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Colocalization of cerebral iron with 
Amyloid beta in Mild Cognitive 
Impairment
J. M. G. van Bergen1, X. Li2,3, J. Hua2,3, S. J. Schreiner1,4, S. C. Steininger1,4, F. C. Quevenco1, 
M. Wyss5, A. F. Gietl1,4, V. Treyer1,6, S. E. Leh1,4, F. Buck6, R. M. Nitsch1,4, K. P. Pruessmann5, 
P. C. M. van Zijl2,3, C. Hock1 & P. G. Unschuld1,4

Quantitative Susceptibility Mapping (QSM) MRI at 7 Tesla and 11-Carbon Pittsburgh-Compound-B 
PET were used for investigating the relationship between brain iron and Amyloid beta (Aβ) plaque-
load in a context of increased risk for Alzheimer's disease (AD), as reflected by the Apolipoprotein E 
ε4 (APOE-e4) allele and mild cognitive impairment (MCI) in elderly subjects. Carriers of APOE-e4 with 
normal cognition had higher cortical Aβ-plaque-load than non-carriers. In MCI an association between 
APOE-e4 and higher Aβ-plaque-load was observable both for cortical and subcortical brain-regions. 
APOE-e4 and MCI was also associated with higher cortical iron. Moreover, cerebral iron significantly 
affected functional coupling, and was furthermore associated with increased Aβ-plaque-load (R2-
adjusted = 0.80, p < 0.001) and APOE-e4 carrier status (p < 0.001) in MCI. This study confirms earlier 
reports on an association between increased brain iron-burden and risk for neurocognitive dysfunction 
due to AD, and indicates that disease-progression is conferred by spatial colocalization of brain iron 
deposits with Aβ-plaques.

Alzheimer's disease (AD) is the most frequent cause of dementia and significantly increased risk for AD-dementia 
is associated with advanced age, mild cognitive impairment (MCI) and carrier-status of the Apolipoprotein E ε4 
allele (APOE-e4)1,2. Neuropathological hallmarks of AD include both intracellular pathological neurofibrils as 
well as extracellular accumulation of Amyloid beta (Aβ ) plaques3,4. Particularly the accumulation of Aβ -plaques is 
considered to potentially represent preclinical disease stages5–7. The APOE-e4 allele has been shown to be closely 
associated with the extent of cerebral Aβ -plaque-load8 and both exert interactive effects on cognitive decline9. 
Recent data demonstrate that the risk for developing AD-dementia, as conferred by APOE-e4 carrier status, is 
closely linked to cerebral iron-burden, implicating potential benefit of therapeutic strategies aimed at lowering 
brain iron in this patient population10,11.

Accumulation of iron in the human brain is a characteristic finding in several neurodegenerative disorders12,13 
and has been reported for AD both in post-mortem studies14–16 as well as in vivo by using magnetic resonance 
imaging (MRI)17,18. In its normal function, amyloid precursor protein (APP) facilitates iron transport outside the 
cell19 In mammalian cell cultures iron has been demonstrated to interfere in the aggregation of Aβ  and thus may 
significantly promote Aβ  neurotoxicity in AD20. Additionally, local iron deposits are considered to reflect mito-
chondrial dysfunction21 and abnormal microglial activation22 in a context of pathological brain change taking 
place in AD. Recent developments on quantitative susceptibility mapping (QSM) techniques23–26 have made it 
possible to directly map brain tissue magnetic susceptibility, which has been shown to correlate well with tissue 
iron concentration in cerebral gray matter24,27–29.

Positron Emission Tomography (PET) for measuring cerebral Aβ -plaque-load has been combined with 
functional MRI (fMRI) at rest for inferring on functional network integrity, in several studies so far that 
included both cognitively normal populations of elderly subjects, as well as individuals with MCI and manifest 
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AD-dementia30–32. Interestingly, there is a significant overlap between brain regions characterized by altered func-
tional connectivity and localization of AD-pathology33. This overlap particularly affects structures connected 
with the medial prefrontal cortex (MPFC), which is a central hub within the default-mode network (DMN) and 
thus is considered to have spatially specific effects on neuronal functionality, as reflected by downstream memory 
deficits34–37. The application of MRI at ultra-high field strength of 7 Tesla (7T) inherently increases signal to noise 
ratios (SNR) in QSM and BOLD fMRI, due to the linear relationship between susceptibility induced field shift and 
field strength, and supralinear relationship between BOLD contrast and field strength, respectively, allowing for 
detecting subtle changes in the brain with relatively small sample size25,38.

At this point several neuropathological and neuroimaging studies have demonstrated the close relationship 
between increased risk for AD and prevalence of MCI, APOE-e4 carrier status, Aβ -plaque-load and altered func-
tional connectivity39, and also an association between APOE-e4 carrier status and increased brain iron load10. 
However, to our knowledge there are no studies published on the impact of brain iron load on functional brain 
network integrity and prevalence of regional Aβ -plaque-load in subjects at risk for AD. As the extent of regional 
Aβ -plaque-load may be estimated by applying radioactive tracers such as 11C-Pittsburgh Compound B for PET 
(PiB-PET)40,41 and cerebral iron can be measured by QSM29, the combination of QSM with PiB-PET can be used 
to infer on Aβ -plaque related iron load. Thus, for the current study the following questions were investigated in a 
study population of elderly subjects with normal cognitive performance and MCI:

1. To investigate a potential relationship between increased AD-risk, as reflected by MCI and APOE-e4 carri-
er-status, with cerebral iron-burden, as measured by whole-brain QSM at ultra-high field strength of 7T.

2. To estimate combined effects of MCI and increased cerebral iron-load on MPFC-coupling by resting state 
BOLD fMRI.

3. To characterize the relationship between iron-load and Aβ -plaque density in brain regions with altered 
MPFC-coupling by whole-brain QSM and 11C-PiB-PET data.

Methods
Participants. 37 study participants aged between 62 and 89 years (22 cognitively normal, 15 MCI) without 
evidence of significant medical illness, were recruited as part of an ongoing study at our hospital. The study was 
conducted in accordance with good clinical practice guidelines issued by the local ethics committee (Kantonale 
Ethikkommission Zürich), as well as with the declaration of Helsinki. All procedures were approved by the 
Kantonale Ethikkommission Zürich. Written informed consent was obtained from all participants before inclu-
sion in the study.

