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Collective navigation of complex 
networks: Participatory greedy 
routing
Kaj-Kolja Kleineberg    & Dirk Helbing

Many networks are used to transfer information or goods, in other words, they are navigated. The 
larger the network, the more difficult it is to navigate efficiently. Indeed, information routing in the 
Internet faces serious scalability problems due to its rapid growth, recently accelerated by the rise 
of the Internet of Things. Large networks like the Internet can be navigated efficiently if nodes, or 
agents, actively forward information based on hidden maps underlying these systems. However, in 
reality most agents will deny to forward messages, which has a cost, and navigation is impossible. Can 
we design appropriate incentives that lead to participation and global navigability? Here, we present 
an evolutionary game where agents share the value generated by successful delivery of information 
or goods. We show that global navigability can emerge, but its complete breakdown is possible as 
well. Furthermore, we show that the system tends to self-organize into local clusters of agents who 
participate in the navigation. This organizational principle can be exploited to favor the emergence of 
global navigability in the system.

The rapid growth of the Internet of Things1 is expected to lead to more than 50 billion connected devices by 2020, 
which implies challenges for the scalability of the digital infrastructure2–5. Decentralized systems6, 7 provide the 
required scalability in addition to the advantage of high transparency and a low risk of abuse by single, powerful 
entities8, 9. These architectures, however, face particular problems concerning their functionality. A key challenge 
is how to route information relying only on local knowledge10–16. To accomplish this task, the alignment of incen-
tives of the involved individuals or institutions in the routing process to achieve global navigability is of crucial 
importance2.

Routing information is among the most important functions real complex networks must perform. Examples 
include biological networks like the human brain, social networks17, and the Internet11, 18. Many real complex net-
works have shown to be navigable, where nodes efficiently route messages using the connectivity of the network 
without relying on knowledge about the global topology. This can be achieved by performing greedy routing19, 20  
in underlying geometric spaces10–15. Greedy routing builds on nodes forwarding incoming messages to their 
neighbor that has the smallest distance to the destination measured in the underlying geometric space.

In reality, there is a cost associated to sending messages, which can be a physical cost or invested time or 
energy. This cost implies that individuals are unlikely to be willing to participate without incentives. Furthermore, 
if even a single node in a given message forwarding chain decides not to participate (defect), the entire delivery 
fails. This vulnerability of the navigation process raises serious concerns about the feasibility of navigation in 
realistic environments. Here, we introduce an incentive to participate in the navigation process and show that 
it can promote the emergence of global navigability. In reality, networks have a utility, and hence the successful 
delivery of information or goods generates value. We assume that this value is distributed equally among the 
individuals that took part in the forwarding process, which could be realized in digital environments by an appro-
priately designed cryptocurrency21. In the following we study an evolutionary game22–27 that we call participatory 
greedy routing. We show that in the real IPv6 Internet topology as well as in synthetic networks, the mentioned 
incentive allows for the emergence of global cooperation and navigability in the system despite its vulnerability 
to defection. On the other hand, complete defection and the total breakdown of navigability is also possible. We 
shed light onto the conditions under which the system approaches the navigable state. In addition, we reveal that 
global cooperation emerges as the system self-organizes into local clusters of cooperators, which tend to spread 
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and merge. Finally, building on this knowledge, we show how the initial minimal density of cooperators needed 
to drive the system to the navigable state can be reduced significantly by adopting an “act local” strategy.

Results
Navigation of complex networks via hidden metric spaces.  It has been shown that real complex 
networks can be embedded into hidden hyperbolic metric spaces12, 13. In these mappings, each node i is mapped 
into the hyperbolic disc where it is represented by the polar coordinates ri, θi. These coordinates, or hidden varia-
bles, abstract the popularity and similarity of nodes15. The radial coordinate ri is related to the expected degree of 
node i and therefore abstracts its popularity. More popular nodes are placed towards the center of the disc and 
hence obtain a lower radial coordinate, which are distributed according to ρ ∝ γ−r e( ) r( 1)1

2 . The angular distance 
between nodes i and j given by Δθij = π−|π−|θi−θj|| is a measure of the similarity of i and j. A lower distance 
means a higher similarity. In simple terms, in a social network nodes close to you in this space would be your 
peers rather than your geographic neighbors. In the following, we always refer to this measure of proximity. The 
hyperbolic distance10,

θ= − ∆−x r r r rcosh (cosh cosh sinh sinh cos ), (1)ij i j i j ij
1

comprises information about both the similarity and popularity of nodes i and j. The connection probability for a 
given pair of nodes depends only on their hyperbolic distance. Given a real network, the coordinates of nodes can 
be inferred, using Maximum Likelihood Estimation techniques11–13.

