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ABSTRACT

Background: Plasmodium vivax malaria has a persistent liver stage that causes relapse, and 
introducing tafenoquine to suppress relapse could aid in disease eradication. Therefore, we 
assessed the impact of tafenoquine introduction on P. vivax malaria incidence and performed 
a cost-benefit analysis from the payer’s perspective.
Methods: We expanded the previously developed P. vivax malaria dynamic transmission 
model and calibrated it to weekly civilian malaria incidences in 2014–2018. Primaquine 
and tafenoquine scenarios were considered by assuming different relapse probabilities, 
and relapse and total P. vivax malaria cases were predicted over the next decade for each 
scenario. We then estimated the number of cases prevented by replacing primaquine with 
tafenoquine. The cost and benefit of introducing tafenoquine were obtained using medical 
expenditure from a nationwide database, and a cost-benefit analysis was conducted. A 
probabilistic sensitivity analysis was performed to assess the economic feasibility robustness 
of tafenoquine introduction under uncertainties of model parameters, costs, and benefits.
Results: Under 0.04 primaquine relapse probability, the introduction of tafenoquine 
with relapse probability of 0.01 prevented 129 (12.27%) and 35 (77.78%) total and relapse 
cases, respectively, over the next decade. However, under the same relapse probability 
as primaquine, introducing tafenoquine had no additional preventative effect. The 14-
day primaquine treatment cost was $3.71. The tafenoquine and the glucose-6-phosphate 
dehydrogenase rapid diagnostic testing cost $57.37 and $7.76, totaling $65.13. The average 
medical expenditure per malaria patient was estimated at $1444.79. The cost-benefit analysis 
results provided an incremental benefit-cost ratio (IBCR) from 0 to 3.21 as the tafenoquine 
relapse probability decreased from 0.04 to 0.01. The probabilistic sensitivity analysis showed 
an IBCR > 1, indicating that tafenoquine is beneficial, with a probability of 69.1%.
Conclusion: Tafenoquine could reduce P. vivax malaria incidence and medical costs and bring 
greater benefits than primaquine.
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INTRODUCTION

Despite considerable efforts, Plasmodium vivax malaria remains a major infectious disease 
worldwide, including in South Korea.1,2 Unexpected global uptrends of malaria have also 
been reported recently.3 The life cycle of P. vivax includes a dormant stage in the liver called 
the hypnozoite, which can be activated, causing relapse weeks, months, or years after the 
initial infection.4 Although the relapse rate of P. vivax malaria in temperate regions, including 
South Korea, is lower than that in tropical regions, it is a significant obstacle to eliminating P. 
vivax malaria.5

Therefore, presumptive anti-relapse therapy is required to prevent relapses by eradicating 
the dormant hypnozoite liver stage of P. vivax.6 Traditionally, primaquine has been used in 
combination with chloroquine to prevent the relapse of P. vivax malaria.7 However, because 
the medication needs to be taken continuously for two weeks to be effective, some patients 
may have problems with medication adherence, creating a major barrier to primaquine 
effectiveness.8-10 To overcome this, clinical studies on alternative dosing schedules for 
primaquine such as 7-day regimens have been conducted.11,12 However, low adherence in 
unsupervised patients remains a predominant cause of the limited effectiveness of this drug.

Tafenoquine, developed to overcome the shortcomings of primaquine and approved by the 
US Food and Drug Administration (FDA) in 2018, removes hepatic hypnozoites following a 
single dose and has proven effective in clinical trials and Cochrane Review.13-16 Tafenoquine 
could be used to surmount adherence problems because of its convenience of administration, 
and therefore, it can be utilized as chemoprophylaxis when traveling.17-19 This treatment 
strategy could also prevent relapse and reduce the overall incidence of P. vivax malaria in the 
real world, where it is difficult to supervise primaquine administration.20 Meanwhile, in the 
case of glucose-6-phosphate dehydrogenase (G6PD) deficiency, hemolysis could occur when 
using tafenoquine, so a G6PD test is mandatory before the tafenoquine prescription.21

Modeling studies have investigated the effect of introducing tafenoquine into the treatment 
regimen of patients with P. vivax malaria. The impact of intervention strategies on controlling 
the burden of the P. vivax malaria relapse was explored in South Korea and Brazil.22,23 Few 
studies have compared the cost-effectiveness of tafenoquine and primaquine for the prevention 
of P. vivax malaria relapse in Serbia and other countries using the Markov or decision tree 
models.24,25 However, a comprehensive economic evaluation of the potential benefits of 
tafenoquine introduction based on a dynamic model for P. vivax malaria transmission is lacking.

