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Abstract

The exocyst complex is required for cell polarity regulation and the targeting and tethering of transport vesicles to the
plasma membrane. The complex is structurally well conserved, however, the functions of individual subunits and their
regulation is poorly understood. Here we characterize the mutant phenotypes for the exocyst complex genes exoc-7 (exo70)
and exoc-8 (exo84) in Caenorhabditis elegans. The mutants display pleiotropic behavior defects that resemble those
observed in cilia mutants (slow growth, uncoordinated movement, defects in chemo-, mechano- and thermosensation).
However, no obvious morphological defects in cilia were observed. A targeted RNAi screen for small GTPases identified
eleven genes with enhanced phenotypes when combined with exoc-7, exoc-8 single and exoc-7;exoc-8 double mutants. The
screen verified previously identified functional links between the exocyst complex and small GTPases and, in addition,
identified several novel potential regulators of exocyst function. The exoc-8 and exoc-7;exoc-8 mutations caused a significant
size increase in the rab-10 RNAi-induced endocytic vacuoles in the intestinal epithelial cells. In addition, exoc-8 and exoc-
7;exoc-8 mutations resulted in up-regulation of RAB-10 expression and affected the accumulation of endocytic marker
proteins in these cells in response to rab-10 RNAi. The findings identify novel, potential regulators for exocyst function and
show that exoc-7 and exoc-8 are functionally linked to rab-10 in endosomal trafficking in intestinal epithelial cells in C.
elegans.
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Introduction

The exocyst is a functionally and structurally conserved multi-

protein complex that is essential for cell polarity regulation in

eukaryotic cells. It is involved in targeting and tethering of

transport vesicles to the plasma membrane [1–4] and is composed

of eight subunits, sec3, sec5, sec6, sec8, sec10, sec15, exo70 (exoc-7) and

exo84 (exoc-8) [5,6]. In yeast, loss-of-function mutations in exocyst

subunits block protein secretion and lead to the accumulation of

secretory vesicles [6,7]. In mammalian epithelial cells the exocyst

regulates membrane trafficking to the basolateral plasma mem-

brane [8,9] and regulates the localization of newly synthesized

apical actin [10]. In addition, exocyst proteins have been linked to

ciliogenesis of the primary cilia in mammalian cells [10,11].

However, the functions of individual exocyst components and the

mechanisms by which this tethering complex interact with other

cell polarity components are poorly understood.

The small GTPases are key regulators of diverse cellular and

developmental events, including differentiation, cell division,

vesicle transport, nuclear assembly and control of the cytoskeleton

[12]. In various model systems, the exocyst function has been

shown to be regulated by a set of small GTPases [2,13]. In yeast,

the targeting and assembly of the exocyst complex is dynamically

regulated by Sec4, Rho1, Rho3 and Cdc42 through distinct

subunit interactions [5,14–16]. Exo70p has been shown to interact

with Cdc42 [17] and Rho3p [18] and the Rho3p-Exo70p

interaction is important for efficient secretory function [19].

Unlike the interaction between Sec3p and Rho1p, which does not

seemto be conserved for the mammalian exocyst complex, the

Rho3p-Exo70p interaction is conserved, as the mammalian Exo70

binds the Rho family member TC10 [19]. The mammalian Exo84

and Sec5 are effectors of the Ral GTPases, RalA and RalB, which,

however, are not found in yeast [20–23]. These results highlight

the importance of small GTPases in exocyst function regulation

and indicate that for some subunits variation in the molecular

interactions and the modes of cooperation has occurred during

evolution.

Here, using C. elegans as a model, we report that mutations in

two exocyst subunits exoc-7 and exoc-8 result in behavioral

phenotypes. Furthermore, we identify a set of small GTPases by

RNAi screening that are functionally linked to exoc-7 and exoc-8.

The phenotypes induced by RNAi of rab-10 (one of the genes

identified in the screen) in exoc-7, exoc-8 and exoc-7;exoc-8 mutants

suggest that RAB-10, EXOC-7 and EXOC-8 cooperate in

membrane recycling from the endosomal compartment to the

plasma membrane in intestinal epithelial cells in C. elegans.
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Results

Exocyst subunit exoc-7 and sec-6 are broadly expressed
during C. elegans development

The functional role of the exocyst complex in the development

of C. elegans is largely uncharacterized. In order to evaluate the

expression pattern of exocyst subunits, transgenic animals

expressing transcriptional GFP reporters were generated for two

previously uncharacterized exocyst subunit genes in C. elegans. The

expression of Pexoc-7::GFP was observed from embryo to

adulthood (data not shown), through all developmental stages. In

adults, strong expression was observed in multiple tissues including

nerve ring, pharynx, tail neurons, dorsal and ventral cord,

coelomocyte and intestine as well as in vulva, seam cells and

body wall muscle (Figure 1). Similarly to exoc-7, strong expression

of sec-6 was observed in the nervous system including nerve ring

and nerve cord in adult animals, while weaker expression was seen

in other tissues, such as intestine and muscle (Figure S1). These

broad expression patterns are consistent with the reported

expression pattern of the transcriptional exocyst subunit reporter

Psec-5::GFP [24] and are well in line with the anticipated role of

exocyst complex and its subunits as important regulators of cell

polarity.

exoc-7, exoc-8 and exoc-7;exoc-8 mutant worms display
pleiotropic behavior defects

The C. elegans exoc-7 (ok2006) and exoc-8 (ok2523) mutant animals

are viable (eight times back-crossed to wild type N2 animals). The

ok2006 allele of exoc-7 has a 1803 bp deletion and the ok2523 allele

of exoc-8 has a 1474 bp deletion (Figure S2A). In the wild type

animals, RT-PCR analysis with two oligonucleotide pairs verified

expression of an mRNA for exoc-7. However, in the exoc-8 mutant

animals no detectable transcript is produced (Figure S2A and B).