All participants received psychiatric examination and neuropsychological testing during screening for eligi-
bility to participate in the current study and were categorized either as cognitively normal or MCI according to 
established criteria for diagnosis of MCI42,43. Neuropsychological tests included Mini Mental State Examination44 
(MMSE), Montreal Cognitive Assessment45 (MOCA), Verbal Learning and Memory Test46 (VLMT), Wechsler 
Memory Scale47 (WMS), Boston Naming Test48 (BNT) and Trail Making Test A/B49. Clinical examination includ-
ing clinical workup and neuropsychological testing were administered within 30 days of the PiB-PET scan and 7T 
MRI scan. Isoforms of the APOE gene were assessed for all participants50.

Exclusion criteria for the current study were: severe cognitive deficits indicating dementia, significant medi-
cation or drug abuse with possible effects on cognition, 7T MRI exclusion criteria (such as history of claustropho-
bia, vertigo, seizure disorder, middle-ear disorder, double vision and the presence of metals in or on the body), 
MRI scans with the evidence of infection, infarction, or other focal lesions, clinically relevant changes in red 
blood cell count, exclusion criteria for PiB-PET, history of severe allergic reactions to drugs or allergens, serious 
medical or neuropsychiatric illness and significant exposure to radiation.

Carbon-11 based Pittsburgh compound B Positron Emission Tomography (PiB-PET) for estimation  
of brain Aβ-plaque density. PiB-PET based estimation was used to estimate individual brain 
Aβ -plaque-load40,41. Individual dose of 350 MBq of carbon-labelled PiB was injected into the cubital vein. 
Standard quantitative filtered back projection algorithm including necessary corrections was applied. Cerebral 
Aβ  deposition values were extracted using PMOD Brain Tool software-package (PNEURO, Version 3.4, 
PMOD Technologies Ltd, Zürich, Switzerland). Late frame (minutes 50–70) values were standardized by the 
cerebellar gray matter average, resulting in 3D-volumes of PiB-PET retention (matrix =  128 ×  128 ×  47, voxel 
size =  2.3 ×  2.3 ×  3.3 mm). As a single measure of individual cortical Aβ -plaque-load, cortical PiB retention 
scores were determined by calculating a composite score using merged cortical PiB-PET intensity values, as 
reported earlier51.

MRI data acquisition. All subjects were scanned using a Philips 7-Tesla Achieva whole-body scan-
ner (Philips Healthcare, Best, The Netherlands) equipped with a Nova Medical quadrature transmit head 
coil and 32-channel receive coil array. A T1-weighted MP2RAGE image (TR/TE =  4.8 ms/2.1 ms, voxel 
size =  0.6 ×  0.6 ×  0.6 mm3, SENSE-factor =  2 ×  1 ×  2, scan duration =  7:50 min) was acquired for anatomi-
cal referencing and automated image segmentation. MR phase measurements used for QSM calculation were 
acquired using a multi-echo 3D gradient recalled echo (GRE) sequence with 3 echoes (TR/TE/Δ TE =  23/6/6 ms, 
flip angle =  10°, voxel size =  0.5 ×  0.5 ×  0.5 mm3, SENSE-factor =  2.5 ×  1 ×  2, flow-compensated, scan dura-
tion =  13:48 min). Phase data acquired with an echo time in the range of 12–18 ms was used for QSM recon-
struction. rs-fMRI was acquired using 3D T2-prep GRE sequence38 (TR =  2s, TRGRE/TEGRE =  3.08/1.6 ms, voxel 
size =  1.5 ×  1.5 ×  1.5 mm3, scan duration =  7:03 min). The high resolution GRE images were inspected (by P.U.) 
for any imaging artifacts or abnormalities, in particular cerebral microhaemorrhages (microbleeds).
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MRI data processing. Quantitative susceptibility mapping (QSM) for measuring brain iron load. Multiple 
processing steps were performed to calculate from acquired MR phase images the quantitative susceptibility maps 
of which local cerebral iron load is inferred. First, phase unwrapping was performed using Laplacian based dis-
crete phase unwrapping26. A brain mask was then obtained by skull-stripping the GRE magnitude image acquired 
at TE of 12 ms using FSL's brain extraction tool (BET, FMRIB Oxford, UK) with fractional threshold of 0.3. The 
unwrapped phase images were then divided by 2π *TE to obtain an image of the frequency shift in Hz for each 
echo. Subsequently, background fields were eliminated with the sophisticated harmonic artifact reduction for 
phase data (SHARP)28 approach using a variable spherical kernel size with a maximum radius of 4 mm and a 
regularization parameter of 0.0528. After removal of background fields, the resulting images of the two echoes 
were averaged to obtain a higher SNR as compared to single echo reconstruction52. Inverse dipole calculations 
to obtain the susceptibility maps were performed using a LSQR based minimization26,53. From suitable reference 
regions such as white matter tracts and central cerebral spinal fluid (CSF) regions23, the region having the lowest 
standard deviation of mean susceptibility in all subjects was selected. In this sample the frontal central CSF region 
in the lateral ventricles was selected as a reference region for the final susceptibility quantification. All reported 
susceptibility values are then relative to the mean susceptibility value of this reference region. Classification of 
all subjects as “high” or “low” cerebral iron content was performed by a median split of the average cortical gray 
matter susceptibility of all subjects, in the same regions used for the determination of the individual cortical 
Aβ -plaque-load51.

