second
step. It is carried out by a linear transform, which again is
constant in the sense mentioned above for the first step.

Mathematically, we describe the three steps as follows.

Two related n × n orthonormal matrices V and  respec-
tively for a discrete wavelet transform (DWT) and its
inverse are used for the first and third steps, respectively.

and

For a mammalian auditory system, the two matrices are

fixed, i.e. vij and  are fixed during development, and

they are used to process any noisy signal entering the sys-
tem.

A threshold for the second step is defined as

where c > 0 is a parameter determined according to which
wavelet basis is used, and δ > 0 is a parameter related to
the accuracy of the auditory information processing. The
threshold λn,δ is different from the threshold s used by the
spike train. Notice that for an auditory system, λn,δ is fixed
(recall that [a, b] is the range of the intrinsic noise) and is
used to process any noisy signal entering the auditory sys-
tem.

In what follows, we will use some simplified notations.

We let hi denote h( ), i = 1,2, ..., n; and let h = (h1 h2 ...

hn)T where (·)T stands for the transposition of a vector (·).

the smallness of sup | ( ) ( )|
[ , ]t

h t h t
∈

− ( )
0 1

2�

�V

V

v v v

v v v

v v v

n

n

n n nn

=

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

11 12 1

21 22 2

1 2

…
…
…
…

�

j j … j

j k … k

…
j k … k

V

v v v

v v v

v v v

n

n

n n nn

=

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

11 12 1

21 22 2

1 2

vij
j

λ δδn c b a
n

n, ( ) )ln
log= ⋅ − ⋅ + +( )1 2 1 2 2

i

n

Page 4 of 11
(page number not for citation purposes)



Theoretical Biology and Medical Modelling 2006, 3:39 http://www.tbiomed.com/content/3/1/39
We apply the same notation to ei, fi, and i. Now, we

mathematically formulate the three steps mentioned
above.

Step 1 Discrete wavelet transform (DWT)

where (η1 η2 ... ηn)T is the decomposed noisy samples.

Step 2 Thresholding

where (ζ1 ζ2 ... ζn)T is the result of filtering out the noise
from the decomposed noisy samples, which is obtained
by

Step 3 Inverse of DWT

We refer the reader to chapters 4 and 6 of [14] for details
on DWT, thresholding, and the inverse of DWT. This work
also describes the nature of simple constant matrices V

and , once a wavelet basis is chosen and the sampling n
is given. Importantly, the three steps can be carried out
within time of an order of n, i.e., the amount of time
needed to process the noisy samples is only proportional
to the number n of noisy samples. As the sampling rate n
can be thought as fixed in a mammalian auditory system,
the three steps can process an auditory signal as a stream.
In other words, as a linear function of n, the processing
rate of the proposed model is as rapid as conceivably pos-
sible. In contrast, the processing rate of a FFT is n × log n,
so that the delay in processing with an increase in n would
preclude online processing.

Mathematical analysis

We set a baseline for the mammalian auditory system. In
terms of hearing, this baseline is understood as "absolute
silence". Mathematically, the baseline is represented by a
constant 0. All signals, including noise, are measured
against this baseline and are evaluated in terms of pres-

sure. In this way, h(t), e(t), f(t) and (t) take positive val-
ues. Setting up such a baseline serves the following two
purposes:

1. The baseline is fixed, yielding a metric system. For any
given mammalian auditory system, our analysis of SR
depends on this fixed metric system.

2. While our analysis of SR is not concerned with energy,
we will be able to compute energy based on the metric sys-
tem, so as to to show how the proposed model naturally
covers all types of SR in the mammalian auditory system.

