
All cells are coated with complex carbohydrates called 
glycans, which form a layer known as the glycocalyx, 
ranging from 10 to 100 nm in thickness1,2. Glycans are 
present in many different molecular forms, including 
glycoproteins, proteoglycans, glycolipids and glycophos­
phatidylinositol­linked proteins. Their broad diversity 
originates from their assembly from monosaccharide 
building blocks, which can be linked to each other at 
various positions on their pyranose or furanose rings. 
Each ring can establish several linkages, giving rise to 
branched structures. Finally, the structural complexity 
of glycans is further increased by the possibility of α­ and 
β­isomers at the anomeric centre.

This dense structural information is decoded by 
carbohydrate­binding proteins, which are involved in 
important physiological and pathophysiological events. 
The need for an integrated approach to decipher the 
structure–activity relationships (SARs) between glycans 
and their protein receptors has led to the establishment 
of interdisciplinary collaborative efforts in the United 
States (Consortium for Functional Glycomics; see 
Further information), Europe (EuroCarb; see Further 
information) and Japan (Human Disease Glycomics/
Proteome Initiative; see Further information).

Currently, over 80 carbohydrate­binding proteins 
have been identified. The binding specificities for 
many of them have been elucidated, and others are 
being screened on large glycoarrays to determine their 

glycan­binding epitopes. These discoveries have led to 
a renaissance in glycobiology. They also provide a con­
tinuous supply of carbohydrate­related targets for the 
structure­based design of new chemical entities that 
mimic bioactive carbohydrates, and form a novel class 
of therapeutics.

Carbohydrate and carbohydrate-derived drugs
Although carbohydrates play an important part in a vast 
array of biological processes, carbohydrate and carbo­
hydrate­derived drugs cover only a limited area of the 
world of therapeutics (FIG. 1). Many pathophysiologically 
important carbohydrate–protein interactions have yet to 
be exploited as a source of new drug targets. One reason 
might be the pharmacokinetic drawbacks that are inher­
ently linked to carbohydrates. As a result of their high 
polarity, they are unable to cross passively through the 
enterocyte layer in the small intestine — a prerequisite 
for oral availability. In addition, once systemically avail­
able by parenteral administration, carbohydrates suffer 
from fast renal excretion.

When interactions with blood plasma components 
are possible, the plasma half­life that is required for a 
successful therapeutic application can be achieved. 
Prominent examples are the low­molecular­weight 
heparins, derived from animal tissue, and fondaparinux3 
(Arixtra; GlaxoSmithKline), which are used as anti­
coagulants. In other cases — such as the inhibition of 
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Glycocalyx
Literally meaning ‘sugar coat’, 
it is the outer component of  
a cell surface and contains a 
network of polysaccharides 
and complex carbohydrates.

Anomeric centre
The centre of chirality of a 
glycan that is generated by 
hemiacetal ring closure.
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Abstract | Carbohydrates are the most abundant natural products. Besides their role in 
metabolism and as structural building blocks, they are fundamental constituents of every 
cell surface, where they are involved in vital cellular recognition processes. Carbohydrates 
are a relatively untapped source of new drugs and therefore offer exciting new therapeutic 
opportunities. Advances in the functional understanding of carbohydrate–protein 
interactions have enabled the development of a new class of small-molecule drugs, known 
as glycomimetics. These compounds mimic the bioactive function of carbohydrates and 
address the drawbacks of carbohydrate leads, namely their low activity and insufficient 
drug-like properties. Here, we examine examples of approved carbohydrate-derived drugs, 
discuss the potential of carbohydrate-binding proteins as new drug targets (focusing on the 
lectin families) and consider ways to overcome the challenges of developing this unique 
class of novel therapeutics.
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Lectin
A carbohydrate-binding 
protein which is highly specific 
for sugar moieties and typically 
plays a part in biological 
recognition phenomena.

Sulphated 
glycosaminoglycan
A long polysaccharide chain 
consisting of repeating 
sulphated dissacharide units.

α­glycosidases in the brush border of the small intes­
tine for the treatment of diabetes (by voglibose4 (Basen/
Glustat/volix; Takeda), miglitol5 (Glyset; Pfizer) and 
acarbose6 (Glucobay/Prandase/Precose; Bayer)) or the 
inhibition of viral neuraminidases in the pharyngeal 
mucosa (by zanamivir7 (Relenza; GlaxoSmithKline)) — 
oral availability is not required.

The paradigm of a glycomimetic drug in the classical 
sense is oseltamivir (Tamiflu; Gilead/Roche). Starting 
from a carbohydrate lead, drug likeness was achieved 
by systematically eliminating polar groups and meta­
bolic ‘soft spots’8 that were not required for affinity. 
Finally, by designing a prodrug, oral availability became 
possible9.

Glycodrugs in preclinical and clinical evaluation
Carbohydrate­binding proteins are broadly classified 
into lectins10 and sulphated glycosaminoglycan (SGAG)­
binding proteins11,12. There are two categories of lectins 
present in vertebrates: the families of intra cellular 
lectins (for example, calnexin, l­type and P­type lectins),  
which bind core oligosaccharide structures and are 
involved in glycoprotein processing and quality control, 
and the families of extracellular lectins (for example,  
galectins, C­type, I­type and R­type lectins), which recog­
nize terminal carbohydrate epitopes of other cells and 
pathogens. Extracellular lectins account for most of the 
molecular targets that are being investigated in current 
drug discovery programmes.

Figure 1 | carbohydrate and carbohydrate-derived drugs. Structures of currently approved drugs (trade name  
in brackets). These include glycosidase inhibitors that prevent the digestion of carbohydrates for the treatment  
of diabetes (voglibose4, miglitol5 and acarbose6) and the prevention of influenza virus infections (zanamivir7 and 
oseltamivir9); and sulphated glycosaminoglycans, which function as anticoagulants by binding to antithrombin III for 
the treatment of thrombosis (fondaparinux3, dalteparin161, ardeparin161, nardoparin161 and enoxaparin161). In addition, 
carbohydrate-derived drugs are used to treat Gaucher’s disease (miglustat162), epilepsy (topiramate163) and 
osteoarthritis (sodium hyaluronate164).
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Carbohydrate recognition 
domain
The three-dimensional  
domain in a lectin that  
binds carbohydrate.

Lea/x

A common three-dimensional 
structural domain shared by 
the carbohydrate structures 
Lewisa (Galβ(1–3)[Fuc(α1–4)]
GlcNAc) and Lewisx (Galβ(1–4)
[Fuc(α1–3)]GlcNAc).

By contrast, SGAG­binding proteins are heterogen­
eous and difficult to classify11,12. Their ability to recognize  
SGAGs arises from clusters of cationic amino acids on 
unrelated proteins that confer the ability to recognize 
anionic structural motifs in extended SGAG chains. 
Typically, various SGAG­binding proteins interact with 
each SGAG with different affinities, and only a few SGAG 
sequences are exclusively recognized by a single SGAG­
binding protein.