Assessment of structure volumes and mean susceptibility. In order to assess atrophy and susceptibility differences 
between MCI subjects and controls, the T1-weighted image was co-registered to the GRE magnitude image. The 
co-registered T1 image was then segmented using a multi-atlas matching approach developed as part of the Johns 
Hopkins University brain atlas, which is optimized for the parcellation of non-healthy brains54,55. ROIs were 
selected in the basal ganglia and several cortical gray matter structures for which mean susceptibility was calcu-
lated after eroding the ROI-masks with two pixels (1 mm) to account for partial volume effects and possible edge 
artifacts in cortical ROI’s. To normalize different brain sizes across subjects, individual structural volume was 
corrected with the following approach: Corrected structure volume = Original structure volume × (group mean 
intracranial volume/subject intracranial volume).

fMRI analysis. Pre-processing of the rs-fMRI data was performed using SPM12 (http://www.fil.ion.ucl.ac.uk/
spm/), the following steps were performed: realignment, slice time correction, co-registration of structural scan, 
segmentation, normalization and smoothing (FWHM =  4). The iron classification and MCI status were used 
as the covariates of interest in connectivity analysis using the CONN toolbox56. The signal was filtered with a 
band-pass filter using the default CONN setting of 0.01–0.1 Hz. Seed-to-voxel analysis was performed with 
the seed placed in the MPFC. Motion parameters (extracted using the Artifact Detection Tool, ART, https://
www.nitrc.org/projects/artifact_detect/), CSF, and white matter were regressed out, as variables of no interest. 
Connected voxels were included in the mask if they had a False Discovery Rate (FDR) corrected probability of 
p <  0.001. Using this mask gray matter susceptibility and PiB-PET retention values were extracted and averaged 
for each subject.

Statistics. To examine the differences between groups 1-way MANCOVA was performed with the mean 
magnetic susceptibility or tissue volume of each brain structure as the outcome variable, while controlling for 
age and gender, followed by False Discovery Rate (FDR) multiple testing correction57. Effect sizes were calculated 
using Cohen’s d. All statistical tests were performed using MATLAB R2014b (Mathworks, Natick, MA).

Results
Demographics of the study population. Demographic information for the investigated study popula-
tion and neuropsychological test performance at time of inclusion are summarized in Table 1. MCI and healthy 
controls differed significantly in scores on the neuropsychological tests MOCA, VMLT, Boston Naming Test 
and WMS. Example PiB-PET images and QSM maps can be seen in Fig. 1. Cortical PiB-PET retention differed 
significantly (p =  0.006, effect size =  3.1) between the two groups. The frontal central CSF region in the lateral 
ventricles, which was used as a reference for susceptibility calculations, was significantly different in volume 
(healthy: 19.1 ±  2.0 ml, MCI: 24.2 ±  3.3 ml, p <  0.05) but not in absolute susceptibility ppb reading before ref-
erencing (healthy: 5.8 ±  1.1 ppb, MCI: 5.6 ±  1.1 ppb). For all subjects, the median split of the average cortical 
PiB-PET retention was found to be 1.13 and the median split of the average cortical susceptibility was 3.0 ppb. 
Accordingly, the study population was classified based on PiB-PET retention into “high” and “low” cortical PiB 
(“high”: 7 healthy, 11 MCI) and susceptibility for iron -load (“high”: 10 healthy, 8 MCI).

Effects attributable to MCI and APOE-e4 carrier status. Corrected volume was significantly different 
between controls and MCI subjects in the amygdala, hippocampus, thalamus and putamen with p <  0.001 and 
effect sizes of 0.80–1.2 (Table 2). However, no significant differences were found for the average susceptibility in 
any of these regions between the two groups.

Splitting the analysis based on MCI and APOE-e4 status showed no significant susceptibility differences in 
cortical regions of control subjects but strong significant increases in APOE-e4 carriers in the caudate nucleus 
(Table 3, p <  0.01, effect size =  1.03) and frontal, temporal, parietal and occipital cortices (p <  0.001, effect 
sizes =  0.67–1.11) for the MCI group. APOE-e4 positive subjects had significantly higher levels of Aβ -plaque-load 
in general, as indicated by PiB-PET retention (APOE-e4 positives: 1.56 ±  0.12, APOE-e4 negatives, 1.17 ±  0.04, 
p =  0.006). There was no significant effect of APOE-e4 status on the volume for any of the investigated cortical 
and subcortical regions (data not shown).
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The combination of MCI with high iron load is associated with altered MPFC-coupling. The 
rs-fMRI functional connectivity analyses using MCI status and iron classification as covariates resulted in a mask 
consisting of 1502 voxels of significantly increased activation (p-FDR-corrected < 0.001) with T(1,7) =  10.99. 
Main regions include frontal pole right (276 voxels, 3% of ROI), paracingulate gyrus left (188 voxels, 14%), frontal 

Controls MCI

N (F/M) 8/14 5/10

Age (years) 71.91 ±  5.25 75.27 ±  7.63

Education (years) 13.64 ±  2.56 15.2 ±  3.51

PiB-PET retention 1.16 ±  0.08 1.5 ±  0.17**

APOE-e4 positive 7 (31%) 6 (40%)

MMSE 29.27 ±  0.70 28.61 ±  1.65

MOCA 27.36 ±  1.30 24.44 ±  2.17**

VLMT: immediate recall 11.59 ±  2.22 7.11 ±  4.00***

VLMT: delayed recall 11.41 ±  2.94 6.83 ±  4.29***

VLMT: recognition 12.73 ±  2.31 7.78 ±  5.79**

Boston Naming Test 14.68 ±  0.48 13.94 ±  1.26*

WMS: pairs learning 14.76 ±  4.28 10.65 ±  4.72**

WMS: pairs recall 5.52 ±  1.49 3.88 ±  1.75**

Verbal Working Memory 6.32 ±  1.99 5.44 ±  1.42

Trail Making Test ratio 2.58 ±  0.74 2.6 ±  1.24

Table 1.  Demographic data and clinical assessment scores for control subjects with normal cognition and 
MCI subjects at time of inclusion in the study. Data are presented as mean ±  standard deviation. APOE-e4 
status presented as N (percentage of group). Age and Education are in years. *Significant difference between 
controls and MCI with p <  0.05, **p <  0.01, ***p <  0.001.

Figure 1. Example images for a control subject (left) and MCI subject (right). The top row shows PiB-PET 
images of Aβ -plaque-load in gray matter, which is highly increased in the frontal regions in the MCI subject, 
the signal in the white matter is non-specific to Aβ -plaque-load and is also observed in the control subject. The 
bottom row shows QSM maps of the same slices indicating regions with high iron load such as the basal ganglia.



www.nature.com/scientificreports/

5Scientific RepoRts | 6:35514 | DOI: 10.1038/srep35514

medial cortex (145 voxels, 15%), cingulate gyrus (146 voxels, 6%), frontal pole left (122 voxels, 2%) and paracin-
gulate gyrus right (116 voxels, 9%), see also Fig. 2.

