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A shift in environmental conditions impacts the evolution of complex developmental
and behavioral traits. The Mexican cavefish, Astyanax mexicanus, is a powerful model
for examining the evolution of development, physiology, and behavior because multiple
cavefish populations can be compared to an extant, ancestral-like surface population of
the same species. Many behaviors have diverged in cave populations of A. mexicanus,
and previous studies have shown that cavefish have a loss of sleep, reduced stress,
an absence of social behaviors, and hyperphagia. Despite these findings, surprisingly
little is known about the changes in neuroanatomy that underlie these behavioral
phenotypes. Here, we use serial sectioning to generate brain atlases of surface fish and
three independent cavefish populations. Volumetric reconstruction of serial-sectioned
brains confirms convergent evolution on reduced optic tectum volume in all cavefish
populations tested. In addition, we quantified volumes of specific neuroanatomical
loci within several brain regions that have previously been implicated in behavioral
regulation, including the hypothalamus, thalamus, and habenula. These analyses reveal
an enlargement of the hypothalamus in all cavefish populations relative to surface fish,
as well as subnuclei-specific differences within the thalamus and prethalamus. Taken
together, these analyses support the notion that changes in environmental conditions are
accompanied by neuroanatomical changes in brain structures associated with behavior.
This atlas provides a resource for comparative neuroanatomy of additional brain regions
and the opportunity to associate brain anatomy with evolved changes in behavior.

Keywords: A. mexicanus, hypothalamus, brain evolution, brain atlas, sleep, stress, feeding

INTRODUCTION

Shifts in environmental conditions drive evolutionary changes in development, morphology, and
behavior (Peichel et al., 2001; Shapiro et al., 2004; Jeffery, 2009). While the genetic basis of many
behaviors has been studied extensively, much less is known about how changes in brain anatomy
accompany behavioral evolution. Interspecies comparative approaches are often used to associate
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anatomical or neural circuit changes with evolved behavioral
differences (Shapiro et al., 1991; Jarvis, 2004; Schenker et al.,
2008). However, these studies often focus on individual
brain regions of interest and interpretations may be limited
by the indirect nature of comparing different species. The
generation of detailed brain atlases of distinct populations of
the same species with divergent behavioral traits has potential
to provide insight into the relationship between neuroanatomical
evolution and behavior.

The Mexican cavefish, Astyanax mexicanus, provides the
unique opportunity to investigate the relationship between
brain anatomy and behavioral evolution in a single species
(Yoshizawa et al., 2010; Elipot et al., 2013; Alié et al., 2018;
Jaggard et al., 2018; Lloyd et al., 2018). These fish exist as
an eyed, pigmented population that inhabits the rivers and
streams of northeast Mexico and southern Texas, and at least 29
independent populations of largely blind and depigmented fish
that inhabit the caves of northeast Mexico’s Sierra de El Abra
and Sierra de Guatemala regions (Mitchell et al., 1977). Both
surface and cave populations are interfertile, which allows for
direct comparisons of populations from the same species with
different and well-described habitats and evolutionary history
(Şadoğlu, 1957; Wilkens, 1971). Comparisons between surface
fish and cavefish populations reveal evolved differences in diverse
behavioral traits ranging from social behavior to sleep, and the
emergence of these behaviors in multiple cavefish populations
has established A. mexicanus as a model for convergent evolution
(Duboué et al., 2011; Elipot et al., 2013; Kowalko et al., 2013a,b;
Chin et al., 2018).

A number of neuroanatomical differences have been identified
between surface fish and cavefish, including a reduction in
brain regions associated with visual processing in cavefish,
and an expansion of the hypothalamus, which is associated
myriad behaviors including social interaction, aggressive, and
sleep (Soares et al., 2004; Menuet et al., 2007; Alié et al.,
2018; Jaggard et al., 2018). Nevertheless, A. mexicanus lacks a
detailed brain atlas, and little is known about the extent of
neuro anatomical changes between individual populations of
cavefish. Further, the resources for a whole-brain anatomical
comparison between adult cave populations have not been
developed, and it remains unclear if distinct or shared changes
in brain anatomy underlie the behavioral differences observed
between independently evolved cavefish populations.

Here, we used serial sectioning of Nissl-stained brains,
followed by volumetric reconstruction to generate brain atlases
for surface fish and three different populations of cavefish. Our
analysis focuses on hypothalamic, thalamic and prethalamic, and
habenular regions, which have previously been associated with
behaviors known to diverge between surface fish and cavefish
including responses to stress, social behavior, sleep regulation,
feeding, and sensory processing (Duboué et al., 2011; Elipot
et al., 2013; Kowalko et al., 2013a,b; Chin et al., 2018; Jaggard
et al., 2018). Our findings reveal an expansion of thalamic and
other regions in cavefish, accompanied by a reduction in regions
associated with visual processing. Strikingly, some hypothalamic
nuclei are enlarged in cavefish, while other hypothalamic regions
remain unchanged. Together, these findings provided a detailed

anatomical reference for A. mexicanus and provide insight into
the anatomical plasticity that accompanies the evolution of
multiple behaviors.