We can assume that the threshold for a stimulus to be
detected by the system is s > 0. Here, s is a constant against
the baseline, i.e., the threshold is fixed (see Figure 1).
Recall that within time interval [0,1], noise e(t) samples
an original subthreshold signal h(t), generating the noisy

samples fi = hi + ei where fi = f( ), hi = h( ), ei = e( ), i

= 1, 2, ..., n. Since in mammalian auditory information
processing, any hi may contain a critical part of the infor-

mation carried by h, a necessary condition for SR to occur
is

fi = hi + ei ≥ s for all 1 ≤ i ≤ n  (3)

That is, all noisy samples must be detectable. However,
the detectability of the samples does not at all automati-
cally imply that the information carried by h(t) is retriev-
able, since at the moment of acquisition, the samples are
a mixture of signal h(t) and noise e(t).

Our goal is to use the proposed model to prove that the
necessary condition expressed in (3) is also a sufficient
condition for SR to occur. In precise mathematical terms,
if all the noisy samples are detectable, then the informa-
tion carried by h(t) can be retrieved almost surely.

Recall that an original signal is represented by a function
h(t): t ∈ [0,1] # �+ in a Hölder class Λα(M). It is straight-
forward to see that for all t1, t2 ∈ [0,1]

|h(t1) - h(t2)| ≤ M|t1 - t2|α
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which implies that for all 1 ≤ i ≤ n and for all

In physiological terms, (4) indicates that a mammalian
auditory system uses its intrinsic noise to sample the orig-
inal signal at a high rate so that information loss between
two consecutive samples is negligible. On the other hand,
(4) implies that the capability of a mammalian auditory
system is limited; it has to lose some information between
two consecutive noisy samples. Mathematically, with (4)

we need to focus only on  = ( 1 2 ... n), the recovery

from the noisy samples obtained in Step 3.

In signal processing, the criterion to judge the quality of

the recovery  is the average squared error

, yet, as discussed in

the previous section, this criterion is not acceptable for
mammalian auditory information processing.

It was mathematically proven that for a Hölder class
Λα(M) the best that any de-noising algorithm can achieve
is

t
i

n

i

n
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Comparison of energy addition and geometric translation of a signal by noiseFigure 1
Comparison of energy addition and geometric translation of a signal by noise. In each panel the amplitude is plotted 
as a function of time and threshold is indicated by a horizontal dotted line. Top Panel: Intrinsic noise ε is plotted on the lowest 
(green) trace. The sinusoidal wave represents the subthreshold signal h (dark blue). Middle panel: The traces indicate the inter-
action of h and noise to obtain a noisy signal by energy addition(red) or by geometric translation (light blue). The noisy signal 
obtained by energy addition (red) does not reach threshold, so the SR would traditionally be classified as Type I. However, if 
the original subthreshold signal h is translated by the intrinsic noise ε with its mean m, the noisy signal obtained by geometric 
translation (light blue) is entirely above threshold. Lower Panel: As a result of Steps 1,2 and 3, the "denoised" signal is recov-
ered entirely above threshold.
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where C is a constant (see section 2 of [11]). One would
expect that we can sharpen (5) by considering the proba-
bilistic behavior of

For the moment, suppose that we can prove that

 almost surely. This will not

violate (5); but will strengthen it so that we can use (6) in
the analysis of SR. However, there is a technical flaw in
(6), which is an issue commonly overlooked in the cur-
rent analysis on SR.

First, (5) and (6) can be used in signal processing since
noise is always considered as a random variable with zero
mean. However, in a mammalian auditory system, noise
is a random variable with positive mean. For a mamma-
lian auditory system, the baseline can logically be set at
absolute silence and mathematically fixed at 0. When
noise is used to sample an original signal, then it must be
measured above the baseline, and hence, must have a pos-
itive mean. Accordingly, noise with a positive mean was

used in [9]. Thus, we would expect i >hi which in math-

ematical terms can be expressed as

i = hi + i

Obviously, i must be a constant; for otherwise, i, the

recovery from the noisy samples, will be skewed, which
may cause a severe loss of information carried by hi (the

original signal). On the other hand, i are from the

noise. Recall that we assumed that the noise is represented

by a bounded random variable e(t) with 0 ≤ a ≤ e(t) ≤ b
where a <b are constants. Without loss of generality, we let

the mean of this random variable be m =  > 0. The

best scenario that one can expect is i = m almost surely.