Susceptibility and Aβ-plaque-load correlate within brain regions defined by altered MPFC- 
coupling. The mask of the region with significantly increased coupling was applied to the individual PiB-PET 
images and QSM maps of all MCI subjects (Fig. 3). The Spearman’s correlation between cortical PiB-PET 

Corrected volume (ml) Mean ± STE χ (ppb) Mean ± STE

Controls MCI Controls MCI

Amygdala 4.03 ±  0.09 3.60 ±  0.15*** − 16.6 ±  2.3 − 17.4 ±  2.3

Nucleus Acc 1.76 ±  0.07 1.84 ±  0.10 11.8 ±  3.7 11.8 ±  5.5

Hippocampus 8.62 ±  0.18 7.55 ±  0.22*** − 1.3 ±  1.7 − 0.6 ±  2.9

Entorhinal Ctx 2.15 ±  0.13 2.01 ±  0.15 23.4 ±  3.8 25.8 ±  3.3

Thalamus 13.88 ±  0.19 12.83 ±  0.40*** − 7.7 ±  1.8 − 8.9 ±  1.8

Caudate Nucleus 9.53 ±  0.24 9.31 ±  0.30 41.4 ±  4.2 38.2 ±  3.7

Putamen 10.11 ±  0.27 8.92 ±  0.43*** 63.6 ±  4.4 61.2 ±  4.3

Globus Pallidus 3.50 ±  0.07 3.35 ±  0.09 104.5 ±  4.9 99.3 ±  5.0

Frontal Ctx 16.56 ±  1.98 16.13 ±  2.36 2.1 ±  1.8 2.6 ±  2.2

Temporal Ctx 23.24 ±  2.40 22.13 ±  2.77 0.3 ±  1.6 2.1 ±  2.1

Parietal Ctx 21.63 ±  1.13 21.23 ±  1.32 4.3 ±  1.6 4.0 ±  1.8

Occipital Ctx 18.76 ±  2.51 18.38 ±  2.93 3.6 ±  1.8 3.8 ±  2.1

Table 2.  Changes in corrected volume and susceptibility (referenced to CSF) between controls and MCI. 
Ctx =  Cortex. Data are presented as mean ±  standard error (STE). ***Significant difference between controls 
and MCI with p <  0.001.

Iron load (χ, ppb) 
Mean ± STE

d

Aβ-plaque-load (PiB-PET, 
SUVR) Mean ± STE

dAPOE-e4 - APOE-e4 + APOE-e4 - APOE-e4 +

A) Controls

 Amygdala − 17.2 ±  2.5 − 15.3 ±  2.2 0.19 1.19 ±  0.02 1.19 ±  0.02 0.02

 Nucleus Acc 12.1 ±  4.1 11.2 ±  3.2 0.06 1.17 ±  0.02 1.23 ±  0.03 0.64*

 Hippocampus − 1.4 ±  1.7 − 1.2 ±  2.1 0.02 1.25 ±  0.02 1.31 ±  0.02 0.70*

 Entorhinal Ctx 22.6 ±  5.1 25.0 ±  2.6 0.15 1.08 ±  0.02 1.14 ±  0.01 0.92**

 Thalamus − 6.5 ±  1.9 − 10.5 ±  1.4 0.55 1.48 ±  0.04 1.48 ±  0.04 0.01

 Caudate Nucleus 46.0 ±  3.7 31.5 ±  5.5 0.75* 1.26 ±  0.03 1.28 ±  0.03 0.23

 Putamen 67.2 ±  4.3 55.9 ±  5.3 0.56 1.33 ±  0.02 1.36 ±  0.01 0.46

 Globus Pallidus 106.4 ±  5.0 100.4 ±  5.7 0.26 1.45 ±  0.02 1.50 ±  0.04 0.34

 Frontal Ctx 2.6 ±  1.9 1.1 ±  2.0 0.18 1.02 ±  0.03 1.13 ±  0.04 0.69***

 Temporal Ctx 0.7 ±  1.6 − 0.6 ±  2.0 0.17 1.04 ±  0.02 1.10 ±  0.04 0.48***

 Parietal Ctx 4.1 ±  1.6 2.7 ±  1.8 0.25 0.99 ±  0.02 1.15 ±  0.05 1.07***

 Occipital Ctx 4.0 ±  1.9 2.9 ±  1.8 0.14 1.14 ±  0.03 1.19 ±  0.04 0.42**

B) MCI

 Amygdala − 17.5 ±  1.8 − 17.2 ±  2.6 0.04 1.07 ±  0.02 1.54 ±  0.03 4.01***

 Nucleus Acc 8.2 ±  4.9 17.3 ±  4.7 0.44 1.16 ±  0.02 2.41 ±  0.07 7.00***

 Hippocampus − 2.0 ±  2.0 1.5 ±  3.5 0.31 1.14 ±  0.03 1.42 ±  0.03 2.55***

 Entorhinal Ctx 23.1 ±  3.4 30.0 ±  2.5 0.56 1.02 ±  0.03 1.31 ±  0.03 2.80***

 Thalamus − 9.1 ±  1.4 − 8.5 ±  2.1 0.07 1.46 ±  0.02 1.80 ±  0.06 1.95***

 Caudate Nucleus 32.7 ±  2.0 46.3 ±  4.5 1.03** 1.24 ±  0.04 2.13 ±  0.09 3.40***

 Putamen 58.6 ±  3.7 65.2 ±  4.0 0.41 1.29 ±  0.01 2.23 ±  0.05 7.29***

 Globus Pallidus 96.4 ±  3.3 103.5 ±  6.3 0.36 1.41 ±  0.03 1.92 ±  0.06 2.86***

 Frontal Ctx 0.1 ±  1.6 6.3 ±  2.2 0.78*** 0.98 ±  0.05 1.95 ±  0.10 3.32***

 Temporal Ctx 0.0 ±  1.8 5.2 ±  1.8 0.67*** 1.03 ±  0.02 1.73 ±  0.07 3.50***

 Parietal Ctx 1.3 ±  1.2 8.1 ±  1.8 1.11*** 1.00 ±  0.03 1.87 ±  0.09 3.60***

 Occipital Ctx 1.5 ±  1.4 7.2 ±  2.4 0.71*** 1.13 ±  0.02 1.59 ±  0.08 2.20***

Table 3.  Quantitative magnetic susceptibility (χ in ppb referenced to CSF) and PiB-PET retention (SUVR) 
separated by APOE-e4 status within the two groups. *Significant difference between APOE-e4 positive and 
negative with p <  0.05, **p <  0.01, ***p <  0.001. d indicates effect sizes (Cohen's d).
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retention and susceptibility was found to be p <  0.001 (Spearman’s rho =  0.86, R2-adjusted =  0.80). Analysis of 
the extracted values per group showed significant increases of cortical PiB-PET retention and susceptibility in 
the APOE-e4 carrier group of the MCI subjects (Fig. 3). Moreover, in the MCI group, the odds ratio for an 
APOE-e4 carrier to have “high” PiB-PET retention was 48 (p <  0.01, 95% confidence interval =  2.6–932.8) and 
17.5 (p <  0.05, 95% confidence interval =  2.2–250.3) to be “high” iron compared to a non-carrier.