RESULTS

Volumetric Reconstruction of Serial
Sectioned Adult Brains
To generate an adult brain atlas, we serially sectioned brains
of adult A. mexicanus from surface fish and three independent
populations of cavefish: Pachón, Molino and Tinaja (Figure 1A).
The Pachón and Tinaja populations are “old lineage” and are
closely related, while fish from the Molino population represent
a “new lineage” (Bradic et al., 2012). All cave populations are
thought to have evolved independent of one another (Ornelas-
García et al., 2008; Bradic et al., 2013; Herman et al., 2018).
Surface fish used in this experiment are derived from a lineage
that is more closely related to the Molino cave fish population
than to Tinaja and Pachón (Herman et al., 2018). Brains were
dissected from adult animals, sectioned serially at 8 µm thickness,
stained with cresyl violet dye (Nissl), and imaged, resulting
in 424–728 sections per brain (Table 1). We then aligned all
brain slices using image registration techniques so that they
aligned with one another, and imported the data into AMIRA
3D rendering software, where serial-sections were volumetrically
reconstructed to generate a three-dimensional brain (Figure 1B
and Supplementary Movies S1–S4).

Selected neuroanatomical regions in each brain were identified
by comparing to an adult zebrafish brain atlas (Wulliman et al.,
1996), and a previously annotated brain of cavefish from the
Micos cave (Natke, 1999), a hybrid cave population (a cave
with fish with that have both surface and cave-like traits) of
the new lineage (Bradic et al., 2013). After locating individual
neuroanatomical regions, we defined each brain nucleus by
demarcating the boundaries of the region throughout serial
sections using AMIRA (see section “Materials and Methods;”
Figure 1B). We then quantified the volume of each region. The
volume of each quantified region was normalized to the length of
the fish, measured from the nose to the caudal tail, providing a
measurement of relative volumetric enlargement or reduction in
size between A. mexicanus populations (Table 2).

Regression of Optic Tectum Volume in
Cavefish Populations
The optic tectum of A. mexicanus has been well studied, and
the size, as well as afferent and efferent projections from the
optic tectum have been established (Sligar and Voneida, 1976;
Voneida and Sligar, 1976; Soares et al., 2004). As proof of
principle, we first quantified the volume of the optic tectum
(Figures 2A–C, red) and it’s corresponding periventricular
gray zone (PGZ) (Figures 2A–C, blue), which have been
reported as reduced in Pachón cavefish (Soares et al., 2004;
Moran et al., 2015). The optic tectum in adult teleosts is a
laminated structure. We measured the PGZ, which contains
most cell bodies, as well the optic tectum minus the PGZ
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FIGURE 1 | Overview of experimental design. (A) Map of Mexico with location of Molino (red), Pachón (green) and Tinaja (black) caves. (B) Flow chart diagraming
experimental design and procedure.

(TeO), which contains most fibers and synaptic connections. In
agreement with previous findings, whole-brain reconstructions
revealed a nearly two-fold reduction in the tectum size of
Pachón, Molino and Tinaja cavefish compared to surface

fish (Figures 2A–C). To increase power to detect statistical
significance, we combined the total volume of the optic tectum
of all cave populations and compared them to surface fish. This
comparison revealed significant differences in volume between
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TABLE 1 | Fish metrics.

Population Individual Sex Body length (mm) Weight (g) Volume of entire brain
(mmˆ3) (not

standardized)

Volume of entire
brain/length of fish

Slices per
brain

Surface 1 Male 44.26 1.73 6.029 0.136 424

Surface 2 Female 46.15 2.01 6.93 0.15 533

Pachon 1 Female 50.21 3.04 6.49 0.129 650

Pachon 2 Male 48 2.53 9.05 0.189 614

Tinaja 1 Male 45.11 2.22 4.92 0.109 451

Tinaja 2 Female 48.17 2.75 6.003 0.125 667

Tinaja 3 Female 47.86 2.64 15.86 0.331 728

Molino 1 Female 45.64 2.09 6.712 0.147 591

Molino 2 Male 39.8 1.34 4.97 0.125 537

surface and cave morphs (Figure 2D). Quantification of total
volumes between surface and the three cave populations revealed
a substantial reduction in total volume (Pachón = 36.7% decrease
in volume compared to surface fish, Tinaja = 76.2%
decrease in volume compared to surface fish, Molino = 56.5%
decrease in volume compared to surface fish). In addition to the
optic tectum, the volume of the PGZ appeared qualitatively
reduced across all three cave populations (Figure 2C),
and quantification of volumes showed that the PGZ was
significantly smaller in cave animals than that of surface fish
(Pachón = 10.4% decrease in volume compared to surface
fish, Tinaja = 50.0% decrease in volume compared to surface fish,
Molino = 31.3% decrease in volume compared to surface fish)
(Figure 2E). These findings extend previous observations in
Pachón cavefish to Molino and Tinaja (Soares et al., 2004),
revealing convergence on reduced size of the optic tectum in
adult cavefish populations.

Expansion of the Telencephalon in
Cavefish Populations
The telencephalon modulates diverse behaviors that differ
between surface and cavefish, including sleep, stress, and
aggression (Kaslin et al., 2004; Portavella et al., 2004a,b; Elipot
et al., 2013; Lal et al., 2018). Moreover, previous studies
have mapped both the afferent and efferent projections of the
telencephalon, as well as individual nuclei in the A. mexicanus
brain (Riedel, 1997; Riedel and Krug, 1997). Given the
importance of the telencephalon, we quantified telencephalic
volume across A. mexicanus populations and found it to
be expanded in all three populations of cavefish compared
to surface fish (Figures 3A–C). Comparing total volume for
surface fish and the combined data for cavefish populations
revealed an increase in volume for all three cavefish populations,
thought statistical significance was not reached (Figure 3D;
Pachón = 150% increase in volume compared to surface fish,
Tinaja = 22% increase in volume compared to surface fish,
Molino = 172% increase in volume compared to surface fish). In
addition, we observed differences in telencephalon shape between
surface and cavefish populations. In all three cavefish populations
the telencephalon is longer along the anterior-posterior axis than
in surface fish (Figure 3A). Collectively, these data reveal a

robust expansion of the telencephalon across three independent
cavefish populations.