When RNAi bacteria targeting exoc-7 and exoc-8 were fed to exoc-7

and exoc-8 mutant worms, respectively, no additional phenotypes

were observed (data not shown). The data suggest that exoc-

8(ok2523) is a null mutation. However, based on the RT-PCR

analysis the exoc-7(ok2006) cannot be conclusively defined as a null

mutant.

In order to explore the interplay of EXOC-7 and EXOC-8 in

the function of the exocyst complex, exoc-7;exoc-8 double mutant

animals were generated and possible phenotypes were analyzed.

When the growth rate from newly laid eggs to adults was

investigated in exoc-7, exoc-8 single and exoc-7;exoc-8 double

mutants, a mild defect was observed for exoc-8 and exoc-7;exoc-8

double mutants (Figure 2A). Analysis of the mutant animal

movement revealed that compared to wild type worms, exoc-7

mutant animals showed a slight increase in the number of body

bends per minute, while exoc-8 and exoc-7;exoc-8 mutants showed

decreased locomotion (Figure 2B).

Abnormal movement can indicate compromised neuronal

function. Therefore, different assays for behavior and sensing

were utilized. First, wild type and mutant animals were subjected

to an assay for Cu2+-sensing (Figure 2C). When a population of

wild type worms was placed on a petri dish, they dispersed evenly

within a few minutes. However, when a Cu2+ line was placed in

the middle of the plate, only a few animals crossed the Cu2+ line

and reached the other side of the plate. When the ability of exoc-7

and exoc-8 single and exoc-7;exoc-8 double mutants to cross the Cu2+

line was compared to that of wild type animals, all mutants were

less likely to cross the 100 mM Cu2+ barrier (Figure 2D). A similar

defect was observed at lower concentrations of Cu2+ (10 mM,

50 mM) (Figure S3B) and another repulsive ion Cd2+ at 100 mM,

(Figure S3A). To exclude the possibility that the mildly

compromized movement of exoc mutants affect the behavior of

animals in the test, the unc-10(e102) mutant animals were used as a

negative control. The unc-10 gene encodes a presynaptic protein

that binds and affects the activity of synaptic vesicles. unc-10

animals displayed a more severe locomotion defect than exoc

mutants (Figure S3C). However, they displayed similar Cu2+

sensitivity as the wild type animals (Figure S3D). This suggests that

the Cu2+ hypersensitivity phenotype of exoc mutants is not caused

by fewer body bends or reduced mobility. The exoc-7, exoc-8 single

and exoc-7;exoc-8 double mutations resulted in a slightly reduced

response to nose touch, suggesting a mild defect in mechan-

osensation (Figure 2E). The exoc-8 and exoc-7;exoc-8 double mutant

animals were more sensitive to thermal stress than exoc-7 single

mutant or wild type animals (Figure 2F). However, compared to

wild type animals, exoc-7, exoc-8 single and exoc-7;exoc-8 double

mutants had similar sensitivity to a high osmotic glycerol circle

(data not shown). Furthermore, no differences were observed in

pharyngeal pumping rate, brood size and life span (Table S1). In a

more direct analysis for neuronal function, both exoc-7, exoc-8

single and exoc-7;exoc-8 double mutants displayed insensitivity to

the acetylcholinesterase inhibitor aldicarb and acetylcholine

receptor agonist levamisole (Figure 2G and 2H). This suggests

defects in the endogenous acetylcholine release to neuromuscular

junctions or decreased amount/dysfunction of nicotinic acetyl-

choline receptors in these mutants.

The observed phenotypes described above resemble those

typically observed for ciliary mutants [25]. However, in contrast

to a previously characterized che-3(e1124) dynein heavy chain

mutant [26], no obvious morphological defects were observed in

exoc mutants in cilia structures using the DiI staining (Figure S4).

Figure 1. Expression patterns of exocyst subunit exoc-7 in C. elegans. Confocal images of adult hermaphrodites expressing Pexoc-7::GFP
under the 2954 bp promoter (Ex[Pexoc-7::GFP; pRF4]).
doi:10.1371/journal.pone.0032077.g001
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Similarly, no obvious morphological defects were observed in the

Cu2+-sensing ASEL/R, ADL, ASH neurons and temperature-

sensing AFD neuron marked by GFP expression from neuronal

specific promoters of gcy-5/7, gpa-15 and gcy-8, respectively (Figure

S4). Furthermore, cilia length and the fluorescence intensity of

ASEL/R, ADL and AFD neurons appeared identical to those of

the wild type animals (data not shown). This suggests that the

behavioral phenotypes observed caused by exoc mutant induced

defects on neuronal cell function(s) rather than on the morphology

of the neurons.

rab-8 and ral-1 regulate exocyst function in C. elegans
Small GTPases ral-1 and rab-8 have been reported to regulate

the function of the exocyst complex in mammalian cells [27–29].

In mammalian cells Sec5 and Exo84 (Exoc8) act as effectors for

RalA, whereas Rab8, the mammalian homologue of yeast Sec4p,

has been implicated in exocyst regulation through interactions

with Sec15p [15,22]. When compared to wild type animals, no

defects in the Cu2+-sensing assay were observed for ral-1(tm2140)

mutant and rab-8 RNAi treated worms (Figure 3). However, the

Cu2+ avoidance was enhanced when this ral-1 mutation or RNAi

treatment for rab-8 were combined with exoc-7 and exoc-7;exoc-8

mutations. At the same time, no detectable combined effect for this

phenotype was observed for exoc-8 mutation (Figure 3). In the

RNAi-sensitive rrf-3 background, the rab-8 RNAi results in

synthetic lethality in exoc-7;exoc-8 double mutant worms

(Figure 4). In line with this, an additive effect for the combination

of exoc-7 and exoc-7;exoc-8 with rab-8 RNAi was observed when the

Cu2+-sensing assay was carried out in the wild type N2

background (Figure 3). These results suggest that defects in ral-1

and rab-8 affect exoc-7 and exoc-8 function differentially.