Discussion
In this study magnetic susceptibility was used as a MRI-based measure of cerebral iron load and combined with 
PiB-PET for measuring Aβ -plaque density in elderly subjects with normal cognition and MCI. For clarity and con-
sistency with earlier studies, changes in susceptibility values will be referred to as changes in iron levels, due to the 
previously demonstrated correlation of susceptibility values with tissue iron levels in brain gray matter24,27–29. The 
main finding of our study is the characterization of brain regions affected by high iron in MCI, within which a spa-
tial colocalization of Aβ -plaques and iron was observable. This effect was associated with increased genetic risk for 
AD-dementia. As this colocalization is consistent with neuropathologic accounts on AD-signature brain regions58, 

Figure 2. Regions that show significant increased iron associated coupling (T(1,7) above 10.99 indicating 
p-FDR-corrected <0.001) with the medial prefrontal cortex (MPFC) in subjects with MCI. 
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region with significantly increased coupling shown in Fig. 2. The dotted line indicates the median split of the 
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our data may complement earlier considerations on the relationship between cerebral iron and AD-risk10. To our 
knowledge this is the first report on a significant impact of iron on functional network integrity in subjects with MCI.

Although a previous smaller QSM-study reported higher iron load in AD18, our data does not show a general 
effect for MCI when compared to controls (Table 2) indicating such differences might occur in later stages of 
AD progression. However, MCI subjects with the APOE-e4 allele did show significantly higher iron levels in the 
neocortex (Table 3), which is a brain region affected by AD-pathology at early stages of disease progression58. 
Our finding of increased cortical iron may therefore support earlier considerations that MCI in APOE-e4 carriers 
may represent a prodromal stage of AD6. Increased cortical iron may be a more specific correlate of emerging 
neuro-cognitive dysfunction in prodromal AD than cortical Aβ -plaque-load, which was in our data associated 
with APOE-e4 independently from MCI (Table 3). This may be consistent with earlier data from MRI phase 
experiments that indicate significant change only for MCI subjects that progressed to dementia59 and considera-
tions on synergistic effects of Aβ  and other aspects of neurodegeneration in AD60,61. The fact that reduced volume 
of subcortical nuclei including the hippocampal area was associated with MCI but not APOE-e4 most likely 
reflects heterogeneity of possible causes for MCI in the elderly.

It has been shown that the T2-prep BOLD method can achieve comparable contrast-to-noise ratio (CNR) as 
the conventional echo-planar-imaging (EPI) based BOLD approach, but has much reduced signal dropout and 
image distortion especially in brain regions close to air cavities such as some frontal and temporal areas38. Such 
dropout and distortion are particularly problematic at 7T where magnetic susceptibility gradients increase sub-
stantially at air-tissue boundary. At 3T or lower fields, where most clinical scans are conducted, such EPI artifacts 
are much reduced. Therefore, the T2-prep BOLD fMRI method in this study at 7T was adopted and it is expected 
that the findings are generalizable to studies using conventional EPI BOLD fMRI sequences at 3T. For this study 
a seed based approach investigating functional connectivity of the MPFC was chosen, as the MPFC is a central 
component of the DMN, which has been demonstrated to be impaired by Aβ  pathology already in the preclin-
ical stage of AD33. Our findings of iron load being associated with increased coupling in fronto-temporal brain 
regions is consistent with earlier reports on DMN-change in AD62,63 and thus indicate that increased iron may 
contribute to the dysfunction of cognitive brain networks in subjects at risk for AD. However, as the current study 
investigated combined effects of MCI and iron load for definition of a brain region with particular liability for 
AD-associated brain change based on altered coupling to the MPFC64, our data does not support an independent 
role of iron for augmenting pathological decline in AD.

The reported correlation (Fig. 3) between cortical iron and Aβ -plaque-load within these functionally altered 
brain regions suggest that increased cerebral iron relates to regional accumulation of Aβ  in subjects at risk for AD 
and reflects preclinical neuronal dysfunction in AD-signature regions. Additionally, our finding of significantly 
higher levels of both iron and Aβ  in APOE-e4 carriers is consistent with earlier reports and suggests that the 
APOE-e4 allele may confer susceptibility to AD via brain iron accumulation10.

Our data furthermore suggest that the co-occurrence of iron and Aβ  may be mediated by APOE-e4, which 
has been demonstrated to both promote cerebral Aβ  accumulation by competing for the same clearance path-
ways65 and increase cerebral iron retention by impaired lipoprotein trafficking due to low affinity of APOE-e4 
to high-density lipoprotein10. While direct interactions between iron and Aβ  may result in increased toxicity by 
production of redox-active iron forms and oxidative stress20,66, brain iron accumulation is also associated with 
microglial over-activation22, promoting neurodegeneration in AD67. Our observation of altered functional con-
nectivity, may reflect these processes and thus indicate preclinical brain change with the potential of causing pro-
gressive neuronal damage, as reflected by worsening neurocognitive disorder. Although the sample size is small, 
the increased sensitivity at the high field strength of 7T with inherently better SNR in QSM, provides currently 
the most sensitive detection of in vivo gray matter iron levels29. When interpreting the current data it needs to be 
taken into account that the QSM-signal is biased by decreased myelin density29,68. However, the cortical and deep 
gray matter regions investigated in this study are low in myelin content and thus the myelin contribution to the 
susceptibility signal in this study was considered negligible. While spatial co-localization of microhemorrhages 
with Aβ -plaques may bias iron measures69, in the current study no microhemorrhages were observable within 
the brain regions investigated.