Analysis of Thalamic and Habenular
Nuclei
The thalamus is a central relay unit connecting the forebrain with
downstream mid- and hindbrain targets, and different regions of
the thalamus have been shown in mammals to modulate diverse
behaviors including stress, aggression, and sleep (Chauveau et al.,
2009; Shin and Liberzon, 2010; Kim et al., 2012; Li et al., 2014;
Latchoumane et al., 2017; Fernandez et al., 2018). Moreover,
anatomy and function of thalamic nuclei are conserved among
mammals and fish (Mueller and Wullimann, 2009; Amo et al.,
2010; Chou et al., 2016; Duboué et al., 2017). Quantification
of the entire thalamus revealed no significant differences in
gross volume between cave and surface fish (Figures 4A–D;
Pachón = 28.3% increase in volume compared to surface
fish, Tinaja = 20.0% decrease in volume compared to
surface fish, Molino = 28.3% increase in volume compared
to surface fish). We then examined volumetric differences
between thalamic subnuclei, including the posterior (Tp),
anterior (Ta), and central posterior (Tcp), as well as the
lateral (VL), medial (VM) and intermediate (I) prethalamus
[formerly called ventrolateral, ventromedial thalamus
(Mueller, 2012)] (Supplementary Figure S1). Of these, the
posterior thalamic nucleus and the medial prethalamus were
significantly larger in the cavefish populations (Supplementary
Figure S1). By contrast, no differences were observed for
the other thalamic and prethalamic nuclei we examined
(Supplementary Figures S1C–F); however, while not significant,
all volumetric measurements for the anterior thalamic nucleus
from cavefish were larger than those of the surface fish we scored
(Supplementary Figure S1E).

The habenular nuclei are a conserved brain regions that also
connect forebrain to midbrain (Sutherland, 1982; Viswanath
et al., 2014). In rodents and other mammals, the habenulae
have been shown to regulate diverse behaviors, including sleep,
stress, feeding, and social interactions (Murray et al., 1994,
Murphy et al., 1996; van Kerkhof et al., 2013; Stamatakis et al.,
2016; Haun et al., 2018). Recently, the habenular nuclei have
also been found to modulate similar behaviors in zebrafish
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TABLE 2 | Raw Data of neuroanatomical loci.

Population Individual Sex Optic
Tectum
(mmˆ3)

Paraventricular
Gray Zone of

Optic
Tectum
(mmˆ3)

Telencephalon
(mmˆ3)

Thalamus
(mmˆ3)

Posterior
Thalamic
Nucleus
(mmˆ3)

Anterior
Thalamic
Nucleus
(mmˆ3)

Lateral
Prethalamus

(mmˆ3)

Ventromedial
Thalamic
Nucleus
Medial

Prethalmus
(mmˆ3)

Intermediate
Thalamic
Nucleus
(mmˆ3)

Central
Posterior
Thalamic
Nucleus
(mmˆ3)

Habenula
(mmˆ3)

Dorsal
Habenular
Nucleus
(mmˆ3)

Surface 1 Male 1.09 0.2235 0.7053 0.023 0.00159 0.000649 0.00185 0.00169 0.000368 0.0134 0.006 0.00224

Surface 2 Female 1.1998 0.20737 0.93731 0.0152 0.001175 0.000657 0.006416 0.00096 0.000421 0.003885 0.0082 0.004133

Pachon 1 Female 0.86 0.2325 2.955 0.0285 0.003185 0.00212 0.0044 0.00235 0.000865 0.0112 0.0175 0.01032

Pachon 2 Male 0.7175 0.193888 1.5 0.0279 0.002765 0.004035 0.00572 0.00195 0.0006355 0.009449 0.0117 0.00649

Tinaja 1 Male 0.2333 0.09418 0.89392 0.0141 0.00222 0.0020951 0.003933 0.002464 0.0007315 0.00147668 0.0091 0.002823

Tinaja 2 Female 0.364 0.1352 1.166 0.0177 0.00245 0.000942 0.00205 0.00267 0.000676 0.005207 0.0115 0.004375

Tinaja 3 Female N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.0157 0.00784

Molino 1 Female 0.5258 0.127 1.172 0.0196 0.00223 0.003958 0.00453 0.001957 0.0004112 0.00465 0.01356 0.004923

Molino 2 Male 0.4469 0.14922 2.8856 0.0263 0.002036 0.00547 0.00707355 0.00274 0.0009688 0.00585 0.0359 0.0165

(Continued)

TABLE 2 | Continued

Population Ventral
Habenular
Nucleus
(mmˆ3)

Habenular
Commissure

(mmˆ3)

Hypothalamus
(mmˆ3)

Suprachiasmatic
Nucleus
(mmˆ3)

Lateral
Hypothalamus

(mmˆ3)

Dorsal Zone
of the

Periventricular
Hypothalamus

(mmˆ3)

Caudal Zone
of the

Periventricular
Hypothalamus

(mmˆ3)

Ventral Zone
of the

Periventricular
Hypothalamus

(mmˆ3)

Paraventricular
Organ (mmˆ3)

Preoptic
Nucleus
(mmˆ3)

Anterior
Tuberculum

(mmˆ3)

Posterior
Tuberculum

(mmˆ3)

Surface 0.00344 0.00032 0.1144 0.0003 0.00608 0.02469 0.00816 0.00752 0.002099 0.0213 0.03637 0.00785

Surface 0.00391 0.00019 0.1299 0.004969 0.00395 0.03302 0.01525 0.00831 0.00112 0.02674 0.03096 0.00556