In the inferred hyperbolic maps, one can identify soft communities, which are clusters of nodes close to each 
other in the angular similarity space11, 15, 28, 29, predict missing links12, 13, 28, and perform efficient greedy rout-
ing reaching targets with high success rates and following approximatively topologically shortest paths11–13, 18. 
Importantly, the synthetic networks generated in this work are small-world networks30, 31.

In greedy routing, each node forwards messages to her neighbor that is closest to the target in the underlying 
metric space. This means that node i forwards the message to its neighbor node j located at the smallest hyper-
bolic distance to the target node t, i.e. = ∈x xminjt l i ltNB( ) , where l runs over all neighbors of i and x is the hyper-
bolic distance from Eq. 1. This process is illustrated in Fig. 1a. Only local knowledge about the coordinates of 
neighbors and those of the target is needed to perform routing. If a message is given back to a node it has already 
visited, the delivery fails (see ref. 19 for details).

However, greedy routing assumes that all nodes, or agents, participate in the process, which is not the case in 
reality. In the following, we consider a cost associated with sending messages and present incentives that can lead 
to global-scale cooperation and a high performance of the system.

Participatory greedy routing.  Participating in the forwarding of messages implies a commitment of the 
involved agents in terms of time and resources, in other words, sending messages has a cost. Individual agents 
will only be willing to pay this cost if they obtain a benefit from using the network. Hence, it is essential to create 
an incentive that can enable the emergence of global cooperation among the agents in the system. Real networks 
perform certain functions, and hence successfully delivering information or goods generates value. In decentral-
ized systems, this value is generated in a bottom-up way by the agents who perform the routing. Consequently, 
we assume that the value generated, which we call b, is distributed equally among the agents that participate in 
the successful delivery. In addition, each agent that sends a message has to pay a cost, which we set to 1. This cost 
is paid even if the message is not delivered. Note that a single defector along the chain (except for the final desti-
nation) will lead to a failure of delivery (see Fig. 1b). Each forwarding chain is similar to a coordination game in 

Figure 1.  (a) Illustration of a message forwarding path found by greedy routing. Nodes and edges on the path 
are highlighted. (b) Illustration of the different possible scenarios of message forwarding events. In the first two 
cases, the message is delivered successfully. Each node obtains a share of the generated value b and those that 
forwarded the message pay the cost of 1. Here, we have four nodes involved (including the final recipient), and 
hence each node obtains the share b/4. The state of the final destination has no impact, as a defector will also 
happily receive her message. In the third and fourth case the delivery fails. In the third case the message is given 
to a defector along the chain which simply does not forward the message. In the fourth case, although all nodes 
cooperate, the message runs into a loop and the delivery also fails, which is a property of the classical greedy 
routing procedure. In the third and fourth case, there is no reward, and each node that has sent the message to a 
neighbor pays the cost of 1 (i.e. a payoff of −1).
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the sense that the reward is only obtained if all nodes in the chain cooperate. However, costs are only paid until 
the message reaches the first defector.

Is cooperation possible despite the strong impact that even a single defector can have? And if yes, under which 
conditions? To answer these questions, we design an evolutionary game called participatory greedy routing, in 
which individual agents choose their strategy such that they either cooperate or defect. Cooperators forward 
messages, whereas defectors ignore them and hence even a single one causes the entire delivery to fail.