Here, we present the most promising drug candidates 
from the lectin families: selectins and dendritic cell­ 
specific ICAM3­grabbing non­integrin 1 (DC­SIGn; also 
known as CD209) from the C­type lectin family, myelin­
associated glycoprotein (MAG; also known as sialic acid­
binding immunoglobulin­like lectin 4A (Siglec 4A)) as 
an example of an I­type lectin, and PA­I galactophilic 
lectin (PA­Il), fucose­binding lectin PA­IIl and minor 
component of type 1 fimbriae (FimH) as representatives 
of bacterial lectins.

C-type lectins
The hallmark of C­type lectins is the involvement of Ca2+ 
in the binding of glycans to their carbohydrate recognition 
domain (CRD). They have a wide range of biological func­
tions, such as intercellular adhesion, serum glycoprotein 
removal and pathogen recognition.

Selectins. These are perhaps the most intensely studied  
mammalian carbohydrate­binding proteins. First dis­
covered in 1989 (REFS 13–15), their functions as adhesion 
molecules are well understood16. The family consists 
of three members: E­selectin (also known as CD62E), 
P­selectin (also known as CD62P) and l­selectin (also 
known as CD62l). They are composed of a Ca2+­
dependent CRD, an epidermal growth factor (EGF) 
domain, various short complement­like consensus repeats, 
a single transmembrane domain and an intracell ular tail. 
Although carbohydrates bind to a receptor site within the 
CRD, the neighbouring EGF domain influences binding 
affinity and specificity17.

The three selectins have overlapping and distinct 
expression patterns, both temporally and spatially. 
E­selectin is expressed on endothelial cells by de novo pro­
tein synthesis 2–4 hours after stimulation by inflammatory 
mediators, such as interleukin 1β and tumour necrosis 
factor­α. P­selectin is expressed on activated platelets and 
is also stored in Weibel–Palade bodies in endothelial cells, 
which fuse to the cell surface on activation, leading to the 
expression of P­selectin within minutes. l­selectin is con­
stitutively expressed by most leukocytes and plays a major 
part in homing and trafficking of lymphocytes through 
the blood and lymphatic systems.

All three selectins bind a common carbohydrate 
domain shared by sialyl Lea/x (sialyl lewisa (slea) and sialyl 
lewisx (slex))18. Interestingly, both of these carbohydrate 
sequences were originally discovered as cancer­associated 
antigens19–21 and are prognostic indicators of metastatic dis­
ease22. Tumour cells coated with these carbohydrate chains 
are recognized as migrating leukocytes, allowing them to 
escape the bloodstream and metastasize to other organs and 
tissues, such as the lymph nodes and bone marrow23,24.

To functionally bind sialyl lea/x in vivo, both P­ and 
l­selectins require additional interactions with negatively 
charged sulphate groups, either on the carbohydrate chain 
itself or on an adjacent peptide sequence. E­selectin has 
no such requirement and can functionally bind sialyl 
lea/x in glycolipids25 and glycoproteins26.

The involvement of negatively charged groups, such 
as sulphates and carboxylates, in the binding of l­ and 
P­selectin has led to one of the major pitfalls in designing 
small­molecule inhibitors for the selectins. A wide range 
of structurally diverse, negatively charged molecules has 
been reported to bind P­ and l­selectins. These include 
sulphatides27, heparins28, fucoidan29, sulphated dextran30, 
chondroitin sulphate31, dermatan sulphate32, tyrosine 
sulphates33, sulphated hyaluronic acid34 and sulpho­
galabiose35. Such a range of molecules suggests that their 
inhibitory activity is due to nonspecific negative­charge 
interactions. In fact, a cautionary publication36 described 
potent P­selectin activity found in trace contaminants of 
polyanions from ion exchange media used in the prepa­
ration samples. Thus, the specificity of small­molecule, 
highly charged selectin antagonists that inhibit P­ and 
l­ but not E­selectin must be carefully evaluated.

In diseases in which cell adhesion, extravasation of 
cells from the bloodstream or the migration of specific 
lymphocytes has been implicated in the pathology, 
selectins present an attractive therapeutic target. For 
example, E­ and P­selectins have been shown to mediate 
the acute adhesion and aggregation of leukocytes and 
erythrocytes during a vaso­occlusive crisis in a mouse 
model of sickle cell disease37,38. Furthermore, aberrant 
extravasation of cells from the bloodstream is the hall­
mark of many inflammatory diseases (such as asthma, 
colitis, arthritis and psoriasis) and cancer. Tumour cells 
that extravasate out of the bloodstream use the selec­
tin pathway to metastasize. Many solid tumours and 
adeno carcinomas, such as gastrointestinal39, pancreatic40, 
breast41, lung42 and prostate43 cancers, express high levels  
of slex and slea. Expression of these selectin ligands 
on the tumour cells of patients with gastric and colon 
cancers44 is significantly correlated with poor survival22. 
Cimetidine (Tagamet; GlaxoSmithKline), a histamine 
receptor antagonist that also suppresses vascular expres­
sion of E­selectin, markedly and specifically improved 
survival of high­risk patients identified by tumour 
expression of slea and slex (REF. 45), further supporting  
the usefulness of selectins as therapeutic targets for  
cancer.

Selectins and their ligands have also been reported 
to play key parts in the dissemination of haematological 
cancers46 and the homing of leukaemic stem cells to 
microdomains within the bone marrow47. E­selectin is 
constitutively expressed in the bone marrow48 and binds 
carbohydrate ligands that are found on leukaemic stem 
cells. Once adherent to these microdomains in the bone 
marrow, leukaemic cells become quiescent and less sus­
ceptible to killing by anti­proliferative chemotherapy 
drugs such as cytosine arabinoside49. Potent selectin 
antagonists present new therapeutic opportunities for 
treating these diseases. By preventing sequestration 
of leukaemic cells in the bone marrow and keeping 
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Glycomimetic
A molecular mimic of a 
functional carbohydrate  
that has improved affinity  
for its target and drug-like 
pharmacokinetic properties.

Dendrimer
A large, synthetically produced 
polymer in which the atoms are 
arranged in many branches 
and subbranches radiating out 
from a central core.

Allosteric effect
An effect that is exerted on a 
protein by the binding of an 
effector molecule at a site 
other than the protein’s active 
site or binding site.

them in circulation, combination therapy with selectin 
antagonists is likely to make the cells more susceptible 
to chemotherapy. Some examples of glycomimetic, small­
molecule antagonists of the selectins are presented in 
TABLE 1.

DC-SIGN. Mucosal surfaces present barriers to the 
environment that are potentially susceptible to infec­
tion. Migrating dendritic cells guard mucosal surfaces, 
capturing microorganisms and presenting processed 
antigens to activated T cells, thereby inducing an 
immune response against the invading pathogens. By 
screening a library of dendritic cell­specific mono­
clonal antibodies that inhibit binding to intercellular 
adhesion molecule 3 (ICAM3; an adhesion molecule 
that activates T cells), a single cell surface protein was 
discovered: DC­SIGn50.