An RNAi screen for small GTPases in exoc-7, exoc-8 and
exoc-7;exoc-8 mutant worms reveals novel, potential
exocyst regulators

To gain a deeper understanding on the role of small GTPases

in exocyst complex regulation, an RNAi screen was carried out

that scored for enhanced growth defects for exoc-7, exoc-8 single

and exoc-7;exoc-8 double mutants in response to down-regulation

of the small GTPase genes encoded in the C. elegans genome. The

screen was performed by transferring synchronized L1 worms to

RNAi plates and observing phenotypes three days thereafter

(Figure 4A). Eleven candidate genes were identified with a

synthetic lethal growth phenotype when combined with exoc-7,

exoc-8 and exoc-7;exoc-8 mutants in the rrf-3 background (Figure 4B,

Table S2).

All of the genes identified are highly conserved in metazoans.

Some of the candidates identified in the RNAi screen (rab-10 and

arl-1) formed a more severe combination with the single exoc-8

mutation than with the exoc-7;exoc-8 double mutation. However,

typically, the most severe phenotypes were observed when RNAi

was performed in exoc-7;exoc-8 double mutants (Figure 4B). The

screen identified rab-8, rab-10, rap-1 and cdc-42 that have been

previously shown to be functionally linked to the exocyst [1,13,17].

RAB-8, RAB-10, CDC-42, ARL-1 and LET-60 proteins are well

known for their importance in the regulation of cell polarity,

intracellular membrane trafficking, vulval development and cilia

generation. Importantly, several genes were identified that have

not previously been implicated in exocyst function regulation.

These include RHEB-1, RAB-37, RAB-28 and RAB-6.2

(Figure 4B). In the future, additional work will be required to

prove a functional link between these and the exocyst. The positive

hits rab-10, cdc-42, rap-1, let-60, rheb-1 and rab-6.2 could also be

Figure 2. Characterization of the behavioral phenotypes in
exoc-7, exoc-8 single and exoc-7;exoc-8 double mutant worms.
(A) Quantification of the growth rate to adulthood in wild type (n = 15),
exoc-7 (n = 18), exoc-8 (n = 23) and exoc-7;exoc-8 (n = 16) worms. (B)
Quantification of wild type (n = 35), exoc-7 (n = 42), exoc-8 (n = 33) and
exoc-7;exoc-8 (n = 39) animal locomotion defect. (C) A schematic
presentation of the experimental setup used in the Cu2+ avoidance
assay. NaN3 was spotted on one side of the plate divided by a 100 mM
Cu2+ (or Cd2+) barrier spread on the midline of the plate. For each
experiment 200-400 washed adult worms were placed on the opposite
side [B] to the NaN3 and their ability to traverse the Cu2+ to the other
side [A] was scored. The index was calculated as A/(A+B). (D)
Quantification of the Cu2+-sensitivity for wild type, exoc-7, exoc-8 and
exoc-7;exoc-8 worms. (E) Quantification of the sensitivity to gentle nose
touch for wild type (n = 25), exoc-7 (n = 21), exoc-8 (n = 27) and exoc-
7;exoc-8 (n = 29) worms. (F) The effect of thermal shock (35uC) on
viability of wild type, exoc-7, exoc-8 and exoc-7;exoc-8 worms. (G) and
(H) Analysis the resistance to aldicarb and levamisole in wild type, exoc-
7, exoc-8 and exoc-7;exoc-8 worms. Asterisks denote statistical
significance as compared to controls, with a P value less than 0.05 (*),
0.01 (**) and 0.001 (***).
doi:10.1371/journal.pone.0032077.g002
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verified in the wild type N2 background, while the rest, including

arl-1, rab-1, rab-37, rab-8, and rab-28, were only observed in the

RNAi-sensitive rrf-3 background [30]. The attempts to combine

rab-10(dx-2) mutation with the exoc-7(ok2006) and exoc-8(ok2523)

mutations did not yield viable homozygous animals supporting a

functional link between rab-10 and the exocyst in C. elegans.

To verify the efficiency of RNAi in our screen, qRT-PCR was

used to quantify the knock down efficiency of the candidate genes.

Figure 3. ral-1 and rab-8 display differential genetic interactions with exoc-7, exoc-8 and exoc-7;exoc-8 in the Cu2+-sensing assay. The
analysis for Cu2+ avoidance in ral-1, rab-8 RNAi, exoc-7, exoc-8 and exoc-7;exoc-8 mutants and their different combinations. The experimental setup
was identical to that described in Figure 2C. Asterisks denote statistical significance as compared to controls, with a P value less than 0.05 (*), 0.01 (**)
and 0.001 (***).
doi:10.1371/journal.pone.0032077.g003

Figure 4. An RNA-mediated interference screen for small GTPases reveals novel GTPases functionally linked to exoc-7 and exoc-8. (A)
The design of the screen. (B) The synthetic lethality rates of the candidates identified in the screen. Underlining/bold indicates genes where the
enhanced phenotypes were also observed in the wild type N2 background.
doi:10.1371/journal.pone.0032077.g004

Exocyst Regulation by GTPases in C. elegans
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After RNAi, rab-8, rab-10 and rheb-1 mRNA levels were decreased

by 81%, 90% and 77%, respectively (Figure S5). It is worth

noticing that knock down of one candidate seems to affect the level

of others. For example, knock down of rab-8 caused a com-

pensatory increase in rab-10 expression, and vice versa.

Compared to wild type animals, the exoc-7, exoc-8 and exoc-7;exoc-

8 mutants displayed enhanced sensitivity to Cu2+ (Figure 2C).