Pachon 0.00686 0.000361 0.3882 0.00556 0.0205 0.08499 0.05893 0.03087 0.00449 0.07312 0.08477 0.025

Pachon 0.00498 0.0002555 N/A N/A 0.0125 0.0573 0.0296 0.0175 N/A N/A N/A N/A

Tinaja 0.005919 0.000313 0.1128 0.003003 0.005463 0.024614 0.01482 0.006912 0.001924 0.025177 0.025167 0.0057235

Tinaja 0.006585 0.000554 0.1936 0.0045 0.012711 0.04035 0.01422 0.01869 0.003944 0.0331 0.04733 0.01874

Tinaja 0.00769 0.000125 0.411 0.0115 0.0199 0.125 0.0506 0.026 0.00634 0.0637 0.082 0.026

Molino 0.00862 0.00002139 0.3993 0.004412 0.00838 0.0469 0.01666 0.014664546 0.004413 0.02534 0.0412 0.0092

Molino 0.0178 0.001565 0.4324 0.00848 0.0159 0.11774 0.0649 0.02386 0.005744 0.0809 0.0872 0.02745
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(Agetsuma et al., 2010; Chou et al., 2016; Duboué et al., 2017).
Because many of the behaviors modulated by the habenulae
differ between surface fish and cavefish populations, we
examined volumes of individual nuclei within the habenulae.
The habenulae are comprised of the dorsal and ventral habenula,
and its commissure (Duboué and Halpern, 2017), and this
neuroanatomy is conserved among vertebrates (deCarvalho
et al., 2014). The entire habenula was enlarged in all cavefish
populations (Figures 4A–C,E; Pachón = 89.2% increase in
volume compared to surface fish, Tinaja = 63.1% increase
in volume compared to surface fish, Molino = 282.2% increase
in volume compared to surface fish). Examining individual
nuclei revealed an expansion of ventral habenular nucleus (Hav)
in all cavefish examined, relative to surface fish though this
did not reach statistical significance (Supplementary Figure
S2A). By contrast, no differences were found in volumes of the
dorsal habenulae (Had) or in the habenular commissure (Chab)
(Supplementary Figures S2B,C). Taken together, these findings
reveal differences within the ventral habenula of all cavefish
studies relative to surface animals.

Analysis of the Hypothalamus Reveal
Evolutionary Changes to Some but Not
All Subnuclei
The hypothalamus controls numerous homeostatically regulated
behaviors that are known to differ between surface fish
and cavefish, including sleep, feeding, stress, and social
behaviors (Duboué et al., 2011; Kowalko et al., 2013a,b; Chin
et al., 2018; Lloyd et al., 2018; Zha and Xu, 2015). To
determine whether these behavioral changes are accompanied
by alterations in anatomy, we quantified the overall size of the
hypothalamus, as well as individual subnuclei that modulate
distinct behaviors in mammals (Figure 5 and Supplementary
Figure S3). We found the total volume of the hypothalamus was
significantly enlarged in the cavefish populations compared to
surface fish (Figures 5A–D and Supplementary Movies S5–S8;
Pachón = 185.2% increase in volume compared to surface fish,
Tinaja = 85% increase in volume compared to surface fish,
Molino = 263% increase in volume compared to surface fish).
An expanded hypothalamus in cavefish has been demonstrated
previously for larval forms (Menuet et al., 2007), and thus
these data reveal that hypothalamic expansion is conserved
through adulthood.

We next examined the volume of different hypothalamic
subnuclei (Supplementary Figure S3). We first measured the
suprachiasmatic nucleus (SCN). The SCN is a critical regulator
of circadian rhythms in mammals (Moore, 1982; Moore and
Whitmore, 2014). Surprisingly, no significant differences were
observed in the SCN between surface and cavefish animals
(Supplementary Figure S3A). By contrast, the size of the
lateral hypothalamic nucleus, the ventral zone of periventricular
hypothalamus, the paraventricular organ, caudal zone of
periventricular hypothalamus, preoptic nucleus, the anterior
tuberculum, and the posterior tuberculum appeared qualitatively
larger in most cave individuals we examined. When we pooled
the volumes of the cavefish and performed statistical analysis,

we found the lateral hypothalamic nucleus, ventral zone of
periventricular hypothalamus and the paraventricular organ
were enlarged significantly in cave animals (Supplementary
Figures S3B–D). Moreover, the volumes of the caudal zone
of the periventricular hypothalamus and posterior tuberculum
were found to approach significance (Supplementary Figures
S3E,F, p = 0.07 for both). By contrast, whereas the volumes
for the other hypothalamic nuclei were larger in most cave
animals, the values did not reach statistical significance
(Supplementary Figures S3E–I).

DISCUSSION

We have generated an adult brain atlas for surface fish
and three cavefish populations of A. mexicanus. A detailed
adult brain atlas has been previously generated in zebrafish
(Wulliman et al., 1996), and another brain atlas has been
published in a cave/surface hybrid population of A. mexicanus
cavefish (though it is untranslated from German) (Natke,
1999). These two resources provide a point of comparison for
identifying neuroanatomical loci in cave and surface populations
of A. mexicanus. An estimated ∼100–250 million years ago
of divergence separate A. mexicanus and Danio rerio (Peng
et al., 2006; Nakatani et al., 2011). We found that the gross
neuroanatomy of A. mexicanus and zebrafish were largely similar,
allowing for identification major brain structures.