The amino­acid sequence of DC­SIGn is identical to 
a previously described HIv glycoprotein 120 (gp120)­
binding C­type lectin51,52. DC­SIGn that is expressed 
on patrolling dendritic cells in the mucosa binds to  
carbohydrate structures on the gp120 protein coat  
of HIv, which is the initial entry port of HIv to the host. 
HIv particles bound to DC­SIGn on the surface of den­
dritic cells are protected from destruction in the blood 
and migrate to the lymph nodes where they trans­infect 
T cells through the CD4–CCR5 (CC­chemokine recep­
tor 5) complex on the T cell surface51. The binding spe­
cificity of DC­SIGn is for fucose and mannose residues, 
with higher affinity and specificity for the fucose linkage 
in lea/x­type oligosaccharide structures. Formation of the 
active structure and binding of DC­SIGn occurs in a 
Ca2+­dependent manner52,53.

In addition to HIv, various other pathogens — such 
as the hepatitis C virus54, Dengue virus55, Ebola virus56, 
Marburg virus57, coronavirus (which causes severe acute 
respiratory syndrome)58 and cytomegalovirus59, as well 
as bacteria such as Mycobacterium tuberculosis60 and 
Helicobacter pylori 52 and yeast (Candida albicans) — 
exploit DC­SIGn to infect their host. More recently, 
even parasites such as Leishmania spp.61 and Schistosoma 
mansoni62 have also been shown to bind DC­SIGn.

The fact that different pathogens have capitalized on 
this infection strategy makes DC­SIGn an interesting 
target for therapeutic intervention. In a study on the 
binding and transfer of HIv in human rectal mucosa 
cells, more than 90% of bound virus was bound to cells 
expressing DC­SIGn, although these cells represented 
only 1–5% of the total mucosal mononuclear cells. 
Furthermore, DC­SIGn­specific antibodies blocked 
more than 90% of HIv binding63. Other studies have 
shown that multivalent glycoconjugates of lewisx 
or d­mannose prevented the attachment of Ebola or 
herpes virus to dendritic cells through DC­SIGn and 
thus prevented the subsequent infection of immune 
cells64–66.

Glycomimetic compounds that inhibit DC­SIGn are 
based on two lead structures. The first are high­mannose 
oligosaccharides and the second is l­fucose as part of a 
lewis epitope67. These determinants are synthesized by 
pathogens to camouflage their appearance as host tissue. 

To improve the affinity and pharmacokinetic properties 
of these naturally occuring antagonists, glycomimetics of 
both types of ligands have been synthesized.

High­density arrays of unbranched Manα(1­2)Man­
terminated oligosaccharides bind to DC­SIGn almost 
as effectively as the entire Man9 oligosaccharide (REF. 68). 
Therefore, the non­reducing end Manα(1­2)Man frag­
ment of Man9 was suggested to play a crucial part in 
DC­SIGn recognition. To mimic 1,2­mannobiose, 
one hexose moiety was replaced by a cyclohexanediol 
derivative, leading to the pseudo­1,2­mannobioside 
compound 1 (FIG. 2), which had a threefold greater 
affinity for DC­SIGn than did 1,2­mannobiose (half­
maximal inhibitory concentration (IC50) = 0.62 mM and 
1.91 mM, respectively)69. Furthermore, in infection 
studies using an in vivo model of Ebola infection, 
the glycomimetic compound 1 inhibited infection of 
DC­SIGn­expressing Jurkat cells more efficiently than 
the corresponding natural disaccharide. Although the 
inhibitory concentration in these experiments was in 
the millimolar range, compound 1 might be useful in 
the preparation of high­affinity multivalent antagonists. 
Such an approach is encouraged by the strong inhibitory 
effects of multivalent antagonists on DC­SIGn bind­
ing, as observed for dendritic mannose conjugates70 or  
oligolysine­based oligosaccharide clusters71.

Similarly, α­fucosylamine linked to 2­amino cyclo­
hexane carboxylic acid (compound 2) mimics lewisx 
trisaccharide and inhibits DC­SIGn with a twofold 
greater potency (IC50 = 0.35 mM and 0.8 mM, respec­
tively)72. These binding affinities are too weak for these 
compounds to have any therapeutic promise; however, 
when the oligosaccharides are displayed on large multi­
valent dendrimers, activity is greatly improved and bio­
logical activity can be shown in vitro71. Although such 
large multivalent presentations of carbohydrates or 
mimics thereof are a relatively simple means to increase 
activity, they pose a pharmaceutical challenge in terms 
of routes of administration and possible side effects, such 
as unwanted immune responses.

A classical approach to discovering DC­SIGn antago ­
nists was successfully demonstrated by screening large 
libraries of small molecules in an automated assay 
format. By screening over 35,000 compounds, 7 hits 
with IC50 values in the low micromolar range were 
identified, such as compound 3 and compound 4 
(REF. 73). Interestingly, the structures of these hits bear 
no resemblance to the native carbohydrate ligands of 
oligomannose or the lewis epitopes and do not con­
tain functional groups to interact with Ca2+ in the CRD. 
Their inhibitory activity could be caused by binding to 
other domains on DC­SIGn, leading to an allosteric 
effect.

I-type lectins
I­type lectins are a family of carbohydrate­binding 
proteins in the immunoglobulin superfamily, and 
include Siglecs74. The Siglecs function as cell signalling 
co­receptors and are primarily expressed on leuko cytes 
that mediate acquired and innate immune functions. 
The cytoplasmic domains of most Siglecs contain 
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immunoreceptor tyrosine­based inhibitory motifs, 
which are characteristic of accessory proteins that 
regulate transmembrane signalling and endocytosis of 
cell surface receptor proteins. The diverse specificity 
for their sialoside ligands and variable cytoplasmic 

regulatory elements enable Siglecs to carry out unique 
roles at the cell surface. Siglecs can be broadly divided 
into an evolutionarily conserved group (Siglec 1 (also 
known as sialoadhesin), Siglec 2 (also known as CD22) 
and Siglec 4 (also known as MAG)) and a Siglec 3­related 

Table 1 | Small-molecule selectin antagonists in preclinical and clinical trials
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group (Siglec 3 and Siglecs 5–13). The evolutionarily 
conserved group shows selective binding properties: 
Siglec 1 and MAG preferentially bind α(2­3)­linked 
N­acetylneuraminic acid (neu5Ac) and Siglec 2 is highly 
specific for α(2­6)­linked neu5Ac. By contrast, members 
of the Siglec 3­related group are more promiscuous in their 
binding, often recognizing more than one presentation 
of neu5Ac.

The most comprehensively characterized Siglecs are 
Siglec 2, a regulatory protein that prevents the over­
activation of the immune system and the development 
of autoimmune diseases, and MAG, a protein that blocks 
regeneration of the central nervous system (CnS) after 
injury75.