Participatory greedy routing is defined as follows and consists of three phases: i) Initialization phase: First, we 
either generate synthetic networks of size N with an underlying hyperbolic geometry using the model described 
in Appendix, or we use the real IPv6 Internet topology and its mapping to hyperbolic space (see Appendix). Then, 
we randomly distribute the initial cooperators, whose density we denote by C0, in the network. We will discuss the 
impact of a different distribution of initial cooperators later. For now, let us move on to the ii) navigation phase: 
We randomly select pairs of nodes that act as source and target of a message sending process. We simulate the 
greedy routing process19, 20 by forwarding the message to the neighbor closest to the target in the metric space at 
each step until it either reaches its destination or enters a loop or is passed on to a defector. In the last two cases, 
the delivery fails. After each message sending intent, we distribute the payoffs: each agents that has sent the mes-
sage to another agent pays the cost of 1 (i.e. her payoff is reduced by 1), and only if the message was delivered 
successfully, each agent that participated in the forwarding chain (including the final destination) obtains her 
share b/lc of the generated value, where lc denotes the length of the chain including the final recipient. iii) Update 
phase: After N message sending intents, we perform a step where individuals can update their strategies following 
a replicator dynamics32–34. Each agent i selects a random neighbor j and copies her strategy (cooperate or defect) 
with a probability that depends on the payoff difference pj − pi, here chosen to be Fermi-Dirac like (in analogy to 
maximum entropy considerations in Glauber dynamics32, 35),

=
+← − −

p
e

1
1

,
(2)i j p p K( )/j i

where K mimics the randomness of decisions (here we always set K = 1). We assume that all agents update their 
strategies at the same time. Therefore, each node perceives the previous state of each other node to compute her 
new state. Only after each new state is computed, the changes in strategy are applied and become visible for the 
other nodes. After all agents update their strategy, we reset all payoffs and go back to the navigation phase until 
we reach the end of the simulation.

Bistability of the system.  We find that the system can approach two qualitatively different states in the 
long term. A functional state, in which nearly the entire population cooperates and the system is highly navigable, 
and a non-functional state, in which nearly the whole population defects and the system cannot be navigated at 
all (see Fig. 2a). This bistability can be understood intuitively from the feedback between system performance 
and cooperation. If cooperation decreases, the system as a whole performs worse, and the temptation to defect 
increases, as obtaining the reward for successfully delivering a message becomes less likely. Hence, defection 
increases, which further decreases the system performance, which further increases defection, and so on, lead-
ing eventually to a complete breakdown of cooperation1 and navigability. On the other hand, more cooperation 
means a better system performance, making cooperation a better strategy choice, which can lead to nearly full 
cooperation and navigability.

The final fate of the system is determined by the initial rate of cooperators C0 and the payoff parameter b. 
We find that in a large region of the phasespace either the functional state (blue region in Fig. 2a,b,d,e) or the 
non-functional state (red region) is approached with a high probability. These regions are separated by a smaller 
region in which both states are approached with intermediate probabilities (white region).

Finally, note that, for full cooperation, participatory greedy routing degenerates towards greedy routing. In 
this optimal case, we find for the synthetic networks (γ = 2.5) a success rate of (87.2 ± 3.1)% for greedy routing 
with an average of (4.1 ± 0.3) hops. For the Internet IPv6 network, we find that (91.6 ± 0.5) percent of the mes-
sages are delivered successfully with (3.61 ± 0.03) hops on average. In the functional state, participatory greedy 
routing yields a performance close to these optimal values (see Supplementary Materials).

Self-organized local clusters drive global cooperation.  We observe that the spontaneous emergence 
of cooperating local clusters precedes the global emergence of cooperation36, and the underlying metric space 
offers a natural representation of such clusters. In Fig. 3 we present an explicit realization of the system for syn-
thetic networks (see Supplementary Video 1) and one for the IPv6 Internet network (see Supplementary Video 2), 
where we start with a small fraction of cooperators that are chosen at random. Initially, the fraction of cooperators 
decreases (see Fig. 3a), but at the same time localized clusters of high cooperation emerge. Such clusters are sets 
of nodes in a small angular interval of the underlying space (see Fig. 3b and c). Importantly, these clusters are 
successful because message paths follow shortest distances, and hence nodes within such a cluster can commu-
nicate despite the initially very low cooperation and poor performance of the system globally. If enough value b 
is generated, these clusters can create a higher payoff than their defecting neighbors. This implies that defectors 
located at the border of a cooperating cluster have a high probability of switching to cooperation, which results 
in their assimilation of the cluster. Hence, the localized clusters of high cooperation grow and eventually merge 
until they cover a large fraction of the network. To sum up, in simple terms, global cooperation emerges from the 
spread of local clusters of cooperators.