Our analysis provides the first comparative brain atlas for
surface and cave populations of A. mexicanus. The use of
automated serial sectioning allows for volumetric reconstruction
of brain regions and semi-quantitative comparisons of
neuroanatomy between surface and cavefish populations.
While this approach is technically feasible, practically it is limited
due to the labor-intensive nature of manually tracing brain
regions, and difficulties obtaining completely sectioned brains. In
this study, we chose to focus on the visual system as a proof-of-
principle, as well as the hypothalamus, thalamus, and habenula
due to their known role in behavioral regulation. While the small
number of replicates largely prevented statistical comparisons
between individual cavefish populations, the robust volume
differences observed between surface and cave populations for
many brain regions suggest this approach may be practical for
detailed anatomical comparison. Here, we have made all raw data
available so that others may quantify additional brain regions of
interest (Tables 1, 2, and data available upon request).

Brain atlases have been widely used in a number of
species, including zebrafish, and have expanded greatly our
understanding of how individual neuronal areas modulate
myriad behaviors (Wulliman et al., 1996; Hawrylycz et al., 2011;
Peng et al., 2011; Marquart et al., 2015; Milyaev et al., 2012;
Mueller and Wullimann, 2015; Randlett et al., 2015). Brain atlases
have been generated in larval zebrafish that provide near single-
neuron resolution of brain structures (Ronneberger et al., 2012;
Marquart et al., 2015; Randlett et al., 2015; Dunn et al., 2016).
The transparency of zebrafish larvae allows for the application
of functional imaging approaches (Ahrens et al., 2013; Muto
et al., 2013), that can then be mapped on brain atlases to identify
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FIGURE 2 | Three-dimensional reconstruction reveals regression of the optic tectum. (A) 3-D reconstructions of Surface, Pachón, Tinaja and Molino with optic
tectum (TeO; red) and periventricular gray zone of the optic tectum (PGZ; blue) displayed. (B) Images of sections that were Nissl stained (left), and a cartoon of the
demarcated TeO and PGZ shown (right). (C) 3-D reconstruction of the TeO and PGZ. Displayed from an anterior view. (D) Quantification of the volume of optic
tectum, normalized to the length of the animal for surface fish and for the three cave populations. Optic tectum of cavefish was significantly smaller than those of
surface fish conspecifics (surface fish 0.025 ± 0.0007, cavefish 0.011 ± 0.0018, t-test t = 4.224, df = 6, p < 0.05). Quantification of the volume of PGZ. The PGZ of
most cavefish was smaller than those of surface animals (surface fish 0.005 ± 0.0003, cavefish 0.003 ± 0.0004, t-test t = 1.987, df = 6, p < 0.05). Graphs in D and
E are the mean ± standard error of the mean. Asterisk represent significance below p = 0.05. Blue shapes on bar graphs denote males, whereas light red shapes
denote females. Squares on graphs represent Pachón, triangles represent Tinaja and diamonds represent Molino.

changes in activity within defined neurons (Dunn et al., 2016).
A. mexicanus larvae, like zebrafish, are transparent, providing
potential for the generation of a high-resolution brain atlas.

While the level of accuracy obtained with a larval atlas is
not possible in adult fish using currently available technology
due to the larger size of the brain and the need for sectioning,
the added complexity of the adult brain and its similarity to
rodents is particularly effective in comparative neuroanatomy.

Further, a number of behaviors that differ between surface
and cave individuals are not present in larval forms. For
example, a loss of aggressive behavior has been documented
in cavefish animals (Elipot et al., 2013), and other studies
have demonstrated that cavefish do not school, whereas
their surface conspecifics do (Kowalko et al., 2013b). Many
behaviors, such as vibration attraction behavior, schooling,
and differences in aggression, are not present in larval forms
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FIGURE 3 | Expansion of telencephalon in cavefish populations. (A) 3-D reconstructions of Surface, Pachón, Tinaja, and Molino with demarcated telencephalon
(purple) displayed. (B) Images of demarcated sections that were Nissl stained (left) and a cartoon of demarcated region (right). (C) Close up view of the 3-D
reconstruction of the telencephalon from an anterior view. (D) The telencephalon from most cave animals was larger than that of surface conspecifics (Surface fish
0.018 ± 0.0022, Cave fish 0.039 ± 0.0088 t-test t = 1.276, df = 6, p = 0.12). Graph in panel (D) is the mean ± standard error of the mean. Blue points on bar
graphs denote males, whereas light red denotes female. Square points on graphs represent Pachón, triangle points on graphs represent Tinaja and diamond points
on graphs represent Molino.

(Yoshizawa et al., 2010; Elipot et al., 2013; Kowalko et al., 2013b),
and thus an adult atlas facilitates identification of brain regions
that modulate more complex behaviors only seen in adults.

In this study, brain regions were standardized to the length of
each individual fish, from the anterior most region of the nose
to the beginning of the caudal tail. To correct for individual
differences in size and growth rate, we normalized all brain

volumes (Gallo and Jeffery, 2012). Quantitative comparisons
between smaller neuroanatomical regions, such as individual
nuclei within the hypothalamus or thalamus, may be confounded
by large differences within other brain regions, such as the optic
tectum. However, the variability in differences between subnuclei
suggests localized changes in brain volume can be detected. As an
example, most nuclei in the hypothalamus are expanded across