Considering that iron may reflect processes associated with Aβ  related neurocognitive dysfunction, further 
studies are needed to investigate whether the efficacy of therapeutic strategies lowering brain Aβ -plaque-load for 
slowing down progression of AD7,70 is affected by the extent of local iron accumulation11,71.

References
1. Corder, E. H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261, 

921–923 (1993).
2. Chartier-Harlin, M. C. et al. Apolipoprotein E, epsilon 4 allele as a major risk factor for sporadic early and late-onset forms of 

Alzheimer’s disease: analysis of the 19q13.2 chromosomal region. Hum. Mol. Genet. 3, 569–574 (1994).
3. Morris, J. C. et al. APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging. Ann. Neurol. 67, 

122–131 (2010).
4. Schmechel, D. E. et al. Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype 

in late-onset Alzheimer disease. Proc. Natl. Acad. Sci. USA 90, 9649–9653 (1993).
5. Liu, E. et al. Amyloid-β  11C-PiB-PET imaging results from 2 randomized bapineuzumab phase 3 AD trials. Neurology 85, 

WNL.0000000000001877 (2015).
6. Sperling, R. A., Amariglio, R. E., Marshall, G. A. & Rentz, D. M. Establishing Clinical Relevance in Preclinical Alzheimer’s Disease. 

J. Prev. Alzheimer’s Dis. 2, 85–87 (2015).
7. Nitsch, R. M. & Hock, C. Targeting β -amyloid pathology in Alzheimer’s disease with Aβ  immunotherapy. Neurotherapeutics 5, 

415–420 (2008).
8. Reiman, E. M. et al. Fibrillar amyloid-beta burden in cognitively normal people at 3 levels of genetic risk for Alzheimer’s disease. 

Proc. Natl. Acad. Sci. USA 106, 6820–6825 (2009).



www.nature.com/scientificreports/

8Scientific RepoRts | 6:35514 | DOI: 10.1038/srep35514

9. Mormino, E. C. et al. Amyloid and APOE ε 4 interact to influence short-term decline in preclinical Alzheimer disease. Neurology 82, 
1760–1767 (2014).

10. Ayton, S. et al. Ferritin levels in the cerebrospinal fluid predict Alzheimer’s disease outcomes and are regulated by APOE. Nat. 
Commun. 6, 6760 (2015).

11. Wood, H. Alzheimer disease: Iron–the missing link between ApoE and Alzheimer disease? Nat. Rev. Neurol. 11, 369 (2015).
12. Barbosa, J. H. O. et al. Quantifying brain iron deposition in patients with Parkinson’s disease using quantitative susceptibility 

mapping, R2 and R2. Magn. Reson. Imaging 33, 559–565 (2015).
13. Murakami, Y. et al. Usefulness of Quantitative Susceptibility Mapping for the Diagnosis of Parkinson Disease. Am. J. Neuroradiol. 

36, 1102–1108 (2015).
14. House, M. J. et al. Correlation of proton transverse relaxation rates (R2) with iron concentrations in postmortem brain tissue from 

Alzheimer’s disease patients. Magn. Reson. Med. 57, 172–180 (2007).
15. Connor, J. R., Menzies, S. L., St Martin, S. M. & Mufson, E. J. A histochemical study of iron, transferrin, and ferritin in Alzheimer’s 

diseased brains. J. Neurosci. Res. 31, 75–83 (1992).
16. Bush, A. I. The metal theory of Alzheimer’s disease. J. Alzheimers. Dis. 33 Suppl 1, S277–S281 (2013).
17. Bartzokis, G. & Tishler, T. a. MRI evaluation of basal ganglia ferritin iron and neurotoxicity in Alzheimer’s and Huntingon’s disease. 

Cell. Mol. Biol. 46, 821–833 (2000).
18. Acosta-Cabronero, J. et al. In vivo quantitative susceptibility mapping (QSM) in Alzheimer’s disease. PLoS One 8, e81093 (2013).
19. Duce, J. a. et al. Iron-Export Ferroxidase Activity of β -Amyloid Precursor Protein is Inhibited by Zinc in Alzheimer’s Disease. Cell 

142, 857–867 (2010).
20. Liu, B. et al. Iron promotes the toxicity of amyloid beta peptide by impeding its ordered aggregation. J. Biol. Chem. 286, 4248–4256 (2011).
21. Rolston, R. K. et al. Iron A pathological mediator of Alzheimer disease? Agro Food Ind. Hi. Tech. 19, 33–36 (2008).
22. Zeineh, M. M. et al. Activated iron-containing microglia in the human hippocampus identified by magnetic resonance imaging in 

Alzheimer disease. Neurobiol. Aging, doi: 10.1016/j.neurobiolaging.2015.05.022 (2015).
23. Deistung, A. et al. Toward in vivo histology: A comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, 

and R2*-imaging at ultra-high magnetic field strength. Neuroimage 65, 299–314 (2013).
24. Lim, I. A. L. et al. Human brain atlas for automated region of interest selection in quantitative susceptibility mapping: Application 

to determine iron content in deep gray matter structures. Neuroimage 82, 449–469 (2013).
25. Schweser, F., Sommer, K., Deistung, A. & Reichenbach, J. R. Quantitative susceptibility mapping for investigating subtle 

susceptibility variations in the human brain. Neuroimage 62, 2083–2100 (2012).
26. Li, W., Wu, B. & Liu, C. Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition. 

Neuroimage 55, 1645–1656 (2011).
27. De Rochefort, L. et al. Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: Validation 

and application to brain imaging. Magn. Reson. Med. 63, 194–206 (2010).
28. Schweser, F., Deistung, A., Lehr, B. W. & Reichenbach, J. R. Quantitative imaging of intrinsic magnetic tissue properties using MRI 

signal phase: An approach to in vivo brain iron metabolism? Neuroimage 54, 2789–2807 (2011).
29. Langkammer, C. et al. Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation 

study. Neuroimage 62, 1593–1599 (2012).
30. Huijbers, W. et al. Amyloid deposition is linked to aberrant entorhinal activity among cognitively normal older adults. J. Neurosci. 