MAG. Unlike the peripheral nervous system (PnS), the 
injured adult CnS inherently lacks the capacity for axon 
regeneration. Although neurite outgrowth is possible in 
principal, it is blocked by inhibitor proteins expressed on 
residual myelin and on astrocytes that are recruited to 
the site of injury. To date, three major inhibitor proteins 
have been identified: reticulon 4 (RTn4; also known as 
nogo A)76, myelin oligodendrocyte glycoprotein (MOG)77 
and MAG78. These three proteins bind to and activate 
the RTn4 receptor, which is located on the surface of the 
neuron. This leads to the formation of a complex with 
the nerve growth factor receptor (nGFR; also known as 
p75nTR) and the activation of the RhoA–ROCK (Rho­
associated, coiled coil­containing protein kinase) cascade, 
which results in growth cone collapse79.

The RhoA–ROCK inhibitory cascade can also be  
triggered by a complex formed by MAG, brain ganglio­
sides (especially GM1b, GD1a, GT1b, GT1β and 
GQ1bα)80 and nGFR81. Although the exact biological 
role of the MAG–ganglioside interaction has yet to be 
resolved, in some systems inhibition of axon regenera­
tion by MAG could be completely reversed by sialidase 
treatment, suggesting that sialidated glycans are the 
main axonal ligands of MAG82. SAR studies83–85 have 
revealed that the terminal tetrasaccharide epitope 
neu5Acα(2→3)­Galβ(1→3)­[neu5Acα(2→6)]­GalNAc 
of GQ1bα shows superior binding to MAG compared 
with the terminal trisaccharide epitope, which is present 
in GD1a and GT1b, for example86. Further refinements 
of the SAR profile have led to the identification of MAG 
antagonists that have improved affinities and, at least 
in some cases, remarkably simple structures (FIG. 3). 
However, owing to the use of different assay formats, it 
has been difficult to compare the reported affinities of 
these compounds for various ligands.

Overall, starting from the low­affinity tetrasaccharide 
lead structure compound 6 (REF. 87), low­molecular­
mass MAG antagonists with nanomolar affinity and 
excellent stability in the spinal cord fluid have been 
identified (S. Mesch, D. Moser, A. vedani, B. Cutting,  
M. Wittwer, H. Gäthje, S. Shelke, D. Strasser, O. Schwardt,  
S. Kelm and B. Ernst, unpublished observations). The 
high correlation between the degree of neurite out­
growth and the binding affinities of these antagonists 
further validates MAG as a therapeutic target and sug­
gests that potent glycan inhibitors of MAG have the 
potential to enhance axon regeneration88.

Bacterial and viral lectins
For colonization and subsequent development of an 
infectious disease, enteric, oral and respiratory bacteria 
require adhesion to the host’s tissue. This grants them a 
substantially greater resistance to clearance and killing by 
immune factors, bacteriolytic enzymes and anti biotics. In 
addition, such bacteria are better able to acquire nutrients, 
further enhancing their ability to survive and infect the 
host. Therefore, anti­adhesive drugs that prevent the adhe­
sion of pathogens to host tissues may offer a novel strat­
egy to fight infectious diseases89. The alarming increase 
in drug­resistant bacterial pathogens makes a search for 
new approaches to fight bacterial infections essential90. 

Figure 2 | Ligands of dendritic cell-specific icAM3-grabbing non-integrin 1 
(Dc-sigN). DC-SIGN co-crystallized with the natural epitopes Galβ(1-4)[Fucα(1-3)]
GlcNAcβ(1-3)Gal (Protein Data Bank code 1SL5) (a) and Manα(1-6)[Manα(1-3)]Manα(1-6)
Man (PDB code 1SL4) (b). The protein backbone is depicted in ribbon style, 
carbohydrates are shown in ball and stick style and the grey sphere is Ca2+. Part c shows 
the structures of DC-SIGN antagonists. The glycomimetics compound 1 (REF. 69) and 
compound 2 (REF. 72) have only a slightly improved affinity compared with the natural 
ligands Manα(1-2)Man68 and Lewisx (REF. 72), whereas the non-carbohydrate antagonists 
compound 3 and compound 4 have half-maximal inhibitory concentration (IC

50
) values 

in the low micromolar range73.
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Figure 3 | Myelin-associated glycoprotein (MAg) antagonists. a | MAG, nogo 66 and myelin oligodendrocyte 
glycoprotein (MOG) bind to the reticulon 4 receptor (RTN4R; also known as the nogo receptor). The inhibitory signal is 
transduced into the cytosol of the neuron through the co-receptor NGFR (nerve growth factor receptor; also known 
as p75NTR). MAG bound to the brain gangliosides GD1a, GT1b and GQ1bα also transduces the inhibitory signal, with 
the help of NGFR as a co-receptor, into the cytosol79. b | GQ1bα is the brain ganglioside with the highest affinity for 
MAG80; replacement of its inner sialic acids by sulphates (to produce compound 5) led to a fourfold increase in 
affinity165. The tetrasaccharide compound 6 (REF. 87) is the minimal carbohydrate epitope of GQ1bα for MAG binding 
and has served as a lead structure for the development of antagonists; with compound 7, an excellent correlation 
between the degree of neurite outgrowth and the binding affinities was established88. Further modifications involved 
the replacement of the Galβ(1-3)GalNAc core (to produce compound 8 (REF. 166)) or the α(2-6)-linked Neu5Ac (to 
produce compound 9 (REF. 135)). Following studies on compound 10 (REF. 167), numerous Neu5Ac derivatives168,169,  
for example, compound 11, with up to nanomolar affinities have been synthesized. Affinity data of the different 
compounds should be compared with caution as they were obtained from different assays. IC

50
, half-maximal 

inhibitory concentration; K
d
, dissociation constant; RIP, relative inhibitory potency.
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Adhesin
A protein produced by many 
bacteria to effectively adhere 
to host surfaces.

Quorum sensing
A type of decision-making 
process used by bacteria to 
coordinate gene expression 
and behaviour according  
to the local density of their 
population.

Entropy
A quantitative measurement  
of the disorder in a system.  
The change in heat divided  
by the absolute temperature  
is the entropy change or cost 
of the thermodynamic process.

Aglycon
The non-sugar component that 
remains after hydrolysis of a 
glycoside.

Because anti­adhesive agents are not bacteri cidal, they are 
less likely to promote the propagation of resistant strains 
than bactericidal agents, such as antibiotics.

The carbohydrate epitopes on the surface of host cells 
that are used by bacteria and viruses for colonization and 
infection (TABLE 2) are the starting point of the search for 
glycomimetic entry inhibitors.

A challenge of anti­adhesion therapy is that most 
pathogens possess genes encoding several types of 
adhesins, so that, during the infection process, they may 
express more than one of these adhesins. Glycomimetic 
antagonists that are designed to inhibit multiple adhesins 
are feasible to develop, and examples are described below 
for Pseudomonas aeruginosa.