Frontiers in Neuroanatomy | www.frontiersin.org 8 October 2019 | Volume 13 | Article 88

https://www.frontiersin.org/journals/neuroanatomy/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroanatomy#articles


fnana-13-00088 October 3, 2019 Time: 17:57 # 9

Loomis et al. Adult Brain Atlas for Cavefish

FIGURE 4 | Quantification of the thalamus and habenulae reveals differences in some, but not all, subnuclei. (A) 3-D reconstructions of Surface, Pachón, Tinaja, and
Molino with demarcated thalamus and habenula displayed. (B) Images of demarcated sections that were Nissl stained (left) and a cartoon of demarcated region
(right). (C) 3-D reconstruction of subnuclei of the thalamus and habenulae, displayed from an anterior view. (D) Quantification of the total volume of the thalamus
revealed no significant differences (surface fish 0.0004 ± 0.0001, cavefish 0.005 ± 0.0001, t-test t = 0.5519, df = 6, p = 0.30). (E) Quantification of the total volume
of the habenulae revealed no significant differences (surface fish 0.00015 ± 0.00002, cavefish 0.0003 ± 0.00009, t-test t = 1.161, df = 6, p = 0.14). Graphs in panel
(D,E) are the mean ± standard error of the mean. Color key for subnuclei (Chab = Habenula Commissure, Had = Dorsal Habenular Nucleus, Hav = Ventral
Habenular Nucleus, VM = Ventromedial Prethalamus, VL = Ventrolateral Prethalamus, Tcp = Central posterior thalamic nucleus, Tp = Posterior thalamic nucleus,
I = Intermediate Prethalamus). Blue points on bar graphs denote males, whereas light red denotes female. Square points on graphs represent Pachón, triangle
points on graph represent Tinaja and diamond points on graph represent Molino.

cavefish populations, yet no differences are detected within the
SCN for cavefish relative to surface.

Our findings identify the expansion of multiple hypothalamic
nuclei, suggesting shared processes may govern evolved
differences in hypothalamic development. The hypothalamus

in cavefish larvae is expanded through a mechanism that is
dependent on the differential expression of several morphogens
and transcription factors, including sonic hedgehog and Nkx2.1
(Menuet et al., 2007). One hypothesis is that reduced anatomical
constraints from eye-loss allow for hypothalamic expansion.
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FIGURE 5 | Quantification of the hypothalamus reveals expansion in cave populations. (A) 3-D reconstructions of Surface, Pachón, Tinaja and Molino with
demarcated hypothalamus displayed. (B) Images of demarcated sections that were Nissl stained (left) and a cartoon of demarcated region (right). (C) 3-D
reconstruction of the hypothalamus only, displayed from an anterior view. (D) Quantification of the total volume of the hypothalamus revealed expansion in cavefish
(surface fish 0.0027 ± 0.0001, cavefish 0.0071 ± 0.0013, t-test t = 1.855, df = 6, p ≤ 0.05). Graph in D is the mean ± standard error of the mean. Color key for
subnuclei (Hv = Ventral zone of periventricular hypothalamus, LH = Lateral hypothalamic nucleus, Hd = Dorsal zone of periventricular hypothalamus, Hc = Caudal
zone of periventricular hypothalamus, PTN = Posterior tuberculum, ATN = Anterior tuberculum, PVO = Paraventricular organ PON = Preoptic nucleus,
SCN = Superchiasmatic nucleus). Blue points on bar graphs denote males, whereas light red denotes female. Square points on graphs represent Pachón, triangle
points on graphs represent Tinaja and diamond points on graphs represent Molino.
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A number of hypothalamic neuropeptides are known to be
upregulated in cavefish including HCRT and NPY, which
localize to the lateral hypothalamus and periventricular/lateral
hypothalamus respectively (Alié et al., 2018; Jaggard et al., 2018;
Jeong et al., 2018). Both of these nuclei are larger across all three
populations of cavefish. Many hypothalamus-regulated behaviors
including sleep (PON), feeding (Hl, PVN), aggression (PON),
and sociality (PON) are altered in cavefish (Duboué et al., 2011;
Elipot et al., 2013; Kowalko et al., 2013a,b; Miyasaka et al., 2014;
Jaggard et al., 2018; Lloyd et al., 2018), suggesting hypothalamic
function may be a under significant selective pressure.

In agreement with the previous literature, we identified
convergent evolution of changes in brain regions associated with
sensory processing (Soares et al., 2004; Moran et al., 2015; Hinaux
et al., 2016). The optic tectum is significantly reduced across all
three cavefish populations. These findings are consistent with an
increased reliance on non-visual cues in cave animals (Bradic
et al., 2013; Yoshizawa et al., 2013). This atlas allows for future
studies examining the neuroanatomy of brain regions associated
with non-visual cues. For example, taste buds are more numerous
in cavefish (Bibliowicz et al., 2013; Hinaux et al., 2016) and the
lateral line of cavefish is also significantly expanded, suggesting
increased reliance on sensory processes that do not involve sight
(Teyke, 1990; Yoshizawa et al., 2014). The sensory neurons from
taste and mechanosensation neurons project to the nucleus of the
solitary tract (NST) and medial octavolateralis nucleus (MON)
within the brain, respectively (Puzdrowski, 1989; McCormick
and Braford, 1994; Vendrell-Llopis and Yaksi, 2015). Based on
findings from other sensory pathways, these regions may be
predicted to be enlarged. Future analysis of serially sectioned
brains will allow for detailed quantification and comparison of
sensory structures between A. mexicanus populations.

Here, we used brains stained with Nissl, and demarcated
manually individual regions of the adult brain. We see two
main future expansions of this work. First, future efforts will
streamline the labor-intensive approach of manual demarcation
of individual regions. Similar large-scale neuroanatomical
reconstruction efforts, such as electron microscopy tracing of
the Drosophila brain have been successful in analyzing large
data sets like these (Zheng et al., 2018). It is also possible
that automated tracing methodology may be developed to
reduce the time required for analysis. Further, future imaging of
additional serially-section brains may allow for more quantitative
comparisons between populations. Second, in zebrafish and
other models, transgenic labeling of precise neuronal population
has facilitated greatly the demarcation of individual neuronal
regions (Kawakami et al., 2000; Scott et al., 2007). Moreover,
transgenic labeling of neurons in the brain permits tracing of
neuronal projections, something that is not possible with Nissl
staining (deCarvalho et al., 2013; Miyasaka et al., 2014). Whereas
transgenic technology has not been widely used in A. mexicanus,
recent studies have shown that the Tol2 system, which is
widely used in zebrafish, is highly effective in A. mexicanus
surface and cavefish (Elipot et al., 2014; Stahl et al., 2019a,b).
Future work incorporating these tools would facilitate a highly
defined neuroanatomical brain atlas for the A. mexicanus
adult brain.