In our previous study, we developed a dynamic compartmental model for P. vivax malaria 
transmission to estimate the impacts of introducing rapid diagnostic tests (RDTs) on disease 
burden and medical expenditure.20 In addition, we performed a cost-benefit analysis of 
RDT in South Korea.26 The model was elaborately calibrated to fit overall weekly malaria 
incidence, the sum of incidences after short and long latency periods and relapse. However, 
although it is less distinctive than the primary infection, relapse intervals are also divided 
into a short and long period.5,22 A recent study analyzed characteristics of recurred patients 
between 2005 and 2009 when the same treatment regimen was administered as now, and 
they had experienced either short or long latency periods.27

Therefore, in this study, we expanded our previous model by dividing relapse latency into 
short and long periods and assessed the effects of introducing tafenoquine as a treatment 
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strategy for relapse and overall P. vivax malaria incidence. In addition, we analyzed the 
medical costs of tafenoquine treatment and performed a cost-benefit analysis from the 
payer’s perspective.

METHODS

Study design and data sources
Based on the study that analyzed characteristics of recurred patients,27 we calculated 
average short and long latency periods of relapse patients to expand our previous model.26 
We split one relapse flow into two in the model and assigned the calculated average short 
and long latency periods. A relapse was defined as a case in which the period from the 
previous malaria diagnosis to the current diagnosis was less than two years, and there was 
no possibility of a new malaria infection since the last disease.28 Weekly civilian malaria 
incidence data in malaria-risk areas (Incheon, Gyeonggi, and Gangwon provinces) were used 
for model calibration. We only included Korean civilians and excluded military soldiers, 
who account for about one-third of P. vivax malaria incidence because military soldiers at 
malaria-risk areas take chloroquine chemoprophylaxis to prevent P. vivax malaria infections. 
We constructed scenarios for the use of primaquine and tafenoquine based on the relapse 
probability. The relapse probability of primaquine was obtained from an annual report of 
the Korea Centers for Disease Control and Prevention (KCDC),28 and we varied the relapse 
probability of tafenoquine.

In South Korea, a low dose of primaquine (0.25 mg/kg for 14 days) is effectively used,28,29 
so we calculated the cost of primaquine when 15 mg was used for 14 days. The increase in 
cost due to the introduction of tafenoquine into the treatment strategy includes the price of 
tafenoquine and the G6PD rapid diagnostic test in South Korea. The benefit of introducing 
tafenoquine was a reduction in medical expenditure associated with its prevention of relapse 
and secondary cases. Furthermore, the values were extracted from the Health Insurance 
Review & Assessment Service (HIRA) data, which is a mandatory nationwide insurance 
database for all Korean citizens enrolled. The reliability of the data from the HIRA has been 
demonstrated in previous studies.30-32

We then predicted the 10-year relapse and overall malaria incidences in each scenario and 
compared the estimated number of prevented cases between primaquine and tafenoquine 
scenarios. We conducted the cost-benefit analysis using the net present value (NPV), benefit-
cost ratio (BCR), and incremental benefit-cost ratio (IBCR) as indicators and examined the 
sensitivity of the IBCR to model parameters, costs, and benefits.

Modeling and interventions
We propose a modified P. vivax malaria model to account for relapse incidence by separating 
the relapse latency period into short and long, as shown in Supplementary Fig. 1. The human 
population was categorized into susceptible, exposed, infectious, and treated states, and 
the mosquito population was divided into the aquatic, susceptible, exposed, and infectious 
states. The malaria parasite is transmitted when an infectious mosquito bites a susceptible 
human or a susceptible mosquito bites an infectious human. In this study, the term 
“transmission” refers to introducing parasites in the human or mosquito body, and when the 
transmission occurs, the human and mosquito are said to be infected.

https://doi.org/10.3346/jkms.2022.37.e212
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Following infection with the parasite, humans undergo a short or long latency stage and 
become infectious. We assumed that all infected individuals were treated and prescribed 
chloroquine and primaquine. Failure to complete the drug course leads to a chance for 
hypnozoites to persist in the liver. As a result, some patients do not recover fully and relapse. 
Full model equations are shown in Supplementary Data 1.