For the moment, suppose this can be proven. Then, we
can rewrite (6) as

Hong and Birget [13] showed that with the threshold λn,δ
by Steps 1, 2 and 3 we have, for all n ≥ 512

where c1 and c2 depend only on (b - a), M, and α. (We note

the following. In [13] the mean m of the random variable
e(t) was supposed to be zero; however, with a trivial mod-
ification, all proofs can be applied when m > 0.) Since n is

large and δ > 0, we have  and 

which are extremely close to 1 and 0, respectively. Thus,

(7) indicates that the error  is almost surely close

to 0. A key step in proving (7) was to apply a deep result
in measure concentration [15], a recently developed field
in probability.

Summarizing all discussed thus far in this subsection,
with the proposed model we can conclude that a mamma-
lian auditory system processes an original subthreshold

signal h(t) <s as follows. At time instants t = , i = 1,2, ...,

n, the intrinsic noise e(t) with mean m > 0 is employed to
sample the original signal, generating the detectable noisy

samples f( ) = h( ) + e( ) ≥ s. Then, by the Step 1, 2

and 3, the system recovers the noisy samples, obtaining

( ). (7) indicates that almost surely

This means that the system amplifies the original sub-
threshold signal by simply translating it up with the mean
m of the intrinsic noise. Figure 1 illustrates this. Some
remarks need to made.

• Our analysis of SR takes an approach that differs sub-
stantially from the current view of SR as applied to sensory
physiology. However, our approach does follow from the
core idea by Moss [8] that noise enhances hearing by sam-
pling the subthreshold signal. Using recent deep results in
signal processing ([15,13]), our analysis further provides
a strong statement that a necessary and sufficient condi-
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tion for SR to occur in a mammalian auditory system is
that all the samples by the noise are detectable.

• Our model and analysis do not involve energy and
information modulation (as was also apparent in Moss'
original description of SR in sensory systems [8]). How-
ever, we formulate this idea in a rigorous and concrete
way: using noise to sample an original subthreshold
signal, a mammalian auditory system processes the
noisy samples to translate the original signal up (in
amplitude) by the mean of the noise.

• A new insight that our model and analysis adds to SR is
as follows: When a mammalian auditory system proc-
esses the noisy samples, it may deposit energy into the
recovered signal, and this added energy is expended in
the recovery process. As a consequence, our result sug-
gests that information modulation is not a likely mecha-
nism for SR, as discussed below.

Recall that in the analysis of a mammalian auditory sys-
tem above, all signals and noise are evaluated in terms of
their pressure against a fixed baseline. Thus, we can com-
pute energies of signals and noise. The energy carried by
an original subthreshold signal is

Since the sample rate n is large, we can interpolate i, i =

1, 2, ..., n, by segments to have a function (t), t ∈ [0,1].
This is equivalent to taking the Haar wavelet as the basis,
and thus, will not violate our analysis presented above.

Our analysis above showed (t) ≡ h(t) + m almost surely.
Hence, we can write the energy carried by the recovered
signal as

and hence,

Recall that the energy carried by a random variable equals
the deviation of the random variable. Thus, we can see
that the energy carried by the intrinsic noise as a random
variable is

Enoise = λm2 for 0 <λ < 1

where for a given noise λ is a constant. Therefore,

since h(t) > 0 and m > 0. In addition to the energies of the
original signal and intrinsic noise, (9) indicates that as the
noisy samples are processed, the auditory system itself

adds an extra energy of amount  to

the recovered signal. The extra energy allows SR to occur
even if [Esignal + Enoise] is not sufficient to reach threshold.