MATERIALS AND METHODS

Fish Husbandry
Animal care and husbandry was carried out as previously
described (Borowsky, 2008; Jaggard et al., 2018). Briefly, adult
A. mexicanus stocks were originally obtained from the Jeffery
(University of Maryland) or Borowsky laboratories (New York
University). These fish have been bred and maintained on
a recirculating aquatics system at Florida Atlantic University.
The water temperature was maintained at 23 ± 1◦C, and the
lights were maintained on a 14:10 LD cycle (25–40 lux at
lights on). All fish were fed a mix of fish flakes (TetraMin)
and California black worms (Aquatic Foods). All experiments
in this study were approved by the Institutional Animal Care
and Usage Committee (IACUC) at Florida Atlantic University,
protocol numbers A17–21 and A15–32, or the IACUC at
Stowers Institute for Medical Research. All fish used in this
study were approximately 1 year old. A total of 10 brains
were dissected and analyzed per population. We used 1
male and 1 female brains from surface population, 1 male
and 1 female brains from Pachón population, 1 male and
2 female brains from Tinaja population, and 1 male and 1
female brains from Molino population. In some cases, brains
could not be quantified for all neuroanatomical regions due
to tissue damage.

Sectioning
Fish were euthanized by incubation in MS-222 (500 mg/L) for
10 min and decapitated using sharp scissors. The head was
immediately fixed with freshly prepared 4% paraformaldehyde
(PFA, diluted from 16% (wt/vol) aqueous solution, Electron
Microscopy Sciences, cat# 15710) in 1 × PBS for 48 h at
4◦C with a change of 4% PFA/1×PBS after 3 h. Heads
were washed three times in 1×PBS and subsequently,
brains were dissected according to Moran et al. (2015).
Brains were dehydrated through graded ethanol (30, 50,
and 70%) and processed with a PATHOS Delta hybrid
tissue processor (Milestone Medical Technologies, Inc.,
MI) followed by paraffin embedding. Coronal slices of
paraffin sections with 8 µm thickness were continuously
cut using a Leica RM2255 microtome (Leica Biosystems
Inc., Buffalo Grove, IL, United States) and mounted on
Superfrost Plus microscope slides (cat# 12-550-15, Thermo
Fisher Scientific). Nissl staining was performed as described
in Vacca (1985). Briefly, sections were deparaffinized and
hydrated in distilled water. Sections were stained in cresyl
echt violet (0.5 g cresyl echt violet (CI 51010); 80 mL distilled
water; 20 mL absolute alcohol) for 8 min, briefly rinsed
in distilled water, dehydrated with 95% absolute alcohol
2 times, subsequently cleared in 2 changes of xylene and
finally mounted. Slides were scanned using an Olympus
slide scanner VS120 with a 20× objective. Images were
extracted from VSI files in sequence using a customized
plugin in Fiji (ver 1.51H) (Schindelin et al., 2012), a mask
constructed, and registered using a multithreaded version
of StackReg1 (Thévenaz et al., 1998). Blank spaces in the
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registered image were filled with artificial noise that matched
the all-white background using a custom plugin in Fiji. Plugins
are available at https://github.com/jouyun/smc-plugins and
https://github.com/cwood1967/IJPlugins/.

Volumetric Reconstruction
ImageJ FIJI (ver 1.51H) (Schindelin et al., 2012) was used
to convert serial sections to a .tif image sequence. Image
sequence was uploaded into the AMIRA software (ver 6.2.0,
Thermo Fisher, Waltham, MA, United States). To create proper
demarcations, neuroanatomical regions of interest (ROIs) from
Nissl stains were set under the “segmentation” tab using the lasso
tool. To view 3-dimensional reconstructions of neuroanatomical
ROI’s, a “volren” object was created under the “project” tab.
Each volren object was connected to the original .tif image
sequence as well as the label fields used to create demarcated
neuroanatomical ROI’s.