Therefore, the same test was performed for all of the eleven genes

identified in the screen. The rab-10, cdc-42, and rab-1 RNAi caused

a strong locomotion defect or partial lethality. They were therefore

not suitable for chemosensation assays. However, knock down of

let-60 resulted in insensitivity to Cu2+ and arl-1, rheb-1 and rab-37

RNAi worms behaved similarly in response to Cu2+ as did exoc-7,

exoc-8 and exoc7;exoc-8 double mutants, respectively (Figure S6).

This suggests that in addition to cooperating with the exocyst in

growth regulation, these three small GTPase are also directly or

indirectly involved in chemosensation regulation in C. elegans.

exoc-7, exoc-8 and exoc-7;exoc-8 mutants affect RAB-10
expression and the size of endocytic vacuoles induced by
rab-10 down-regulation

C. elegans intestine is composed of one layer of polarized

epithelial cells [31]. The apical microvillar surface faces the lumen

and is responsible for nutrient uptake from the environment. The

basolateral surface faces the pseudocoelom (body cavity) and is

responsible for the exchange of molecules between the intestine

and the rest of the body [32]. It has been shown that rab-10 mutant

worms have large vacuoles in the intestine and that RAB-10 is

required for basolateral endocytic recycling [33]. Recent data

suggest that Rab10 may be co-operating with the exocyst in

mammalian epithelial cells [34]. We therefore tested whether such

cooperation would also exist in C. elegans and what consequences

such cooperation might have. The exoc-7, exoc-8 and exoc-7;exoc-8

mutants have a morphologically normal intestine (data not shown).

However, exoc-8 single and exoc-7;exoc-8 double mutations

combined with rab-10 RNAi resulted in clear growth of the rab-

10 RNAi induced GFP::RAB-7-positive vacuoles in size in the

intestinal cells (Figure 5). At the same time, the number of vacuoles

did not change (Data not shown).

RAB-10 and exocyst subunits share a broad expression profile

and appear functionally interlinked [33,34]. The effect of exoc-7

and exoc-8 mutations on RAB-10 expression was tested. RAB-10

has been localized to early endosomes and Golgi in both neuron

and intestine [33,35]. When RAB-10 localization was analyzed in

exoc-7, exoc-8 single and exoc-7;exoc-8 double mutants, no detectable

difference was observed compared to the localization in the wild

type animals (data not shown). However, compared to wild type

and exoc-7 mutant animals, a stronger fluorescence signal for

GFP::RAB-10 (expression driven by its own promoter) was

observed in exoc-8 and exoc-7;exoc-8 mutants (Figure 6A and 6B).

The observed increase in GFP::RAB-10 expression was confirmed

by Western blotting. As shown in Figure 6C, increased levels of

GFP::RAB-10 was detected in exoc-8 and exoc-7;exoc-8 mutants, but

not in exoc-7 mutant animals. Taken together, these results indicate

that exoc-8 and exoc-7;exoc-8 mutations affect the level of RAB-10

expression and suggest the existence of a compensation mecha-

nism to increase RAB-10 expression in exoc-8 and exoc-7;exoc-8

mutant worms.

exoc-7 and exoc-8 are functionally linked to rab-10 in
vesicular transport regulation in C. elegans intestine

RAB-10 is implicated in membrane recycling from early

endosomes back to the plasma membrane in mammalian cells.

The targeting of the recycling elements to the plasma membrane is

likely to be regulated by the exocyst. In order to in a more direct

way test the possible functional link between RAB-10 and the

exocyst complex, the recycling of different marker proteins from

the endosomal compartment to the plasma membrane was

assessed in exoc-7, exoc-8 single and exoc-7; exoc-8 double mutants.

The hTAC is the a-chain of the human IL-2 receptor TAC, a

marker for clathrin-independent endocytosis and the Eps15-

homology (EH)-domain protein RME-1-dependent recycling.

The hTfR is the human transferrin receptor, a marker for

clathrin-dependent endocytosis and RME-1-dependent recycling

in mammalian cells [33]. These marker proteins have been

previously used in C. elegans to study transport within the endocytic

pathway [33]. The clathrin-dependent and clathrin-independent

cargo are likely to meet in the endosomal system and RAB-10 has

been proposed to regulate endocytic recycling, but not endocytosis

per se [36]. Both exoc-8 and exoc-7;exoc-8 mutations enhanced the

accumulation of hTAC in the intestine of rab-10 RNAi treated

Figure 5. exoc-8 and exoc-7;exoc-8 mutations induce the
formation of enlarged vacuoles in the intestinal epithelial cells
treated with rab-10 RNAi. (A) Representative images in bright field
(left) and corresponding fluorescent images of GFP::RAB-7 (right) in the
intestinal cells show enlarged vacuoles in exoc-8 and exoc-7;exoc-8
mutant background. (B) The quantification of the average vacuolar
areas in different mutants (for rab-10(dx-2) n = 26, for WT treated rab-10
RNAi n = 27, for exoc-7 treated rab-10 RNAi n = 25, for exoc-8 treated rab-
10 RNAi n = 31, for exoc-7;exoc-8 treated rab-10 RNAi n = 28). Asterisks
denote statistical significance as compared to controls, with a P value
less than 0.05 (*), 0.01 (**) and 0.001 (***).
doi:10.1371/journal.pone.0032077.g005
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worms (Figure 7A). The accumulation of hTAC suggests that there

is a blockage in the endocytic recycling pathway that causes hTAC

to accumulate inside the cell. However, no increase in the

accumulation of hTfR was seen in exoc-7 and exoc-8 worms in

response to rab-10 RNAi (Figure S7A). These results suggest that

hTAC recycling is sensitive for defects in exoc-8 single and exoc-

7;exoc-8 double mutants.

rab-10(dx-2) mutation induces the formation of large

GFP::RAB-5-positive early endosomes [33]. To verify that that

RAB-5 accumulates in exoc-7, exoc-8 and exoc-7;exoc-8 mutant

worms that are treated with rab-10 RNAi, GFP::RAB-5 labeling in

the early endosomes was quantified in the intestinal cells.