P. aeruginosa virulence factors (PA-IL and PA-IIL). 
P. aeruginosa can be part of the normal flora in healthy 
adults but becomes a deadly pathogen in individuals who 
are immunocompromised, patients with cystic fibrosis 
and hospitalized, critically ill patients. An increasing 
percentage of P. aeruginosa infections are antibiotic 
resistant.

For its adhesion to host cells, the pathogen expresses 
lectins such as PA­Il and PA­IIl91. These lectins are 
virulence factors under quorum sensing control and 
are, by themselves, cytotoxic to primary epithelial cells 
in culture92. At low concentrations, they inhibit ciliary 
beating of epithelial cells in explants of nasal polyps93. 
Inhibition can be completely reversed by treatment with 
the carbo hydrate ligand of the lectin. Thus, 24 hours 
after addition of fucose, ciliary beating returns to normal  
frequency94.

PA­Il and PA­IIl are tetrameric lectins that require 
Ca2+ for carbohydrate binding. The crystal structures of 
both lectins complexed with their carbohydrate ligands 
have been resolved (FIG. 4). PA­Il preferentially binds 
to terminal α­linked d­galactose in the presence of 
one Ca2+ ion, whereas PA­IIl binds with an unusually 
strong micromolar affinity to l­fucose and requires two 
Ca2+ ions95,96. PA­Il and PA­IIl are soluble intracellu­
lar lectins. However, once released from the cells, these 
lectins cause bacteria to adhere to host tissue — a process 
that can be reversed by incubation with d­galactose and 
d­mannose, respectively97.

The native carbohydrate inhibitors of PA­Il and 
PA­IIl, d­galactose and l­fucose, were successfully used 
to treat a tobramycin­resistant P. aeruginosa infection in 
a case report98. Combination therapy of tobramycin with 
d­galactose and l­fucose to inhibit the virulence factors 
PA­Il and PA­IIl cured an 18­month­old infant with 
systemic and pulmonary infections, as determined by 
microbiological testing.

Screening with the glycan arrays of the Consortium 
for Functional Glycomics revealed that the lewisa 
trisaccharide, Galβ(1­3)[Fucα(1­4)]GlcNAc, is a high­
affinity ligand for PA­IIl99, with a dissocation constant 
of 210 nM100. To reduce the complexity of the trisaccha­
ride antagonists, glycomimetics based on the Fucα(1­4)
GlcNAc disaccharide — for example, the antagonist com­
pound 12 — were synthesized. By titration calorimetry 
experiments, increased entropy costs upon binding were 

detected as a result of the higher flexibility of Fucα(1­4)
GlcNAc compared with lewisa. However, additional 
enthalpic interactions that originate from a network of 
hydrogen bonds compensate for this entropic penalty101. 
A further simplification of the PA­IIl antagonists was 
achieved when α­l­fucosides bearing heterocyclic sub­
stituents as aglycons were synthesized. Surprisingly, some 
candidates — for example, compound 13 —have a similar 
potency to lewisa (REF. 99).

Oligovalent forms of the Fucα(1­4)GlcNAc epitope, 
such as compound 14 (REF. 102), exhibit increased activity  
compared with monovalent forms; however, in most 
cases, this effect was only modest on a per saccharide 
basis. To date, multivalency has only been explored 
with dendri mers that present l­fucose, which show an 
increase in affinity of up to a factor of 20 on a per saccha­
ride basis103. Finally, to prevent adhesion of P. aeruginosa 
mediated simultaneously by the PA­Il and PA­IIl lectins, 
hetero bifunctional ligands that present both d­galactose 
and l­fucose in an oligovalent array (as in compound 15 
(REF. 104)) or as a small­molecule glycomimetic (as in 
compound 16 (REF. 105)) have been constructed. In a 
study to determine the efficacy of compound 16 in 
mice surgically stressed by 30% hepa tectomy, 60% of 
the control group died 48 hours after acute infection 
with P. aeruginosa, whereas 100% of mice treated with 
compound 16 survived105.

FimH. Urinary tract infections (UTIs) are among the 
most prevalent inflammatory diseases that are caused 
by pathogens106,107. The predominant pathogen in UTIs 
is uropathogenic Escherichia coli (UPEC), which causes 
more than 80% of all infections in otherwise healthy 
people (uncomplicated UTI). In healthy individuals, 
most uropathogens originate from the rectal microbiota 
and enter the normally sterile urinary bladder through 
the urethra, where they trigger the infection (cystitis). 
Once in the urinary tract, bacteria attach to the urinary 
tract epithelium through fimbrial adhesion molecules to 
avoid the host’s defence mechanisms. Once bound, the 
bacteria are presumably internalized in an active process 
that is similar to phagocytosis108.

Uncomplicated UTI can be effectively treated with 
oral antibiotics such as fluoroquinolones, cotrimoxazol 
or amoxicillin and clavanulate, depending on the sus­
ceptibility of the pathogen involved. However, recurrent 
infections and subsequent antibiotic exposure can result 
in the emergence of antimicrobial resistance, which 
often leads to treatment failure and reduces the range of 
therapeutic options. So, there is an urgent need for effi­
cient, cost­effective and safe non­antibiotic therapy to 
prevent and treat UTIs without facilitating antimicrobial 
resistance. Inhibition of type 1 fimbriae­mediated bacte­
rial attachment to the bladder epithelium is a promising 
approach to achieve this goal109. Studies showed that 
α­mannosides are the primary bladder cell ligands for 
UPEC and that the attachment event requires the highly 
conserved FimH lectins, which are located at the tip 
of the bacterial fimbriae. A structure–function analysis 
showed that the residues of the FimH mannose binding 
pocket are invariant across 200 UPEC strains110.
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π–π interaction
A non-covalent interaction 
between organic compounds 
that contain aromatic moieties.

More than two decades ago, various oligomanno sides111 
and aromatic α­mannosides112 that antagonize type 1  
fimbriae­mediated bacterial adhesion were identified. Two 
approaches have been taken to improve their affinity: 
the rational design of ligands guided by information 
obtained from the crystal structure of FimH, and the 
multivalent presentation of the α­mannoside epitope.

The crystal structure of the FimH receptor­binding 
domain was solved in 1999 (REF. 113) and the corre­
sponding complex with oligomannoside­3 (REF. 114) has 
recently become available. Despite this detailed know­
ledge of the binding event, few attempts to translate 
this information into low­molecular­mass antagonists 
have been reported112,115–117. A selection of monovalent 
FimH antagonists is depicted in FIG. 5. The reference 

compound, methyl α­d­mannoside (compound 17) 
binds in the millimolar range118, but the most potent 
monovalent antagonist reported so far, compound 22, 
binds with nanomolar affinity117.