Three parameters were estimated by fitting the model to the weekly civilian malaria incidence 
between 2014 and 2018 using maximum likelihood estimation. Descriptions and estimated 
values of the three parameters are listed in Supplementary Table 1, including the other model 
parameters, and the result of the model calibration is shown in Supplementary Fig. 2.

RDT was included in all scenarios because it has been covered by insurance in South Korea 
since 2019. Both primaquine and tafenoquine for relapse prevention are used with treatment 
doses of chloroquine. In the primaquine scenario, the relapse probability was set to 0.04, 
reflecting the current level of relapse in South Korea.28,33 In the tafenoquine scenarios, 
since the relapse prevention when taking tafenoquine is comparable to that when taking 
primaquine,15,16 and potential benefits are expected from improvement in adherence, we 
assumed four different relapse probabilities decreasing from 0.04 to 0.03, 0.02, and 0.01 due 
to improved drug adherence. All scenarios were simulated over 10 years from 2019 to 2028.

Cost-benefit analysis
Tafenoquine is more expensive than primaquine, and a G6PD deficiency test must be 
performed before tafenoquine is prescribed. However, since the prevalence of G6PD 
deficiency is low in South Korea, this test is not routinely conducted.34 Therefore, the 
incremental cost of replacing primaquine with tafenoquine would be considerable. However, 
a decrease in the relapse probability would be accompanied by the prevention of new malaria 
infections, which would lead to savings on medical costs for treatment. Thus, in the cost-
benefit analysis, we included only the treatment drug and G6PD test costs as cost factors, 
defined the medical cost per malaria episode as a benefit per prevented case, and obtained 
the value from the HIRA data.

We set two primaquine comparator scenarios. One included only the price of primaquine, 
reflecting the current situation in South Korea, and the other included the cost of both 
primaquine and G6PD for the hypothetical situation. As a measure for the cost-benefit 
analysis, we estimated the NPV and BCR for each scenario and estimated the IBCR of 
tafenoquine use compared to primaquine use. All monetary values are presented in US 
dollars based on the 2019 yearly average exchange rate of ₩1,165.65 per dollar and are 
discounted by 3% annually.

Sensitivity analysis
The probabilistic sensitivity analysis of the IBCR was performed to account for the effect of 
uncertainty in model parameters, costs, and benefits on the results, and 1,000 values were 
sampled for each parameter assuming a uniform distribution over a selected range of each 
parameter. We then simulated the model to obtain a projected IBCR in 2028 for each set of 
samples. First, a univariate sensitivity analysis of the relative sensitivity of all parameters was 
performed by perturbing ± 10% of each value.

Next, we selected 14 parameters based on the relative sensitivity and interest level and 
determined a feasible range or distribution for each selected parameter. We performed 
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another univariate sensitivity analysis to examine the practical sensitivity of the result 
under the feasible range or distribution. In addition, the following pairs of parameters of 
interest were chosen for bivariate sensitivity analysis: relapse probabilities of primaquine 
and tafenoquine and cost and benefit of tafenoquine. Finally, all parameters were perturbed 
simultaneously to evaluate the model sensitivity to multiple parameters.

RESULTS

Malaria incidence
The relapse incidence of P. vivax malaria decreased over time with the introduction of the 
RDT even under the primaquine scenario, as shown in Fig. 1. In the tafenoquine scenario, 
noticeable reductions in the relapse incidence were observed only when its relapse probability 
was lower than that of primaquine. These reductions were proportional to the decrease in the 
relapse probability due to the tafenoquine use, which contributed to a drop in the total malaria 
incidence in two ways: directly by a reduction in the number of relapse cases and indirectly 
by a reduction in secondary cases owing to relapse patients, as shown in Table 1. The most 
effective tafenoquine scenario assuming a relapse probability of 0.01 showed that tafenoquine 
prevented 35 (77.78%) cases of relapse malaria and 129 (12.27%) total malaria cases for a 
decade whereas it had no preventative effect at the same relapse probability with primaquine.