Consistent with the results for hTAC, the GFP::RAB-5 signal

increased in exoc-8 and exoc-7;exoc-8 mutants subjected to rab-10

RNAi (Figure 7B). This result, together with the observed size

increase for RAB-7-positive vacuoles (Figure 5) suggests that rab-

10, exoc-7 and exoc-8 cooperate in basolateral endocytic recycling in

the C. elegans intestine.

GFP::RME-1 labels the basolateral recycling endosomes and

there is a clear reduction in RME-1-positive intracellular

membranes in rab-10 defective intestinal epithelial cells implying

a block in transport from early endosomes to recycling endosomes

[33]. The rab-10 RNAi-induced loss of the RME-1-positive basal

recycling endosomes was suppressed in exoc-7, exoc-8 single and

exoc-7;exoc-8 double mutants (Figure 7C). The observed suppres-

sion is likely to be due to a transport block of GFP::RME-1 in the

recycling endosomes. This pool of GFP::RME-1 is likely to

represent proteins that had managed to escape the effect of rab-10

RNAi form early endosome export. In the absence of a fully

functional route back to the plasma membrane in exocyst defective

cells, accumulation in the recycling endosomes is observed.

The analysis of the signal for, the apical recycling endosomes

marker GFP::RAB-11 revealed that the apical recycling is

not affected by exoc-7, exoc-8 or exoc-7;exoc-8 (Figure S7C).

Furthermore, exoc-7;exoc-8 double mutant worms exposed to

apical Rhodamin-labeled dextran (Figure S8A) and FM 4-64

(Figure S8B) by feeding showed normal uptake that ultimately

led to colocalization of dyes and the autofluorescent gut

granules. This suggests that exoc-7 and exoc-8 do not perform

an essential function in apical recycling in the C. elegans

intestine.

Discussion

In C. elegans, a number of behavioral assays have been employed

to identify mutants with defective cilia, which are thin membrane

protrusions that have sensory functions [25,37]. Here we report

that the exocyst subunit exoc-7, exoc-8 single and exoc-7;exoc-8

double mutant worms show differential behavioral defects that

resemble cilia mutant phenotypes (Figure 2). However, the

observed phenotypes are unlikely to be caused by defects on

overall cilia structure as no obvious defects were observed in

sensory neurons (Figure S4). While an extensive literature

describes the molecular components involved in the transport

within the cilium [38], little is known about the contribution of

exoc-7 and exoc-8 in the cilia function. Our results suggest that the

intracellular trafficking to cilia is compromised in the absence of

fully functional exoc-7 and/or exoc-8 and that this may cause the

observed sensory defects. Previous results show that exocyst

subunit Sec10 is important for ciliogenesis in mammalian

epithelial cells [39,40]. The molecular details underlying the

behavioral phenotypes observed for exoc mutants is currently

unclear. It is possible that in these mutants the transport of a subset

of plasma membrane components required for full cilia function is

affected. Clearly, additional experiments on the exocyst function in

C. elegans cilia are needed to clarify this issue in the future. The exoc-

7;exoc-8 double mutants displayed more severe sensory phenotypes

in some assays (chemo- and thermosensation and growth rate),

while significantly milder or no phenotypes were observed in other

assays (movement, mechanosensation and life span). This may

indicate differential roles for these exocyst subunits in different

neuronal cell types in C. elegans.

Figure 6. exoc-8 and exoc-7;exoc-8 mutations result in up-regulation of RAB-10 protein expression. (A) GFP::RAB-10 fluorescence is
increased in exoc-8 and exoc-7;exoc-8 mutants. (B) Normalized average intensity of GFP fluorescence in transgenic strains Is[rab-10::GFP::RAB-10] of
wild type (n = 36), exoc-7 (n = 43), exoc-8 (n = 47) and exoc-7;exoc-8 (n = 40) mutant background. (C) A representative Western blot for GFP::RAB-10 in
WT, exoc-7, exoc-8 and exoc-7;exoc-8 mutants. (D) Quantification of the GFP::RAB-10 Western blot result from four independent experiments. a-tubulin
was used for normalization. Asterisks denote statistical significance as compared to controls, with a P value less than 0.05 (*), 0.01 (**) and 0.001 (***).
doi:10.1371/journal.pone.0032077.g006
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The present and other studies indicate that the exocyst subunits

are broadly expressed in C. elegans (Figures 1 and S1) [24].

Furthermore, previous studies in other model systems have shown

a central role for the exocyst in cell polarity generation and

maintenance during development [2–4,13]. The molecular

mechanisms that govern exocyst function are poorly understood.

However, it is clear that the molecular interactions with small

GTPases provide means to modify exocyst function [2,3,13]. Our

epistatis analysis suggests that two small GTPase ral-1 and rab-8 act

in the same signaling pathway with exoc-8 in the regulation of

chemosensation behavior (Figure 3). Furthermore, eleven genes

were identified in an RNAi screen for synthetic lethality in

combination with mutations in exoc-7, exoc-8 and exoc-7;exoc-8. In

the case of arl-1, rheb-1 and rab-37, RNAi treatment resulted in a

similar Cu2+-hypersensitive phenotype that was observed for exoc-7

and exoc-8 mutant animals. However, animals subjected to RNAi

for let-60 became apparently insensitive to Cu2+ (Figure S6). These

results suggest that the exocyst complex acts in combination with

various small GTPases to regulate metal avoidance behavior.