The reported affinities can be explained on the basis 
of the structure of the CRD that is located on the tip of 
the FimH protein (FIG. 5). First, the hydroxyl groups at 
the 2, 3, 4 and 6 positions of mannose form an extended 
hydrogen bond network114,118. Second, the entrance to 
the binding site formed by two tyrosines and one isoleu­
cine — the so­called ‘tyrosine gate’ — supports hydro­
phobic contacts118. The aromatic aglycons of antagonists 
— as occur in compounds 20 and 21, for example — can 
establish energetically favourable π–π interactions with 
this tyrosine gate, leading to substantially improved 

Table 2 | Carbohydrate epitopes used by bacteria and viruses for recognition and entry

Pathogen Binding epitope refs

Bacteria

Escherichia coli type 1 pili Manα(1-3)Manα(1-6)Man 109

Helicobacter pylori Neu5Acα(2-3)Galβ(1-4)Glc 109

Pseudomonas aeruginosa (PA-IL and PA-IIL) α-Galactoside and  Lewisx 109

Neisseria gonorrhoea Galβ(1-4)GlcNAc 109

E. coli K99 Neu5Gcα(2-3)Galβ(1-4)Glc 109

E. coli CFA1 Neu5Acα(2-8)Neu5Ac 109

Klebsiella pneumonite Man 109

Campylobacter jejuni Fucα(1-2)Galβ(1-4)GlcNAc 109

E. coli K1 GlcNAcβ(1-4)GlcNAc 109

E. coli P Galα(1-4)Gal 109

E. coli S Neu5Acα(2-3)Galβ(1-4)GalNAc 109

Haemophylus influenzae Neu5Acα(2-3)Galβ(1-4)GlcNAc 109

Neisseria meningitidis Neu5Acα(2-3)Galβ(1-4)GlcNAc 109

Salmonella typhimurium Man 109

Streptococcus pneumoniae Neu5Acα(2-3)Gal 109

Streptococcus suis Galα(1-4)Galα(1-4)Glc 109

Viruses

Influenza A α(2-3)- or α(2-6)-linked sialic acid 186

Human parainfluenza  virus type 1 α(2-3)SLN and sialyl Lewisx 187

Norwalk virus H and Leb blood types 188

Rotavirus Sialylated glycans 189

Herpes simplex virus type 1 3-O-sulphated heparin sulphate 190

Calcivirus Blood group antigens 191

Corona virus Sialylated glycans 192

Murid herpes virus Glycosaminoglycans 193

Coxsackivirus A24 Sialylated glycans 194

Papilloma virus L1 Heparan sulphate 195

Polyomaviruses (JCV and BKV) α(2-3)- or α(2-6)-linked sialic acid 196

Simian virus SV40 GM1 ganglioside 197

Newcastle disease virus Sialylated glycans 198

BKV, B. K. virus; JCV, John Cunningham virus; Leb, Lewisb antigen; PA-IIL, fucose-binding lectin PA-IIL; PA-IL, PA-I galactophilic 
lectin; SLN, sialyl lactoseamine.

R E V I E W S

nATURE REvIEWS | Drug Discovery  vOlUME 8 | AUGUST 2009 | 669

© 2009 Macmillan Publishers Limited. All rights reserved



Nature Reviews | Drug Discovery

a

c

b

Lewisa 12 13

14

16

15

NH

O

O

O

N
N

N

O

N
N

N

O

O OHOH
HO

O OH
OH

HO

OO
HO

O

HOOH
OH

NHAc

OH

N

NN

O O
OH

O

OHHO
HO

AcHN

HO

N
N

N

O OO
4

O
OO

OH
O

O
O

O HO
OH

HO OH
OH

OH

HO

HO

HO

OH

O OH
OH

HO

O

NO

O

OOO
O

O

HO
OH

OH

HO
HO

HO OH

AcHN

OH

OH

OO
HO

O

HO OH
OH

AcHN

OH

N

NN
COOCH3

NH

NH

O

O

O

O

O

O

R

R

R1

R1
NH

O

O

O

N
N N

O
O

HO
OH

OHHO

N
N N

O
O

HO
OH

OHHO

R = 

R1 = 

affinities. A further enhancement of affinity was achieved 
using oligovalent and multivalent FimH antagonists  
(for example, compounds 23 to 28).

Soluble FimH antagonists that are applied to prevent 
bacterial adhesion to the host tissue are faced with the 
challenge of mechanical forces resulting from fluid flow. 
It is commonly presumed that the duration of receptor–
ligand interactions is shortened by shear stress. However, 
it was recently discovered that the ability of E. coli to 
avoid detachment is dramatically increased by shear 
stress119. As a consequence of shear stress­enhanced 
adhesion, E. coli evades detachment from body surfaces 
by soluble glycoproteins or peptides that are ubiquitous 
in body fluids. An example is the glycoprotein uromodulin 
(also known as the Tamm–Horsfall urinary glycopro­
tein), which binds to FimH and is thought to function 
as a body defence against E. coli infections120. On the 
basis of simulations121, it is thought that force­induced 
separation of FimH from its mannose ligand causes a 
conformational change of the binding pocket from  
a low­affinity to a high­affinity conformation. Instead 
of the application of competitive antagonists, allosteric 
antagonists that are capable of stabilizing the low­affinity 
conformation might lead to a successful therapy.

Although monovalent and oligovalent antagonists 
with nanomolar affinity have been reported, there are 
no data available regarding their pharmacokinetic prop­
erties. However, for the treatment of UTI, oral bioavail­
ability and fast renal excretion to reach the targets in the 
urinary tract are prerequisites for therapeutic success.

Rational design: challenges and lessons learned
As in other fields that have spawned successful new 
therapeutics (for example, monoclonal antibodies), years 
of effort have been required to understand the unique 
challenges that are inherently linked to carbohydrate­
derived drugs and to develop the basic skills and the 
specific knowledge to move from the excitement of  
scientific discovery to the development of a new class 
of therapeutics.

Although animal lectins usually show a high degree 
of specificity for glycan structures, their single­site 
binding affinities are typically low. In biological systems, 
functional affinity is often attained by the oligovalent 
presentation of CRDs, either in an oligomeric protein 
(for example, cholera toxin122) or through clustering at 
cell surfaces (for example, asialoglycoprotein recep­
tor123). Additionally, the pharmacokinetic properties 
of carbohydrate hits, such as bioavailability or plasma 
half­life, are typically unsatisfactory for therapeutic 
applications. Finally, although tremendously improved 
novel glycosylation protocols124 and solid­phase 
approaches125 have become available, oligosaccharides 
are still only manufactured by cumbersome multi­step 
syntheses.