Indeed, if one explained SR by energy addition, then it
would be necessary that

[Esignal + Enoise] ≥ s2

i.e., the added energy is at least more than a constant sig-
nal with intensity equal to the threshold s. Thus, when

[Esignal + Enoise] <s2  (10)

then energy addition can no longer be used to explain SR.
Moss and his coworkers called SR under condition (10)
Type I, and asserted that it would require information
modulation. However, an infinite number of signals h can
be shown to satisfy the necessary and sufficient condition
for SR to occur as suggested by our proposed model

h(t) + m ≥ s all t ∈ [0,1]

and yet have the property that

[Esingle + Enoise] <s2

Here, we present one example, as summarized in Figure 1.
Suppose that the noise e(t) is characterized as 0.25 ≤ e(t)
≤ 0.32 and m = 0.285; and the threshold s = 1.0. Consider
an original signal h(t) such that its intensity is within
[0.75,0.85] and its average intensity is 0.8. Then the
energy of e(t) is no more than 0.2852 = 0.08, and the
energy of h is no more than 0.82 = 0.64. Then 0.08 + 0.64
< 1 implies that the energy addition of e(t) and h(t) is not
sufficient to explain how SR can enhance the reception of
h(t). However, since h(t) + e(t) ≥ (0.75 + 0.25) = 1.0, the
necessary and sufficient condition for our proposed
model is satisfied and SR will occur (even without invok-
ing information modulation).

Physiological analysis
Our proposed model points out that the mammalian
auditory system needs only to be capable of performing
Steps 1, 2 and 3 to process a noisy signal. The mammalian
auditory system has a long history of neuroanatomical,
physiological and psychophysical analysis (cf. [16-23])
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with which to draw parallels to the steps of this model.
Moreover, SR phenomena have been clearly documented
in this system [4,7], thus providing the impetus for mod-
eling. Since our model was inspired by an analysis of SR
in the mammalian auditory system, we find it important
to consider how the steps of the processing might be per-
formed. Since (1) indicates that noise is added directly to
subthreshold signals, this process is likely to occur in the
inner ear, the origin of the neural aspects of the auditory
system. Processing of an auditory signal involves both
transduction by hair cells and synaptic integration by
innervating spiral ganglion neurons. Outer hair cells
(OHC) insert energy into the signal as they modulate the
stiffness of the tectorial membrane. Changes in stiffness of
the tectorial membrane modulate transduction by the
inner hair cells (IHC) and enhance signal transduction at
near-threshold amplitudes. Evidence for this statement is
implicit in the degradation of transduction capabilities by
IHC's when OHC's are immobilized [24].

The IHC's drive spiking of spiral ganglion cells, but spiral
ganglion axons also convey spikes in the absence of a sig-
nal [25]. Thus, the central output of the spiral ganglion
appears to include added noise, as in (1). A spectrally
complex signal is transduced by the spatially-organized
frequency-based array formed at the cochlea and by the
IHC's [23]. The spiral ganglion cells convey that informa-
tion in their spike trains. These axons terminate in a spa-
tially-organized pattern in the cochlear nuclei [23],
thereby preserving the array derived at the cochlea.

The spiking activity within the orderly array of spiral gan-
glion cells and their central terminations in the cochlear
nuclei can therefore be seen to represent the matrix of Step
1 and the thresholding operation of Step 2. Both fre-
quency and amplitude information are simultaneously
represented in the output of the array of spiral ganglion
cells (eg, [23,26]). The orderly spatial mapping of the
cochlea and cochlear nuclei is preserved in the serial path-
way that includes the midbrain inferior collicular nucleus,
the thalamic medial geniculate nucleus, and primary
auditory cortex (e.g., [27-29]).

The neuroanatomical array maintains the signal represen-
tation to the cortex. Thus, the extensive representation of
the cochlear array continued throughout the auditory sys-
tem embodies the first two steps of our model.

It is currently difficult to precisely localize the anatomical
site of occurrence of Step 3, the recovery of the signal. Step
3 is likely to occur sometime after primary auditory cortex,
in which the array is also preserved [30-33]. Linguistic rec-
ognition in humans and animal recognition of species-
specific vocalizations occurs beyond primary acoustic cor-
tex [12,34], indicating that the reconstruction of a signal

must also occur in higher order cortical areas involved in
auditory function. Since the mammalian auditory system
is capable of the concurrent recovery of frequency and
amplitude information in short time segments [35,36],
this, too, suggests a relationship between performance in
the mammalian auditory system and our model based on
wavelet analysis.