According to the current functional information on the small

GTPases identified in our screen, it is unlikely that they all affect

exoc-7 and exoc-8 functions through identical mechanisms. The

exoc-7 mutant displayed less severe phenotypes in the synthetic

lethality screen, possibly due to the residual transcription of the 59

end of the exoc-7 gene in the exoc-7(ok2006) mutant animals (Figure

S2). However, based on enhanced phenotypes observed in RNAi

screen for exoc-7 single and exoc-7;exoc-8 double mutants, the exoc-

7(0k2006) mutant allele can still be considered as a hypomorphic,

reduction-of-function mutant (Figure 4).

The screen identified several genes that have been previously

implicated in exocyst function regulation in other model systems.

These include cdc-42, rab-8, rab-10 and rap-1. CDC-42 is a Rho

GTPase that controls polarity of both individual cells and

developing embryos and is known to interact with Sec3p in yeast

[41]. Furthermore, exoc-7 orthologues interact with the CDC-42

homologue TC10 in mammalian cells [42]. The rab-8 has been

reported to participate in many of the pathways associated with

the exocyst complex: basolateral membrane transport [43], plasma

membrane remodeling, insulin-dependent Glut4 traffic [34,44]

and ciliogenesis [39]. Rab10 has been reported to associate with

primary cilium and with the basal body of nascent cilia of renal

epithelia. Itcoimmunoprecipitates with exocyst protein complex

subunit Sec8, suggesting coexistence within the same protein

complex [34]. The rap-1 has been shown to coordinate the RAL-

1/exocyst pathway in mediating hypodermal cell movement and

elongation during embryonic development in C. elegans [45]. In

addition, silencing of exoc-8 caused lethality in rap-1 mutant

animals [45]. The fact that our screen identified several known

exocyst interacting genes, suggests that the screen has targeted the

exocyst function.

In the RNAi screen, several novel potential exocyst regulators

were indentified. The let-60 gene acts genetically downstream of

let-23 with respect to vulva development and upstream of the

MAPK pathway with respect to chemotaxis [46,47]. The rab-1,

Figure 7. exoc-7, exoc-8 single and exoc-7;exoc-8 double
mutations affect the rab-10 RNAi-induced endocytic pheno-
type. (A) rab-10 RNAi causes enhanced accumulation of the trans-
membrane protein hTAC in exoc-8 and exoc-7;exoc-8 double mutants
(WT n = 37, exoc-7 n = 29, exoc-8 n = 30, exoc-7;exoc-8 n = 31, WT treated
rab-10 RNAi n = 27, exoc-7 treated rab-10 RNAi n = 32, exoc-8 treated
rab-10 RNAi n = 38, exoc-7;exoc-8 treated rab-10 RNAi n = 36). (B) Early
endosome marker GFP::RAB-5 is accumulated in exoc-8 and exoc-7;exoc-
8 double mutants subjected to rab-10 RNAi (WT n = 27, exoc-7 n = 29,
exoc-8 n = 30, exoc-7;exoc-8 n = 29, WT treated rab-10 RNAi n = 27, exoc-7
treated rab-10 RNAi n = 25, exoc-8 treated rab-10 RNAi n = 33, exoc-
7;exoc-8 treated rab-10 RNAi n = 28). (C) The accumulation of GFP::

RME-1 in rab-10 RNAi-treated exoc-7, exoc-8 and exoc-7;exoc-8 double
mutant animals (WT n = 27, exoc-7 n = 22, exoc-8 n = 30, exoc-7;exoc-8
n = 27, WT treated rab-10 RNAi n = 23, exoc-7 treated rab-10 RNAi n = 26,
exoc-8 treated rab-10 RNAi n = 31, exoc-7;exoc-8 treated rab-10 RNAi
n = 29). In each sub-figure the upper panels show representative images
of the GFP tagged protein in intestinal cells. The lower panels show the
quantification of the normalized average fluorescence intensity.
Asterisks denote statistical significance as compared to controls, with
a P value less than 0.05 (*), 0.01 (**) and 0.001 (***).
doi:10.1371/journal.pone.0032077.g007
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rab-6.2, rab-28 and rab-37 have all been shown in other model

systems to regulate intracellular membrane trafficking. In the case

of RAB-37, the protein is involved in secretory granule exocytosis

in mammalian cells [48]. The membrane traffic step regulated by

RAB-28 activity is unknown [12]. However, our findings suggest

that RAB-28 may be functionally linked to exocyst regulation.

rheb-1, an upstream activator of TOR signaling is required for

normal growth rates, lifespan, body size, osmoregulation,

reproduction, and locomotion [49]. Furthermore, rheb-1 has also

been shown to mediate intermittent fasting-induced longevity in C.

elegans [50]. In yeast Schizosaccharomyces pombe, a Rab6 homologue

Ryh1 can activate TOR signaling [51]. Our results linking rheb-1

to defects in exocyst subunits raise the possibility that exocyst

function is directly or indirectly linked to TOR signaling

regulation in C. elegans. Our results implicate a general require-

ment for small GTPases in regulating exocyst function in various

physiological events including cell polarity, embryogenesis,

intracellular membrane trafficking, endocytic recycling, chemo-

sensation and growth.

Previous studies suggest that the exocyst serves as an effector for

Rab10 in cultured mammalian epithelial cells [34]. An RNAi

screen in C. elegans for defective transport vesicle adaptor complex

1 component AP-1 showed that rab-10 is important for von

Willebrand factor secretion [52]. Here we present the first in vivo

studies in a multicellular model organism showing that exoc-7 and

exoc-8 are functionally linked to the small GTPase rab-10. When

combined with exoc-8 and exoc-7;exoc-8 mutants, down-regulation

of rab-10 expression by RNAi resulted in enlarged endosomal

membrane compartments in the intestinal epithelial cells (Figure 5).