Clustering of cooperators reduces the initial “critical mass”.  We have seen that an initial “critical 
mass”, i.e. a certain minimal density of initial cooperators is needed to drive the system to the functional state. We 
find that less initial cooperators are needed if the networks are more heterogeneous (see Fig. 2c). The navigability 
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of the system—even for full cooperation—decreases quickly for γ > 2.9, which implies that it becomes very dif-
ficult to drive the system to the state of high cooperation (see Supplementary Materials). Note that most real 
complex networks have power-law exponents between 2 and 3 and are navigable11.

As discussed in the previous section, the system dynamically self-organizes into localized clusters of high 
cooperation, which then expand and merge, eventually giving rise to global cooperation36. We can exploit the 
understanding of this process to lower the minimal initial density of cooperators. In particular, instead of distrib-
uting them randomly, we can assign them to a certain region of the angular space (see Supplementary Fig. 1f) by 
assigning to node i the strategy

θ π
=






∈  S C(0) 1 if [0, 2 ),
0 else, (3)i

i 0

where θi denotes the angular coordinate of node i. This leads on average to an initial density C0 of coopera-
tors due to the uniform distribution of angular coordinates in the model for the generation of synthetic net-
works (see Appendix). This strategy significantly reduces the minimal initial density of cooperators required 
to reach the desired functional state. We define a threshold of initial cooperators above which the functional 
state is approached with more than 50% probability. We find that starting with clustered initial cooperators can 
reduce this threshold by up to 50% for the synthetic networks considered (γ = 2.7), and by up to 24% for the IPv6 
Internet topology (see Fig. 2c and f). To conclude, starting with local clusters of cooperators strongly favors the 
emergence of global cooperation and navigability.

Figure 2.  (a) Probability of reaching the successful state (blue color) as a function of the initial cooperation rate 
C0 and the payoff b. Here, we generated networks using the model described in Appendix with 10000 nodes, a 
power law degree distribution with exponent γ = 2.5, temperature T = 0.4, and mean degree <k> ≈ 6. The 
results are averaged over 50 simulations. A realization is said to have approached the functional state if the 
performance of the system in the stationary state is larger than 0.5. To compute the quantities in the stationary 
state, we first let 250 rounds pass, which avoids the initial transient phase, and then we average over another 250 
rounds (we observe that this initial phase usually takes approx. 25 steps, and therefore allow 10 × 25 steps to 
pass, which indeed ensures that the system is in one of the two described states). Note that we only observe 
states that either perform very well with success rates .0 5 or very poorly with success rates .0 5 (see 
Supplementary Materials). Initial conditions are randomly assigned cooperators. (b) Same as before but starting 
from clustered cooperators according to Eq. (3). (c) Threshold value of C0 for the system to approach the 
functional state with at least 50% probability (black lines in a, b) for different values of the power-law exponent 
γ. Solid lines correspond to the random distribution of initial cooperators, whereas dashed lines represent the 
clustered initial configuration. Arrows show the reduction of the initial “critical mass”. The network parameters 
are the same as in (a). (d,e) Same as a–c but for the IPv6 Internet network (averaged over 200 realizations). (f) 
The same as in (c) but for the IPv6 Internet topology. The solid line corresponds to the black line in (d) and the 
dashed line is the same as the black line in (e). Arrows show the reduction of the initial “critical mass” due to 
localization of the initial cooperators.
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The role of hubs.  Hubs, i.e. nodes with very high degree, play an important role in the navigation process. 
In particular, the navigation process follows a “zoom in - zoom out” pattern, where hubs—forming large-range 
connections in the metric space—facilitate the transmission of messages across the network11. Therefore, one 