Measurements and Statistical Analysis
To quantify total volume of induvial demarcated regions (i.e.,
each ROI), we used the “volume per VOI” result of the
“material statistics” function in AMIRA (ver 6.2.0). To correct
for differences in size and growth rate among different fish
populations, all volumetric results were normalized to the length
of the fish, from the anterior nose to the caudal tail. Volumetric
measurements were thus calculated as a ratio of volume relative to
this length. For statistical comparisons of ROI volumes between
two groups (i.e., the pooled cavefish data compared to surface),
we used a standard t-test. All statistics were performed using
GraphPad Prism (ver 7.0).
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FIGURE S1 | Analysis of different thalamic subnuclei reveals expansion of some,
but not all, regions. (A) Quantification of the posterior thalamic nucleus shows a
significant expansion of volume in cavefish (surface fish 3.07e-5 ± 5.2e-6,
cavefish 5.35e-5 ± 2.34e-6, t-test t = 4.637, df, p < 0.05). (B) Analysis of medial
prethalamus shows a significant expansion in volume of cave fish (surface fish
2.96e-5 ± 8.6e-6, cavefish 5.16e-5 ± 4.23e-6, t-test t = 2.524, df = 6, p < 0.05).
(C–F) There were no differences between the lateral prethalamus (C), intermediate
prethalamus (D), anterior thalamic nucleus (E) and central posterior thalamic
nucleus (F) (VL = surface fish 9.04e-5 ± 4.86e-5, cavefish 0.0001 ± 1.81e-5,
t-test t = 0.298, df = 6, p = 0.38; I = surface fish 1.47e-5 ± 6.34e-6, cavefish
1.55e-5 ± 2.05e-6, t-test t = 1.823, df = 6, p = 0.43; Ta = surface fish
1.45e-5 ± 2.5e-7, cavefish 6.93e-5 ± 1.72e-5, t-test t = 1.751, df = 6, p = 0.06;
Tcp = surface fish 0.0002 ± 0.0001, cavefish 0.0001 ± 2.83e-5, t-test t = 0.8033,
df = 6, p = 0.22). All graphs are the mean ± standard error of the mean. Blue
points on bar graphs denote males, whereas light red denotes female. Asterisk
represent significance below p = 0.05. Square points on graphs represent
Pachón, triangle points on graphs represent Tinaja and diamond points on graphs
represent Molino.

FIGURE S2 | Analysis of different habenulae subnuclei reveals expansion of
subnuclei, some approaching significance. (A) Quantification of the ventral
habenular nucleus shows a general expansion in cavefish (surface fish
8.12e-5 = 3.5e-6, cavefish 0.0002 = 4.45e-5, t-test t = 1.206, df = 7, p = 0.13).
(B) Quantification of dorsal habenular nucleus shows no difference between
surface and cavefish (surface fish 0.0002 ± 0.0001, cavefish 0.0002 ± 4.48e-5,
t-test t = 0.198, df = 7, p = 0.42). (C) Analysis of the habenula commissure
showed no significance between morphs (surface fish 5.67e-6 ± 1.57e-6,
cavefish 1.05e-5 ± 4.94e-6, t-test t = 0.4997, df = 7, p = 0.31). All graphs are the
mean ± standard error of the mean. Blue points on bar graphs denote males,
whereas light red denotes female. Square points on graphs represent Pachón,
triangle points on graphs represent Tinaja and diamond points on graphs
represent Molino.

FIGURE S3 | Analysis of different hypothalamic subnuclei reveals significant
expansion of lateral, dorsal, and caudal hypothalamus in cavefish while others
remain similar to surface fish. (A) Analysis of the suprachiasmatic nucleus showed
no difference between morphs (surface fish 5.69e-5 ± 5.01e-5, cavefish
0.0001 ± 2.92e-5, t-test t = 1.369, df = 6, p = 0.11). (B–D) Significant differences
were observed between the lateral hypothalamic nucleus (LH) (B), ventral zone
of periventricular hypothalamus (Hv) (C) and paraventricular organ (PVO) (D)
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(LH = surface fish 0.0001 ± 2.55e-5, cavefish 0.0003 ± 4.46e-5, t-test t = 2.062,
df = 7, p < 0.05; Hv = surface fish 0.0002 ± 5e-6, cavefish 0.0004 ± 6.37e-5,
t-test t = 2.01, df = 7, p < 0.05; PVO = surface fish 3.59e-5 ± 1.16e-5, cavefish
9.79e-5 ± 1.47e-5, t-test t = 2.242, df = 6, p < 0.05). (E,F) Analysis of the caudal
zone of periventricular hypothalamus (Hc) (E), posterior tuberculum (PTN) (F)
showed an enlargement in cavefish that approached significance (Hc = surface
fish 0.0002 ± 1.58e-5, cavefish 0.0008 ± 0.0002, t-test t = 1.603, df = 7,
p = 0.07; PTN = surface fish 0.001 ± 2.85e-5, cavefish 0.0004 ± 8.71e-5, t-test
t = 1.627, df = 6, p = 0.07). (G–I) Quantification of the anterior tuberculum (ATN)
(G), dorsal zone of periventricular hypothalamus (Hd) (H) and preoptic nucleus
(PON) (I) show no difference between surface and cavefish (ATN = surface fish
0.0007 ± 7.5e-5, cavefish 0.0013 ± 0.0003 t-test t = 1.283, df = 6, p = 0.12;
Hd = Surface fish 0.0006 ± 7.85e-5, Cave fish 0.0015 ± 0.0003, t-test t = 1.345,
df = 7, p = 0.11; PON = Surface fish 0.0005 ± 4.95e-5, Cave fish
0.0011 ± 0.0002, t-test t = 1.275, df = 6, p = 0.12). All graphs are the
mean ± standard error of the mean. Asterisk represent significance below
p = 0.05. Blue points on bar graphs denote males, whereas light red denotes
female. Square points on graphs represent Pachón, triangle points on graphs
represent Tinaja and diamond points on graphs represent Molino.

MOVIE S1 | Three-dimensional reconstruction of whole brain from surface fish.

MOVIE S2 | Three-dimensional reconstruction of whole brain from
Pachón cavefish.

MOVIE S3 | Three-dimensional reconstruction of whole brain from Tinaja cavefish.

MOVIE S4 | Three-dimensional reconstruction of whole brain from
Molino cavefish.

MOVIE S5 | Three-dimensional reconstruction of hypothalamus from
surface cavefish.

MOVIE S6 | Three-dimensional reconstruction of hypothalamus from
Pachón cavefish.

MOVIE S7 | Three-dimensional reconstruction of hypothalamus from
Tinaja cavefish.

MOVIE S8 | Three-dimensional reconstruction of hypothalamus from
Molino cavefish.
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