34, 5200–5210 (2014).
31. Sperling, R. A. et al. Amyloid Deposition Is Associated with Impaired Default Network Function in Older Persons without 

Dementia. Neuron 63, 178–188 (2009).
32. Johnson, K. a., Sperling, R. a. & Sepulcre, J.Functional connectivity in Alzheimer’s disease: Measurement and meaning. Biol. 

Psychiatry 74, 318–319 (2013).
33. Mintun, M. a. et al. [11C]PIB in a nondemented population: Potential antecedent marker of Alzheimer disease. Neurology 67, 

446–452 (2006).
34. Buckner, R. L. Molecular, Structural, and Functional Characterization of Alzheimer’s Disease: Evidence for a Relationship between 

Default Activity, Amyloid, and Memory. J. Neurosci. 25, 7709–7717 (2005).
35. Sheline, Y. I. et al. Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biol.

Psychiatry. 67, 584–587 (2010).
36. Sperling, R. A. et al. Functional alterations in memory networks in early Alzheimer’s disease. Neuromolecular Med. 12, 27–43 (2010).
37. Ward, A. M. et al. Relationships between default-mode network connectivity, medial temporal lobe structure, and age-related 

memory deficits. Neurobiol. Aging 36, 265–272 (2014).
38. Hua, J., Qin, Q., van Zijl, P. C. M., Pekar, J. J. & Jones, C. K. Whole-brain three-dimensional T2-weighted BOLD functional magnetic 

resonance imaging at 7 Tesla. Magn. Reson. Med. 72, 1530–1540 (2014).
39. Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on 

Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 7, 280–292 (2011).
40. Klunk, W. E. et al. Imaging Brain Amyloid in Alzheimer’s Disease with Pittsburgh Compound-B. Ann. Neurol. 55, 306–319 (2004).
41. Solbach, C., Uebele, M., Reischl, G. & MacHulla, H. J. Efficient radiosynthesis of carbon-11 labelled uncharged Thioflavin T 

derivatives using [11C]methyl triflate for?? -amyloid imaging in Alzheimer’s Disease with PET. Appl. Radiat. Isot. 62, 591–595 
(2005).

42. Petersen, R. C. et al. Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol. 56, 303–308 (1999).
43. McKhann, G. M. et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on 

Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 7, 263–269 
(2011).

44. Folstein, M. F., Folstein, S. E. & McHugh, P. R. ‘Mini-mental state’. A practical method for grading the cognitive state of patients for 
the clinician. J. Psychiatr. Res. 12, 189–198 (1975).

45. Nasreddine, Z. S. et al. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. 
Geriatr. Soc. 53, 695–699 (2005).

46. Helmstaedter, C. & Durwen, H. F. [The Verbal Learning and Retention Test. A useful and differentiated tool in evaluating verbal 
memory performance]. Schweizer Arch. für Neurol. und Psychiatr. (Zurich, Switz. 1985) 141, 21–30 (1990).

47. Elwood, R. W. The Wechsler Memory Scale-Revised: psychometric characteristics and clinical application. Neuropsychol. Rev. 2, 
179–201 (1991).

48. Nicholas, L. E., Brookshire, R. H., Maclennan, D. L. Schumacher, J. G. & Porrazzo, S. a. Revised administration and scoring 
procedures for the Boston Naming test and norms for non-brain-damaged adults. Aphasiology 3, 569–580 (1989).

49. Tombaugh, T. N.Trail Making Test A and B: Normative data stratified by age and education. Arch. Clin. Neuropsychol. 19, 203–214 
(2004).

50. Tanzi, R. E. The genetics of Alzheimer disease. Cold Spring Harb. Perspect. Med. 2 (2012).
51. Vandenberghe, R. et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment a phase 2 trial. 

Ann. Neurol. 68, 319–329 (2010).
52. Wu, B., Li, W., Avram, A. V., Gho, S. M. & Liu, C. Fast and tissue-optimized mapping of magnetic susceptibility and T2* with multi-

echo and multi-shot spirals. Neuroimage 59, 297–305 (2012).



www.nature.com/scientificreports/

9Scientific RepoRts | 6:35514 | DOI: 10.1038/srep35514

53. Paige, C. C. & Saunders, M. a. LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares. ACM Trans. Math. Softw. 
8, 43–71 (1982).

54. Tang, X. et al. Bayesian Parameter Estimation and Segmentation in the Multi-Atlas Random Orbit Model. PLoS One 8, e65591 (2013).
55. Djamanakova, A. et al. Tools for multiple granularity analysis of brain MRI data for individualized image analysis. Neuroimage 101, 

168–176 (2014).
56. Whitfield-Gabrieli, S. & Nieto-Castanon, A. A Functional Connectivity Toolbox for Correlated and Anticorrelated Brain Networks. 

Brain Connect. 2, 125–141 (2012).
57. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal 

of the Royal Statistical Society. Series B (Methodological) 57, 289–300 (1995).
58. Serrano-Pozo, A., Frosch, M. P., Masliah, E. & Hyman, B. T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. 

Perspect. Med. 1, a006189 (2011).
59. Kirsch, W. et al. Serial susceptibility weighted MRI measures brain iron and microbleeds in dementia. J. Alzheimer’s Dis. 17, 599–609 

(2009).
60. Jagust, W. Is amyloid-β  harmful to the brain? Insights from human imaging studies. Brain 139, 23–30 (2016).
61. Mormino, E. C. et al. Synergistic effect of β -amyloid and neurodegeneration on cognitive decline in clinically normal individuals. 

JAMA Neurol. 71, 1379–1385 (2014).
62. Damoiseaux, J. S., Prater, K. E., Miller, B. L. & Greicius, M. D. Functional connectivity tracks clinical deterioration in Alzheimer’s 

disease. Neurobiol. Aging 33, 828.e19-30 (2012).
63. Agosta, F. et al. Resting state fMRI in Alzheimer’s disease: beyond the default mode network. Neurobiol. Aging 33, 1564–1578 (2012).
64. Buckner, R. L. et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to 

Alzheimer’s disease. J. Neurosci. 29, 1860–1873 (2009).
65. Verghese, P. B. et al. ApoE influences amyloid-β  (Aβ ) clearance despite minimal apoE/Aβ  association in physiological conditions. 