Figure 3.  (a) Emergence of cooperation in a synthetic network for b = 25 and C0 = 0.15 with N = 3000 nodes 
and a power law degree distribution with exponent γ = 2.5, temperature T = 0.4, and mean degree <k> ≈ 6. 
We show the evolution of the density of cooperators (blue line) and the success rate of navigation (yellow 
line). Time t represents the number of update phases the system has undergone. (b) Histograms for the same 
realization for the number of cooperators (blue) and total number of nodes (yellow) in respective bins of the 
angular coordinate θ. Time increases from left to right, t = (7, 17, 75). (c) Network and states of the nodes for 
times t = (7, 17, 75) for the same realization, see Supplementary Video 1. (e,f) Same as a–c, but for the IPv6 
Internet network and for C0 = 0.15 and b = 30. Times shown are t = (5, 10, 30), see Supplementary Video 2.
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would expect that a lower number of initial cooperators is needed to drive the system to the functional state if 
those cooperators are the hubs of the system.

To study the effect of selecting hubs as initial cooperators, we select NC0 cooperators as before, but now instead 
of either selecting them uniformly at random or locating them in the angular space, we select nodes proportional 
to their degree kα. The parameter α then represents the strength of the preference of hubs to be among the initial 
cooperators, and for α = 0 one recovers the random case. Results for different values of α are shown in Fig. 4. 
Indeed, one observes a strong mitigation effect for higher values of α. We conclude that, if possible, targeting the 
hubs of the system constitutes an efficient strategy to favor the emergence of cooperation in the system.

Community structure of the real Internet network.  As mentioned above, the real Internet IPv6 topol-
ogy leads to similar results as for the case of synthetic networks. Especially, we again find a bistable behavior (see 
Fig. 2d and e), meaning that the system can be either in a state of high cooperation and navigability or nearly total 
defection and complete breakdown of navigability. We also find that clustering of the initial cooperators (note that 
the non-uniform distribution of angular coordinates requires a slightly different way to assign localized initial 
conditions, which we explain in Appendix) decreases the minimal density required to drive the system to the 
desired state (see Fig. 2f). In accordance with our findings concerning synthetic networks, the higher heteroge-
neity present in the Internet IPv6 topology (γ ≈ 2.1) favors the emergence of global cooperation and reduces the 
relative effect of clustered initial cooperators compared to distributing them randomly (compare Fig. 2c and f).

The existence of angular bins with significantly higher than average number of nodes is an indicator of a 
community structure that is present in real networks, in contrast to the synthetic networks considered here. In 
the real Internet IPv6 topology, the emerging clusters of high cooperation coincide—to some extend—with the 
community structure of the network (see Fig. 3e,f, and Supplementary Video 2).

Discussion
Real complex networks have shown to be navigable efficiently and relying only on local knowledge by performing 
greedy routing in underlying hidden metric spaces. However, greedy routing assumes that all nodes, or agents, 
participate in the process, which is often not the case in reality. Forwarding information has a cost for the agents, 
which can be a physical cost or invested time or energy. This cost is especially important because it causes a 
temptation for individual agents to defect (not participate in the navigation). The navigation process is vulnerable 
to defection because even a single defector leads to the failure of an entire forwarding chain. However, success-
fully delivering information in real networks generates value, which in decentralized systems is generated in a 
bottom-up way.

We assume that this value is shared among the agents that participate in the successful delivery. Agents can 
cooperate or defect, i.e. participate or not. We call this process participatory greedy routing. We show in the real 
IPv6 Internet network as well as in synthetic networks that, in participatory greedy routing, global cooperation 
can emerge from local interactions. We show that the system is effectively bistable, and can either be functional, in 
which case nearly the entire population cooperates and the network is highly navigable, or non-functional, which 
corresponds to the complete breakdown of navigability and nearly total defection. Interestingly, the emergence 
of global cooperation is preceded by the self-organization of the system into clusters of high cooperation. This 
organizational principle can be exploited to lower the critical initial density of cooperators needed to drive the 
system—with a high probability—to the desired functional state. We show that, if the initial cooperators are con-
centrated in a local cluster, the required minimal number of initial cooperators is reduced significantly. A similar 
effect can be obtained by selecting hubs as the initial cooperators.