Hopfield [37,38] suggested that, as a consequence of evo-
lution, interconnections built among a large number of
simple neurons will form a stable network; and these net-
works compute [39]. Among the computational abilities
of Hopfield networks are thresholding and linear trans-
form (cf. [39]), both of which are required for our model.
Hopfield networks may play the role of subsystems for
DWT and its inverse. Thus, the mammalian auditory sys-
tem, either at the stage of hair cell and spiral ganglion
response integration (for Steps 1 and 2) or more centrally,
in, for example, the auditory association cortex (for Step
3), may be considered as containing multiple Hopfield
networks, and capable of the computations necessary for
our model.

Central to our model's representation of SR is the realiza-
tion that the system must add energy to the input (the ini-
tial signal and the noise) to exceed a perceptual threshold.
To obey the first law of thermodynamics, the auditory sys-
tem itself must therefore intrinsically add some energy to
the noisy signal, and this extra energy is expended during
the processing of information in Steps 1, 2 and 3. Three
types of evidence suggest that this requirement is met
experimentally. The first is the demonstration in mamma-
lian hearing that a significant loss of threshold occurs with
the loss of outer hair cell function [24]. Thus, one source
of intrinsic energy might be embedded in the role of the
OHCs. A second type of evidence is reflected in the phys-
iology of eighth nerve afferents to the brain from the coch-
lea in the absence of a stimulus. Many studies of spiral
ganglionic axons reveal classes of axons with different
spontaneous activity (SA): one with Gaussian-like SA, one
with bursting SA, and one with little SA. Spontaneous
activity in an axon reflects an intrinsic property of the sys-
tem that correlates with the sensitivity at an axon's charac-
teristic frequency. Even in kittens raised in the absence of
obvious sound stimuli, 8th nerve axons of these animals
carry spontaneous activity [40]. Thirdly, in experiments
with implanted cochlear electrodes in deaf people, Zeng et
al. [9] showed that the addition of noise (i.e., extra
energy) to a defined signal enhanced the perceptual sensi-
tivity when near threshold levels.

In summary, the auditory system of mammals contains
the necessary elements for using SR to process acoustic
information according to the requirements and steps of
our proposed model.
Page 9 of 11
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Conclusion
We present a new theoretical viewpoint for the analysis of
SR in the mammalian auditory system. Most strikingly,
the analysis indicates that the mechanism for reception of
auditory sensation is necessarily more active than previ-
ously considered.

Although energy-requiring aspects of cochlear function
have been described previously [24], the current analysis
indicates that the addition of energy is a key feature of
auditory receptor function. The new model suggests that
the effect of noise is to carry out a geometric translation,
"lifting" the original signal by the mean of the noise and
creating a noisy signal which is above threshold and dis-
cernable (see Figure 1). The result of this geometric trans-
lation is more than the energy addition of the original
(subthreshold) signal and intrinsic noise.

The model shows that the mechanism underlying the geo-
metric translation does not need to be very complex. The
function of the mammalian auditory system can be mod-
eled very simply in three steps by a DWT, followed by
thresholding and the inverse of DWT. Wavelet analysis is
considered a useful model of the auditory system because
of the capability to concurrently represent temporal and
intensity information in short time segments. Further-
more, the parameters used in the DWT, thresholding and
inverse DWT are invariant and the processing can there-
fore proceed instantaneously. Since the parameters are
invariant, they are components of the phenotype and
therefore would be subject to natural selection. The mam-
malian auditory system, optimized by evolution, appears
to have evolved unique specializations to take advantage
of the phenomenon of SR to enhance sensory perception.
The auditory system should be considered as an active,
not passive, receptor.
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