Unlike rab-10 mutants that display an obvious endocytic recycling

phenotype in the intestinal cells [33], we did not detect recycling

defects in exoc-7 or exoc-8 deletion alleles alone. However, an

enhanced phenotype was observed when rab-10, exoc-7 and exoc-8

were all affected.

The RAB-10 expression is up-regulated when combined with

exoc-8 and exoc-7;exoc-8 mutants in C. elegans (Figure 6). It appears

that defects in exocyst complex subunits exoc-7 and exoc-8 can

directly or indirectly affect the protein expression of small GTPase

RAB-10. This result supports the recently identified close

functional relationship between Rab10 and the exocyst complex

in mammalian epithelial cells [34]. Our results suggest that

endocytic recycling and membrane transport are mediated by rab-

10 and exocyst subunits located in intestinal cells in C. elegans. The

exocyst complex, originally associated with basolateral membrane

transport from the trans-Golgi network of polarized mammalian

cells [8,9,53] is increasingly acknowledged as an important

regulator of membrane recycling from the endosomal compart-

ment to the plasma membrane. RAB-10 is thought to mediate

cargo recycling from early endosomes to recycling endosomes in C.

elegans intestine [33]. Such a hypothesis is consistent with our

observation that rab-10 mutant animals display abnormally large

early endosomes and lack recycling endosomes in intestinal cells.

To gain a deeper understanding of how loss of exoc-8 and exoc-

7;exoc-8 functionally enhances rab-10 phenotype, the localization of

a set of GFP tagged intracellular marker proteins was analyzed in

intestinal cells in exoc-7 and exoc-8 mutant animals subjected to rab-

10 RNAi. There was no obvious difference in the accumulation of

the endocytic marker proteins (hTAC and hTfR) in exoc-7, exoc-8

single and exoc-7;exoc-8 double mutants compared to wild type

animals (Figure 7 and Figure S7). This indicates that the

internalization step of endocytosis is not impaired. However, the

accumulation of endocytic tracers increased significantly when

exoc-8 and exoc-7;exoc-8 double mutant animals were subjected to

rab-10 RNAi.

The trafficking of cargo from the cell membrane to the

lysosome requires the activity of rab-5. The average intensity of

GFP::RAB-5-positive early endosomes in the absence of rab-10

increased in exoc-7;exoc-8 background. This suggests that a block

in cargo export from early endosomes is intensified when rab-10

down-regulation is combined with exoc-8 or exoc-7;exoc-8. At the

same time it was observed that rab-10 RNAi caused a clear

reduction in the number of GFP::RME-1-positive basolateral

recycling endosomes. However, when rab-10 was down-regulated

in exoc-8 and exoc-7;exoc-8 mutant animals, the GFP::RME-1

signal was restored to normal level. It is likely that the reversal of

RME-1 protein accumulation in rab-10 RNAi treated exoc-8 and

exoc-7;exoc-8 mutant animals reveals a functional role for the

exocyst in the transport from the recycling endosomes to the

plasma membrane. It is likely that in the absence of a fully

functional exocyst complex the pool of GFP::RME-1 that had

managed to escape from the early endosomes accumulated to

recycling endosomes when no functional recycling route to the

cell surface existed anymore.

Currently, we cannot rule out that exoc-7 and exoc-8 also

participate in cargo transport in the apical surface of C. elegans

intestine. So far, our attempts to identify apical recycling defects

have not been successful. However, no endocytic defects were

observed in exoc-7 and exoc-8 mutants when worms were fed with

FM4-64 and rhodamine-labeled dextran which can be taken up by

endocytosis from the lumen of intestine. In support of this

hypothesis, we also observed that there is no signal intensity or

distribution difference of GFP::RAB-11-positive apical recycling

endosome in exoc-7 and exoc-8 mutants compared to wild type.

We have identified potential novel regulators of exocyst function

and established a novel link between EXOC-7, EXOC-8 and

RAB-10 signaling in the regulation of endocytic recycling in C.

elegans epithelia intestine cells. The exocyst complex is a highly

conserved protein complex and thus our studies on C. elegans

exocyst are likely to be applicable to the understanding of the

exocyst complex function in other systems.

Materials and Methods

C. elegans strains
Strains used in this study were: N2(wild type), rrf-3(pk1426), exoc-

7(ok2006), exoc-8(ok2523), ral-1(tm2140), unc-10(e102), che-3(e1124),

OH3191 otIs3[Pgcy-7::GFP], OH3192 ntIs1[Pgcy-5::GFP], PY1322

oyIs18[Pgcy-8::GFP], GJ814 gjIs230[Pgpa-15::GFP; Pelt-2::GFP],

OR1116 odIs42[Pglr-1::RFP::RAB-10];odIs22[Pglr-1::LIN-10::GFP],

RT533 pwIs214[Prab-10::GFP::RAB-10], RT393 pwIs112[Pvha-

6::hTAC::GFP], RT1970 pwIs90[Pvha-6::hTfR::GFP], RT327 pwIs-

72[Pvha-6::GFP::RAB-5], RT476 pwIs170[Pvha-6::GFP::RAB-7],

RT348 pwIs87[Pvha-6::GFP::RME-1], RT311 pwIs69[Pvha-6::GFP::

RAB-11]. All strains were maintained utilizing standard methods [54].