https://doi.org/10.3346/jkms.2022.37.e212
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Fig. 1. Annual relapse incidences based on relapse control scenario. 
PQ = primaquine, TQ = tafenoquine, q = relapse probability.
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Cost-benefit analysis
The prices of tafenoquine, G6PD rapid diagnostic testing, and 14-day primaquine treatment 
were calculated as $57.37, $7.76, and $3.71, respectively. The average medical expenditure 
per malaria patient was extracted to be $1,444.79. In the primaquine scenario with a relapse 
probability of 0.04, the total cost accumulated for all patients over the decade was $3,569 
considering only the price of primaquine and $11,026 considering both primaquine and 
G6PD testing prices, as shown in Table 2. In contrast, in the tafenoquine scenario, the total 
cost was $62,625 and $55,164 as the relapse probability decreased from 0.04 to 0.01. When 
tafenoquine had the same relapse probability as primaquine, there was no benefit, and when 
the relapse probability decreased to 0.03, the total benefit was positive but slightly less than 
the total cost, resulting in a negative NPV and a BCR < 1. However, as the relapse probability 
decreased to 0.02 and 0.01, the total benefit was nearly 2- and 3-fold greater than the total 
cost. Therefore, the NPV of the tafenoquine scenario turned into a positive number, and 
BCR became > 1. The incremental benefits of tafenoquine treatment were greater than the 
incremental costs for all relapse probabilities of tafenoquine except for those with the same 
relapse probability as primaquine. Under a relapse probability of 0.01 of tafenoquine use and 
primaquine scenario accounting for the cost of primaquine alone, the IBCR was 3.21 after 10 
consecutive years.

Probabilistic sensitivity analysis
Univariate sensitivity
We performed the sensitivity analysis on the IBCR values obtained in each tafenoquine 
scenario. The average infectious period; long latency period for relapse; and vector carrying 
capacity, which means the size of the mosquito population, were the three most relatively 
sensitive parameters for the IBCR in 2028, as shown in Fig. 2A. Under feasible ranges of the 
parameter, as shown in Fig. 2B, the cost of tafenoquine became the most sensitive parameter 
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Table 1. Accumulated relapse and total malaria cases over 10 years
Scenario Relapse Total

Cases Prevented cases Prevention (%) Cases Prevented cases Prevention (%)
TQ (q = 0.01) 10 35 77.78 922 129 12.27
TQ (q = 0.02) 21 24 53.33 962 89 8.47
TQ (q = 0.03) 33 12 26.67 1,004 47 4.47
TQ (q = 0.04) 45 0 0.00 1,051 0 0.00
PQ (q = 0.04) 45 - - 1,051 - -
PQ = primaquine, TQ = tafenoquine, q = relapse probability.

Table 2. Total costs and benefits and cost-benefit analysis over the next 10 years
Scenario Total benefit Total cost NPV BCR Incremental benefit Incremental cost IBCR
PQ alone/G6PD + TQ

TQ (q = 0.01) 165,520 55,164 110,355 3.00 165,520 51,595 3.21
TQ (q = 0.02) 113,046 57,529 55,516 1.97 113,046 53,961 2.09
TQ (q = 0.03) 59,527 59,942 −415 0.99 59,527 56,373 1.06
TQ (q = 0.04) 0 62,625 −62,625 0.00 0 59,056 0.00
PQ (q = 0.04) 0 3,569 −3,569 0.00 - - -

G6PD + PQ/G6PD + TQ
TQ (q = 0.01) 165,520 55,164 110,355 3.00 165,520 44,138 3.75
TQ (q = 0.02) 113,046 57,529 55,516 1.97 113,046 46,503 2.43
TQ (q = 0.03) 59,527 59,942 −415 0.99 59,527 48,916 1.22
TQ (q = 0.04) 0 62,625 −62,625 0.00 0 51,599 0.00
PQ (q = 0.04) 0 11,026 −11,026 0.00 - - -

NPV = net present value, BCR = benefit-cost ratio, IBCR = incremental benefit-cost ratio, PQ = primaquine, TQ = tafenoquine, G6PD = glucose-6-phosphate 
dehydrogenase, q = relapse probability.
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as we set up a comprehensive test range. The average infectious period and long latency 
period for relapse remained sensitive parameters, but the relapse probability of primaquine 
and tafenoquine became more sensitive to the result.