Figure 4.  Mitigation effect for the spread of cooperation when hubs are preferentially selected as initial 
cooperators. Here, we have used synthetic networks constructed as before with 10000 nodes, a power law degree 
distribution with exponent γ = 2.5, temperature T = 0.4, and mean degree <k> ≈ 6.
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The inclusion of a reputation system37, competition between several networks18, 38–40, and adapting the net-
work topology16 constitute interesting tasks for future work. Participatory navigation procedures like the one 
described in this manuscript are likely to play an important role in decentralized future digital environments 
and could sustain information routing in the Internet. Our results confirm that the emergence of global coop-
eration and navigability is possible with the correct incentives and that the adoption of participatory bottom-up 
navigation is favored by starting with local clusters of participating agents. This is particularly important for the 
implementation in real systems.

Methods
Synthetic networks.  We construct synthetic networks using the 1 model described in ref. 14, which we 
then map to its approximatively equivalent counterpart in the hyperbolic disc, the 210 model.

1 model.  In the 1 model each node i has a set of hidden variables κi, θi. κi denotes the expected degree of 
node i, and the angular coordinate θi ∈ [0, 2π) abstracts a similarity space. The model parameters are size N, the 
exponent for the power law degree distribution, γ > 2, average degree k, and temperature T ∈ [0, 1]. The network 
generation procedure then works as follows:

	 1.	 Assign hidden variables: For each of the N nodes, we draw θi from the uniform distribution in [0, 2π) and 
κi from the probability density function

ρ κ γ κ κ= − γ−γ−
( ) ( 1) , (4)min 1

κ γ
γ

=
−
−

k 2
1

,min

where κmin controls the expected mean degree k.
	 2.	 Now, we connect each pair of nodes i, j with the probability

κ θ κ θ =

+












θ θ

µκ κ
( )

r( , ; , ) 1

1

,

(5)

i i j j
d T,

1
i j

i j

θ θ
π

θ θ π π θ θ= ∆ ∆ = | − | − | − |||d N( , )
2

, ,i j ij ij i j

µ π
π

=
T

kT
sin
2

,

where d(θi, θj) denotes the the angular distance between i and j.

Transformation to 2.  We transform the 1 model to the 2 model in the hyperbolic disc by mapping the 
hidden variables κi to radial coordinates ri according to

κ
κ

= −r R 2 ln ,
(6)i

i
min

where R denotes the disc radius given by

=R N
c

2 ln , (7)

π γ
γ

=





−
−






.c k T
T

sin
2

2
1

2

Finally, note that in the 2 model the connection probability from Eq. (5) translates to the Fermi-Dirac 
distribution

=
+ −

p x
e

( ) 1
1

,
(8)

ij x R( )T ij
1

2

and depends only on the hyperbolic distance

θ= − ∆−x r r r rcosh (cosh cosh sinh sinh cos ) (9)ij i j i j ij
1

between the nodes10.
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The IPv6 Internet topology.  In the IPv6 Internet topology each node represens an Autonomous 
System. The data was collected and developed by the Archipelago active measurement infrastructure (ARK) 
and CAIDA41. Autonomous Systems are constituents of the Internet infrastructure that are managed by a single 
entity and exchange traffic between them. Connections in the topology represent relationships between different 
Autonomous Systems to facilitate the exchange of traffic. The dataset42 consists of Autonomous Systems that route 
information using the IPv6 protocol. The topology used in18 was obtained by joining the connections during the 
first 15 days of January 2015 taken from42. The network has N = 5163 nodes, a power law degree distribution with 
exponent γ = 2.1, and average degree of <k> = 5.21, and an average mean local clustering coefficient of c = 0.55. 
The processed network data and its hyperbolic mapping were taken from publication18. The hyperbolic mapping 
was obtained using the HyperMap method12, 13. An implementation of this method is publicly available at43.

Localized initial conditions in the IPv6 topology.  To assign localized initial conditions in the real 
Internet, due to the non-uniform distribution of angular coordinates, we cannot proceed like in the case of syn-
thetic networks described by Eq. (3). This procedure would lead to significantly different numbers of initial coop-
erators depending on which section of the angular space one selects. Instead, we perform as follows. First, we 
order all nodes according to their angular coordinate. Then, we randomly select a node, i, and simply assign the 
nodes in the interval [i, i + NC0] to cooperators. The ordering then ensures that they all lie within an angular sec-
tor. We choose node i randomly so that the set of initial cooperators differs between different realizations.
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