Proc. Natl. Acad. Sci. USA 110, E1807–E1816 (2013).
66. Huang, X. et al. The A beta peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. 

Biochemistry 38, 7609–7616 (1999).
67. Mosher, K. I. & Wyss-Coray, T. Microglial dysfunction in brain aging and Alzheimer’s disease. Biochem. Pharmacol. 88, 594–604 (2014).
68. Liu, C., Li, W., Johnson, G. A. & Wu, B. High-field (9.4T) MRI of brain dysmyelination by quantitative mapping of magnetic 

susceptibility. Neuroimage 56, 930–938 (2011).
69. Dierksen, G. A. et al. Spatial relation between microbleeds and amyloid deposits in amyloid angiopathy. Ann. Neurol. 68, 545–548 (2010).
70. Winblad, B., Graf, A., Riviere, M.-E., Andreasen, N. & Ryan, J. M. Active immunotherapy options for Alzheimer’s disease. 

Alzheimers. Res. Ther. 6, 7 (2014).
71. Crapper McLachlan, D. R. et al. Intramuscular desferrioxamine in patients with Alzheimer’s disease. Lancet (London, England) 337, 

1304–1308 (1991).

Acknowledgements
We thank all subjects for their study participation. We thank Linjing Mu, Ph.D. and Geoff Warnock, Ph.D. from 
the Division of Nuclear Medicine, University of Zürich, Switzerland for their help in generation of (11) carbon-
labeled Pittsburgh Compound-B tracer for Positron-Emission-Tomography (Linjing Mu) and calculation of 
the cortical PiB ratio scores (Geoff Warnock). We thank Daniel Summermatter from the Division of Psychiatry 
Research and Psychogeriatric Medicine, University of Zürich, Switzerland, for help in interpretation of 
neuropsychological test results. This work was funded by the Swiss National Science Foundation (Schweizerischer 
Nationalfonds, SNF), the Clinical Research Priority Program (CRPP) of the University of Zurich on Molecular 
Imaging (MINZ), a grant from the National Institutes of Health (NIBIB) P41 EB015909, and institutional support 
from the Division of Psychiatry Research and Psychogeriatric Medicine, University of Zürich and Institute for 
Biomedical Engineering, University of Zürich and ETH Zürich, Switzerland.

Author Contributions
J.M.G.v.B.: Performed data processing, statistical analysis and writing of the manuscript. X.L., J.H. and P.C.M.v.Z.: 
Established and optimized the QSM and T2-Prep-BOLD methodologies used and editing of the manuscript. 
S.J.S.: Acquisition of MRI data and neuropsychological workup of all subjects at time of MRI acquisition. S.C.S. 
and S.E.L.: Subject recruitment and extended neuropsychological workup of all participants. F.C.Q.: Assisted in 
the analysis of the fMRI functional connectivity data. M.W. and K.P.P.: Assisted in acquiring data, quality control 
and MR-sequence implementation at the 7 Tesla scanner at ETH Zurich. A.F.G., V.T. and F.B.: Coordinating the 
study and acquisition of PiB-PET data. R.M.N. and C.H.: Chairmen of the department and sponsors of the study. 
P.G.U.: Study design and management, supervision of data processing and statistical analysis, final responsibility 
and writing of the manuscript.

Additional Information
Competing financial interests: Dr. Peter van Zijl is a paid lecturer for Philips Healthcare and is the inventor of 
technology that is licensed to Philips. Dr. Xu Li’s salary is supported in part by a grant from Philips Healthcare. 
This arrangement has been approved by The Johns Hopkins University in accordance with its Conflict of 
Interest policies.
How to cite this article: van Bergen, J. M. G. et al. Colocalization of cerebral iron with Amyloid beta in Mild 
Cognitive Impairment. Sci. Rep. 6, 35514; doi: 10.1038/srep35514 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2016

http://creativecommons.org/licenses/by/4.0/

	Colocalization of cerebral iron with Amyloid beta in Mild Cognitive Impairment
	Methods
	Participants. 
	Carbon-11 based Pittsburgh compound B Positron Emission Tomography (PiB-PET) for estimation of brain Aβ-plaque density. 
	MRI data acquisition. 
	MRI data processing. 
	Quantitative susceptibility mapping (QSM) for measuring brain iron load. 
	Assessment of structure volumes and mean susceptibility. 
	fMRI analysis. 

	Statistics. 

	Results
	Demographics of the study population. 
	Effects attributable to MCI and APOE-e4 carrier status. 
	The combination of MCI with high iron load is associated with altered MPFC-coupling. 
	Susceptibility and Aβ-plaque-load correlate within brain regions defined by altered MPFC-coupling. 

	Discussion
	Acknowledgements
	Author Contributions
	Figure 1.  Example images for a control subject (left) and MCI subject (right).
	Figure 2.  Regions that show significant increased iron associated coupling (T(1,7) above 10.
	Figure 3.  Average Cortical PiB-PET Retention and Cortical Susceptibility of all MCI subjects (top) for the region with significantly increased coupling shown in Fig.
	Table 1.   Demographic data and clinical assessment scores for control subjects with normal cognition and MCI subjects at time of inclusion in the study.
	Table 2.   Changes in corrected volume and susceptibility (referenced to CSF) between controls and MCI.
	Table 3.   Quantitative magnetic susceptibility (χ in ppb referenced to CSF) and PiB-PET retention (SUVR) separated by APOE-e4 status within the two groups.



 
    
       
          application/pdf
          
             
                Colocalization of cerebral iron with Amyloid beta in Mild Cognitive Impairment
            
         
          
             
                srep ,  (2016). doi:10.1038/srep35514
            
         
          
             
                J. M. G. van Bergen
                X. Li
                J. Hua
                S. J. Schreiner
                S. C. Steininger
                F. C. Quevenco
                M. Wyss
                A. F. Gietl
                V. Treyer
                S. E. Leh
                F. Buck
                R. M. Nitsch
                K. P. Pruessmann
                P. C. M. van Zijl
                C. Hock
                P. G. Unschuld
            
         
          doi:10.1038/srep35514
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 The Author(s)
          10.1038/srep35514
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep35514
            
         
      
       
          
          
          
             
                doi:10.1038/srep35514
            
         
          
             
                srep ,  (2016). doi:10.1038/srep35514
            
         
          
          
      
       
       
          True
      
   