Additionally, for the cost- and benefit-related parameters, we further examined a threshold 
that made the IBCR in 2028 ≥ 1, indicating that the incremental benefit was greater than 
or equal to the incremental cost. We achieved an IBCR ≥ 1 when the cost of tafenoquine 
was ≤ $191.87, $124.26, and $60.80 or the benefit, which was the saved medical cost from 
preventing one malaria case, was ≥ $450.37, $689.65, and $1,368.25 at 0.01, 0.02, and 0.03 
tafenoquine relapse probabilities, respectively.

Bivariate sensitivity
We explored the combined effect of primaquine and tafenoquine relapse probabilities on the 
IBCR and illustrated it with a contour graph in Fig. 3A. As demonstrated in the main results, 
the IBCR = 0 when both relapse probabilities are the same, and IBCR < 0 as tafenoquine 
relapse probability became higher than primaquine. Tafenoquine was beneficial as long as 
the difference in the relapse probability from that of primaquine was ≥ 0.01. Additionally, 
we examined sensitivity under changes in tafenoquine cost and benefit for each tafenoquine 
scenario, as shown in Supplementary Fig. 3. The IBCR increased when the benefit increased, 
and the cost of tafenoquine decreased.

Multivariate sensitivity
Finally, uncertainties of all parameters, including relapse probabilities of primaquine and 
tafenoquine, were simultaneously assessed and each result was scattered on a cost-benefit 
plane, as shown in Fig. 3B. Among the results of 1,000 combinations of the parameters, 
69.1% were above an IBCR of 1.
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DISCUSSION

In this study, we expanded a previously developed P. vivax malaria transmission model to 
consider relapse in detail. Model simulations were performed to investigate the effect of 
introducing tafenoquine into the treatment regimen for P. vivax malaria relapse and total 
incidence, as well as medical expenses over the next decade from 2019 to 2028. The results 
suggested the potential advantage of tafenoquine introduction for suppressing P. vivax 
malaria relapse and total incidence and reducing overall medical expenses.

According to the study that synthesized the results of the phase 3 trial on the efficacy of 
tafenoquine and primaquine, the risk of relapse at 6 months was non-significantly higher 
for tafenoquine compared with primaquine (33.0% vs. 27.2%), with an odds ratio of 1.81 
(95% confidence interval, 0.82–3.96).13,15 However, while the group taking primaquine in 
these trials was a highly adherent population, a real-world study showed that adherence 
to primaquine is only 23.8%.35 Therefore, the real-world effectiveness of tafenoquine is 
expected to be at least equal to or better than primaquine.16 The drug information for 
tafenoquine and primaquine is presented in Supplementary Table 2. In this study, we 
constructed the scenarios considering these factors.

The relapse probability in the primaquine scenario was set to 0.04 based on the relapse incidence 
data reported by the KCDC,28,33 but no relapse probability data was available for the tafenoquine 
scenario; therefore, we assumed it to be 0.01 to 0.04. Low adherence to primaquine is presumed 
to be the leading cause of relapse in South Korea because it is impossible to supervise treatment 
adherence under real-world conditions. The introduction of tafenoquine is expected to improve 
adherence significantly, and therefore, we set the relapse probability with tafenoquine use at 
0.01–0.04 to determine the contribution of tafenoquine use to controlling the actual relapse 
and total incidence of P. vivax malaria. The result showed that under the assumption of a relapse 
probability of 0.01 with tafenoquine use, 77.78% of relapses and 12.27% of all P. vivax malaria 
incidence could be prevented in 10 years. Thus, the introduction of tafenoquine could contribute 
to returning South Korea to malaria elimination status. Indeed, if South Korea returns to malaria 
elimination status, the real source of reinfection would presumably be North Korea. Accordingly, 
we have conducted a follow-up study to distribute RDT and tafenoquine to North Korea and 
simulate its effect on malaria incidence.

In addition to the adherence issues associated with primaquine, the cytochrome P450 
(CYP) 2D6 enzyme may be crucial for its anti-malarial efficacy.36,37 Therefore, low CYP2D6 
metabolism may result in treatment failure in patients with P. vivax malaria.38 A report 
also confirms impaired CYP2D6 function in a patient with four relapses of P. vivax malaria 
despite primaquine treatment in Korea.39 In contrast, previous studies have shown that 
low CYP2D6 metabolism did not appear to be associated with relapse in patients with 
tafenoquine use.40,41 Therefore, this is another advantage of tafenoquine over primaquine. In 
addition, primaquine interacts with quinacrine and myeloid suppressive drugs; this increases 
primaquine toxicity. Therefore, the manufacturer contraindicates their concomitant use.42 In 
this case, using tafenoquine could also overcome these issues.