Therefore, the challenge is to mimic the structural 
information of a functional carbohydrate with a com­
pound that has drug­like characteristics. The first step in 
this process is to understand the SAR of a carbohydrate 
lead, specifically the contribution made by each func­
tional group to binding as well as the three­dimensional 

Figure 4 | PA-iL and PA-iiL inhibitors. a | Binding sites of PA-I galactophilic lectin 
(PA-IL) complexed with d-galactose (Protein Data Bank code: 1OKO (REF. 170)).  
b | Binding sites of fucose-binding lectin PA-IIL complexed with l-fucose (PDB code: 
1GZT143). In parts a and b, the protein backbones are depicted in ribbon style, 
carbohydrates are shown in ball and stick style and the grey spheres are Ca2+.  
c | The monovalent ligands compound 12 (REF. 101) and compound 13 (REF. 99) exhibit 
affinity for PA-IL and PA-IIL that is similar to that of Lewisa (REF. 100); the most potent 
oligovalent ligand is compound 14 (REF. 102), but it has only a modest effect on  
a per saccharide basis; the heterobifunctional glycodendrimer compound 15  
(REF. 104) and the low-molecular-mass glycomimetic compound 16 (REF. 105)  
bind to both PA-IL and PA-IIL from Pseudomonas aeruginosa.
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presentation of the pharmacophores. Based on this 
information, it is possible to identify glycomimetics 
that are pre­organized in their bioactive conformation 
 — that is, which will adopt their bound conformation in 
solution. In addition, the mimics should show improved 

pharmacokinetic properties — in particular, improved 
bioavailability and serum half­life — while minimizing 
toxicity and cost of synthesis. In the past, the develop­
ment of carbohydrate­derived drugs was often not 
entirely focused on simultaneously solving all of the 

Figure 5 | FimH antagonists. The crystal structure representation shows the mannose derivative compound 21 docked 
to the mannose-binding pocket of FimH (Protein Data Bank code: 1KFL). The relative inhibitory potencies (RIPs) of the 
FimH antagonists compounds 18 to 28 are based on methyl α-d-mannoside (compound 17; RIP = 1). As the RIPs were 
obtained from different assays (yeast agglutination, adherence to cell lines derived from human urinary bladder 
epithelium or guinea pig epithelial cells as well as surface plasmon resonance experiments with immobilized FimH), they 
should be compared with caution.
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Nuclear Overhauser effect
The cross-relaxation between 
two nuclei, which is observable 
through the longitudinal 
magnetization of a given 
nucleus after a second nucleus 
is perturbed from equilibrium.

STD NMR spectroscopy
(Saturation transfer difference 
nuclear magnetic resonance 
spectroscopy). An experiment 
in which spin-diffusion of the 
nuclear Overhauser effect 
spreads magnetization 
throughout the hydrogen 
nuclei of a receptor, which is 
partially transferred to the 
hydrogen nuclei of a binding 
ligand.

above requirements and some high­profile failures 
resulted, notably in the field of selectin antagonists. 
nevertheless, rationally designed glycomimetics have 
the potential to reap the rewards of a relatively untapped 
source of novel therapeutics for wide­ranging and 
important biological and medical applications.

Understanding native interactions. The starting point 
for the rational design of glycomimetics is the analysis 
of the binding characteristics of the carbohydrate–CRD 
binary complex. The three­dimensional structure of 
the lectin or the carbohydrate–lectin complex has been 
solved for a number of therapeutically interesting targets. 
Thus, E­, P­ and l­selectin co­crystallized with slex or 
PSGl1 (P­selectin glycoprotein ligand 1)126, siaload­
hesin co­crystallized with 3′­sialyl lactose127, or DC­SIGn  
co­crystallized with the pentasaccharide GlcNAc2Man3 
(REF. 128) hold valuable information for the rational design 
of glycomimetics. In cases in which the structure has not 
yet been solved, homology models can be generated — as 
is the case for MAG, for example129.

Detailed insight into the binding event can be gained 
by nuclear magnetic resonance (nMR) experiments. For 
example, the bound conformation of a functional carbo­
hydrate ligand in the CRD of the target lectin can be deter­
mined using transferred nuclear Overhauser effect (nOE)130. 
In addition, the binding epitope can be identified by satu­
ration transfer difference nMR spectroscopy (STD NMR 
spectroscopy)131. This technique has been used to study 
interactions of carbohydrate ligands with the rotavirus 
receptor, vP8 (REF. 132), the anti­carbohydrate tumour­
associated antibody GSlA1 (REF. 133), E­selectin134 and 
MAG87,135. Overall, transfer nOE nMR and STD nMR 
experiments allow a rapid insight into the binding char­
acteristics of carbohydrate–lectin interactions and can 
replace, at least partially, X­ray investigations and the 
time­consuming mapping of binding epitopes by chemical  
means136.

Enhancing binding affinity. The generally low affinity 
of carbohydrate–lectin interactions is a consequence of  
shallow binding sites of lectins, leading to a high solvent 
accessibility of the complex forming hydrogen bonds 
and salt bridges. Owing to large off­rates (koff), the 
binary complexes are characterized by short dissociative 
half­lives (t1/2), typically in the range of seconds — as 
shown for selectins and their physiological ligands137–139, 
the carbo hydrate­recognizing antibody GSlA1, slea  

(REF. 133) and MAG antagonists135. Given that, for a thera­
peutic application, the t1/2 of a drug–target binary com­
plex is expected to be in the range of minutes to a few 
hours, improving the koff of glycomimetic compounds is 
mandatory for therapeutic applications140.

Often, mammalian lectins undergo numerous 
directed, but weak, interactions with their ligands. A 
specific example, the interaction of slex with E­selectin, 
is outlined in FIG. 6a. It consists of six solvent­exposed 
hydrogen bridges and a salt bridge (to produce complex 
29). One possible approach to improve affinity is to pre­
organize the antagonist in its bioactive conformation 
to compensate for the low enthalpic contributions by 

reducing the entropy costs on binding. For E­selectin, 
this strategy was successful (see complex 30 in FIG. 6a). 
As elucidated by X­ray126 or STD nMR134 studies, the 
GlcNAc moiety does not interact with the binding site 
and serves solely as a linker that positions the galactose 
and the fucose moiety in the correct spatial orientation. 
It was successfully replaced by non­carbohydrate link­
ers141,142. In addition, steric repulsion deriving from 
properly placed substituents on the linker moiety can 
further improve the pre­organization of the core and, as 
a result, the affinity of the corresponding antagonist130. 
Furthermore, the pre­organization of the carboxylate was 
optimized as well, revealing (S)­cyclohexyl lactic acid as 
the best mimic of neu5Ac141.

If the target lectin offers a well­structured binding 
pocket, the free energy of binding can be improved 
by incorporating additional enthalpic contributions. 
Successful examples are the neuraminidase inhibitors 
zanamivir7 and oseltamivir9. For the influenza viral coat 
protein neuraminidase, the natural substrate neu5Ac 
and the corresponding glycal neu5Ac2en (compound 
31), which mimics the transition state of the hydrolytic 
reaction, have only millimolar to micromolar affinities. 
The improved affinities of the transition state analogues 
zanamivir and oseltamivir result from a guanidinium 
substitution in the 4 position, enabling the forma­
tion of a new salt bridge7, or from the replacement of 
the glycerol side chain in the 6 position, leading to a 
new, favourable lipophilic interaction by induced fit9 
(FIG. 6b).