Although the medical necessity of introducing tafenoquine treatment to prevent relapse by 
improving adherence is acknowledged, further investigations into the economic benefits 
of tafenoquine are required for its widespread use instead of primaquine. This is because 
the price of tafenoquine is much higher than that of primaquine. In particular, because the 
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prevalence of G6PD deficiency is low in South Korea, primaquine may be prescribed without 
G6PD testing, which must precede tafenoquine use, inevitably contributing to an increase in 
cost.43-45 Therefore, a cost-benefit analysis comparing the additional cost of tafenoquine use 
and the expected decrease in medical expenditure with the reduction of patients is essential 
to predict the burden of medical expenses resulting from long-term drug use. To this end, we 
calculated the cost of tafenoquine, primaquine, and G6PD testing and extracted the average 
incurred medical cost per patient with P. vivax malaria by analyzing HIRA data. Furthermore, 
the cost-benefit analysis results showed that the introduction of tafenoquine could be 
economically beneficial. If South Korea needs to use a high dose of primaquine (0.5 mg/kg 
for 14 days), such as Southeast Asia and Oceania,6,29 the benefit of using tafenoquine could 
be more significant than using primaquine since the cost of primaquine increases when high-
dose primaquine is used. The cost-benefit analysis results when G6PD testing was conducted 
before prescribing primaquine, as recommended by the World Health Organization, also 
proved it was beneficial. If the G6PD test is not mandatory when using tafenoquine, the 
benefit of using tafenoquine could be more significant.

Moreover, the sensitivity analysis verified that introducing tafenoquine is beneficial 
over primaquine under a feasible range of parameters. As the price of tafenoquine may 
vary by country, we fluctuated the price considerably in the sensitivity analysis. As the 
relapse probability of tafenoquine decreased up to 0.01, its introduction was beneficial at 
tafenoquine cost ≤ $191.87. Regarding the relapse probabilities of the two regimens, we 
confirmed that tafenoquine was beneficial when its relapse probability was lower than that 
of primaquine by at least 0.01 in the bivariate sensitivity analysis. In addition, evaluating the 
simultaneous impact of uncertainty in multiple parameters showed that the tafenoquine was 
beneficial at 69.1%.

This study has several strengths; the first is that this newly updated model elaborately reflects 
the relapse latency periods by expanding the previously developed mathematical P. vivax 
malaria model. Second, the model was calibrated to the actual malaria incidence data, and 
the monetary values used in this study were based on actual data, including that of the HIRA 
database. Therefore, the model simulations allowed us to estimate the impact of tafenoquine 
use on the relapse and total incidences of P. vivax malaria, as well as national medical 
expenditures. Lastly, the sensitivity analysis demonstrated the robustness of the result under 
uncertainties of the model parameters, costs, and benefits.

Despite these strengths, this study has some limitations that are worth mentioning. First, the 
relapse probability of P. vivax malaria with tafenoquine use was assumed in the simulation. 
As tafenoquine has not been used in South Korea, we assumed the relapse probability of 
its use by considering the probability and the causes of relapse with primaquine use. To 
overcome this limitation, we evaluated the incidences and economic feasibility under several 
different scenarios by changing the relapse probability of tafenoquine. We also performed 
the bivariate sensitivity analysis of the various combinations of tafenoquine and primaquine 
relapse probabilities. Second, the cost of tafenoquine, G6PD testing, and primaquine and the 
medical expenditure per malaria patient used in the cost-benefit analysis may vary by country. 
Thus, we described how the economic feasibility could change according to price changes in 
the sensitivity analysis.

In conclusion, the introduction of tafenoquine could reduce P. vivax malaria relapse and total 
incidence. The cost-benefit analysis and the sensitivity analysis also suggested the potential 
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advantage of using tafenoquine under uncertainties. These results support the need to adopt 
and use tafenoquine to eliminate P. vivax malaria in South Korea.
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