Finally, multivalency frequently occurs in nature 
and leads to tight binding in situations in which univa­
lent protein–ligand binding is weak143–145. Recognition 
of carbohydrate ligands by bacterial and mammalian 
lectins are examples of this phenomenon. For the spe­
cific inhibition of these recognition events, oligovalent 
ligands have been proposed (see, for example, FIGS 4,5). 
However, the design of tight­binding oligovalent ligands 
is, for the most part, an empirical endeavour. Tailored 
oligovalency, whereby the spacing of a limited number 
of tethered branches is matched to that between adja­
cent sugar binding sites of a protein or a protein cluster, 
potentially offers substantial increases in avidity for the 
target143,146,147.

Pharmacokinetics. Unfortunately, only limited phar­
macokinetic data are reported for any carbohydrate or 
glycomimetic. For oral absorption by passive permeation 
through the membrane barrier of the small intestine148, 
there are limitations regarding molecular mass, polarity 
and the number of hydrogen bridge donors and accep­
tors149. The hydrophilic nature of oligosaccharides 
caused by the large number of hydroxyl groups and 
charges (sulphates and carboxylates) makes their oral 
availability virtually impossible. Therefore, when glyco­
mimetics are designed, the pharmacokinetic as well 
as the pharmacodynamic profile should be adjusted. 
Possible strategies to improve passive absorption are the 
bioisoteric replacement of crucial groups150 or a pro­
drug approach151. A successful example of the prodrug 
approach is oseltamivir, which is an ester prodrug. Once 
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absorbed, the ester is metabolized to the corresponding 
carboxylate, the active metabolite RO64­0802 (REF. 152). 
Its absolute bioavailablity from the orally adminis­
tered prodrug is 80%. It is detectable in plasma within 
30 minutes and reaches maximal concentrations after 
3–4 hours153.

In addition, the feasibility of using an active­transport 
system that is abundant in the intestine, liver, kidney or 
brain should also be considered154. Many drugs that are 
rationally designed or derived from natural products 
that cannot be absorbed by passive transport (such as 
β­lactam antibiotics, heart glycosides or fungicides) take 

Figure 6 | enhancing the affinity of carbohydrate-derived drugs. a | The affinity of carbohydrate-derived drugs can 
be improved by pre-organization in the bioactive conformation. In solution, the core conformation (shown in red) of 
sialyl Lewisx is in the range of +10° to –60° and the acid orientation (shown in blue) is in the range of +80° to +150°.  
In the bioactive conformation (complex 29), the core conformation is approximately –40° and an acid orientation is 
approximately 110° (REFS 175–178). The degree of pre-organization of a mimetic in the bioactive conformation, as shown 
in complex 30, can be correlated with its affinity130,141. b | Affinity can be improved by establishing new enthalpic 
interactions; comparisons of the binding mode of Neu5Ac2en (compound 31), zanamivir (Relenza)7 and oseltamivir 
(Tamiflu)9 to neuraminidase are depicted. bb, backbone; sc, side chains.
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advantage of active transport. In addition, active transport 
can be enforced by rational design — for example, by 
incorporating an amino acid into the structure and 
thereby creating a substrate for active transport by pep­
tide transporter 1 (PEPT1; also known as SlC15A1) and 
PEPT2 (also known as SlC15A2). A successful example 
is valacyclovir (valtrex/Zelitrex; GlaxoSmithKline), an 
antiviral drug used in the management of herpes sim­
plex, in which valine was attached to the parent drug 
acyclovir (Zovirax; GlaxoSmithKline/Biovail), leading 
to a fivefold increase of the oral availability155. Extensive 
analysis of the structural requirements of the PEPT1 
transporter identified numerous analogues with higher 
affinity than valine; this information will be valuable for 
improving the oral availability of glycomimetics156.

The usually short serum half­life and rapid excretion 
of carbohydrates presents an additional challenge for the 
design of glycomimetic drugs. Degradation in the pres­
ence of serum or liver microsomes are routine assays of 
metabolic stability that must be incorporated early in the 
design process of glycomimetics157.

Organic anion and cation transport systems located in 
the liver and kidney are responsible for active excretion 
from the circulation158. The organic anion transporter 
family (OAT1 to OAT5) recognizes anions (specifically, 
carboxyl groups) connected to hydrophobic ring struc­
tures. RO64­0802, the active metabolite that is formed 
from oseltamivir, is an example of a glycomimetic drug 
with a serum half­life that is diminished by recognition 
and removal by the OAT system159. When probenecid, a 
competitive inhibitor of OAT1, is administered in com­
bination with oseltamivir, the serum half­life of the active 
metabolite is extended160. This strategy has been suggested 
to extend the supply of the US government’s stockpile of 
oseltamivir in case of a national emergency in response 
to a pandemic outbreak of influenza. Both interactions 
with probenecid and specific transporter assays should 
be examined early in the development of a glycomimetic 
containing charged groups to identify structural elements 
that may adversely affect serum half­life.

Conclusions
Recent efforts to elucidate the complexity and functions 
of the human glycome by pooling resources and tech­
nologies among academic centres has led to a rapid 
influx of discoveries and the acknowledgement of a new 
source of structural information that is not apparent 
from the human genome. The efforts in drug discovery 
reviewed here show the challenges in medicinal chemistry 
that need to be met for the development of drug­like 
glycomimetics.

Past efforts in this field have highlighted the drawbacks 
of using native oligosaccharides as drugs. Typically, both 
their pharmacodynamic and pharmacokinetic properties 
are insufficient for a therapeutic application. In addition to 
the lack of affinity, they suffer from low tissue permeability, 
short serum half­life and poor stability. Glycomimetics 
are designed to correct these shortcomings. The detailed 
insight into carbohydrate–lectin interactions that is 
required is predominantly provided by recent progress 
in nMR spectroscopy and X­ray crystallography. Thus, 
the identification of the bound conformation of a func­
tional carbohydrate by transferred nOE nMR allows 
the design of mimetics with pharmaco phores that are 
pre­organized in their bioactive conformation, leading 
to reduced entropy costs upon binding. By incorporating 
additional binding sites, which frequently leads to hydro­
phobic contacts, a further enhancement of affinity can 
often be achieved. Finally, the knowledge of the binding 
epitope as obtained by STD nMR allows the identifica­
tion of negligible and replaceable functional groups. As 
a consequence, the design of glycomimetics that have 
improved absorption, distribution, metabolism and 
excretion can be accomplished.

Currently, these principles for the rational design of 
glycomimetics are being implemented in both academic 
institutions and industrial laboratories. As successful 
examples of glycomimetic drugs emerge, the strategies 
developed for their design will pave the way to real­
ize the potential of this relatively untapped source of 
therapeutics.
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