Other strains of different mutant background were made by crossing

are listed as follows:

exoc-7(ok2006);exoc-8(ok2523),

exoc-7(ok2006);rrf-3(pk1426),

exoc-8(ok2523);rrf-3(pk1426),

exoc-7(ok2006);exoc-8(ok2523);rrf-3(pk1426),

exoc-7(ok2006);ral-1(tm2140),

exoc-8(ok2523);ral-1(tm2140),

exoc-7(ok2006);exoc-8(ok2523);ral-1(tm2140),

exoc-7(ok2006);otIs3[Pgcy-7::GFP],

exoc-8(ok2523);otIs3[Pgcy-7::GFP],

exoc-7(ok2006);exoc-8(ok2523);otIs3[Pgcy-7::GFP],
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exoc-7(ok2006);ntIs1[Pgcy-5::GFP],

exoc-8(ok2523);ntIs1[Pgcy-5::GFP],

exoc-7(ok2006);exoc-8(ok2523);ntIs1[Pgcy-5::GFP],

exoc-7(ok2006);oyIs18[Pgcy-8::GFP],

exoc-8(ok2523);oyIs18[Pgcy-8::GFP],

exoc-7(ok2006);exoc-8(ok2523);oyIs18[Pgcy-8::GFP],

exoc-7(ok2006);gjIs230[Pgpa-15::GFP; Pelt-2::GFP],

exoc-8(ok2523);gjIs230[Pgpa-15::GFP; Pelt-2::GFP],

exoc-7(ok2006);exoc-8(ok2523);gjIs230[Pgpa-15::GFP; Pelt-

2::GFP],

exoc-7(ok2006);odIs42[Pglr-1::RFP::RAB-10];odIs22[Pglr-

1::LIN-10::GFP],

exoc-8(ok2523);odIs42[Pglr-1::RFP::RAB-10];odIs22[Pglr-

1::LIN-10::GFP],

exoc-7(ok2006);exoc-8(ok2523);odIs42[Pglr-1::RFP::RAB-

10];odIs22[Pglr-1::LIN-10::GFP],

exoc-7(ok2006);pwIs214[Prab-10::GFP::RAB-10],

exoc-8(ok2523);pwIs214[Prab-10::GFP::RAB-10],

exoc-7(ok2006);exoc-8(ok2523);pwIs214[Prab-10::GFP::RAB

-10],

exoc-7(ok2006);pwIs112[Pvha-6::hTAC::GFP],

exoc-8(ok2523);pwIs112[Pvha-6::hTAC::GFP],

exoc-7(ok2006);exoc-8(ok2523);pwIs112[Pvha-6::hTAC::G-

FP],

exoc-7(ok2006);pwIs90[Pvha-6::hTfR::GFP],

exoc-8(ok2523);pwIs90[Pvha-6::hTfR::GFP],

exoc-7(ok2006);exoc-8 (ok2523);pwIs90[Pvha-6::hTfR::GF-

P],

exoc-7(ok2006);pwIs72[Pvha-6::GFP::RAB-5],

exoc-8(ok2523);pwIs72[Pvha-6::GFP::RAB-5],

exoc-7(ok2006);exoc-8(ok2523);pwIs72[Pvha-6::GFP::RAB-

5],

exoc-7(ok2006);pwIs170[Pvha-6::GFP::RAB-7],

exoc-8(ok2523);pwIs170[Pvha-6::GFP::RAB-7],

exoc-7(ok2006);exoc-8(ok2523);pwIs170[Pvha-6::GFP::RAB

-7],

exoc-7(ok2006);pwIs87[Pvha-6::GFP::RME-1],

exoc-8(ok2523);pwIs87[Pvha-6::GFP::RME-1],

exoc-7(ok2006);exoc-8(ok2523);pwIs87[Pvha-6::GFP:: RME

-1],

exoc-7(ok2006);pwIs69[Pvha-6::GFP::RAB-11],

exoc-8(ok2523);pwIs69[Pvha-6:: GFP::RAB-11],

exoc-7(ok2006);exoc-8(ok2523);pwIs69[Pvha-6:: GFP::RAB

-11].

Ciliary phenotypic analyses
The locomotion assay was done as described by Koelle and

Horvitz [55]. The body bends per minute were counted of worms

moving forward continuously at 20uC on NGM plates spread with

a thin layer of freshly grown OP50 bacteria.

Chemosensation to Cu2+ was analyzed with small modifications

using a previously described assay [56,57]. Briefly, in total 200–400

animals were placed on one side of a Cu2+ (100 mM) line barrier on a

9 cm assay plate, and sodium azide (NaN3) was spotted on the other

side to immobilize worms. After 60 min, the number of animals on

each side was scored. The index represents the fraction of animals that

crossed Cu2+ line of the total number of animals. Data from at least

three independent experiments were used for quantification analysis.

Nose touch was assayed by placing an eyebrow on the surface of the

NGM plates spread with a thin layer of freshly grown OP50 bacteria in

front of the forward-moving animal. Upon contact with the tip of the

nose the worms initiated immediately backward locomotion. The

number of body bends during the backward movement were

quantified before the animals changed the direction of movement.

The thermosensation assay was performed on NGM plates pre-

heated at 35uC using at least 50 animals for each genotype per

experiment. Adults were incubated at 35uC, and were observed

every hour by response to touch until all animals became immobile.

Data from at least three independent experiments were used for

quantification analysis.

For the growth rate assay the time required for the development

from newly laid eggs to adults was scored on NGM plates seeded

with OP50 bacteria.

Aldicarb and levamisole resistance assays were carried out

according to the description of Lackner et al [58]. In each experiment,

25–30 worms were placed on drug containing plates and touched

every 10 minutes. Worms that failed to respond at all to a harsh touch

were classified as paralyzed. Experiments were repeated three times.

Dye staining
A stock solution containing 20 mg/ml DiI (1,19-dioctadecyl-

3,3,39,39,-tetramethylindo-carbocyanine perchlorate, Aldrich) in

dimethylformamide was stored at 220uC. A 1.4 ml aliquote of the

stock solution was mixed with 700 ml M9 buffer (22 mM

KH2PO4, 42 mM Na2HPO4, 86 mM NaCl, 1 mM MgSO4) to

give a final working concentration of 40 mg/ml. Tubes were

protected from light with aluminum foil and incubations were

carried out at room temperature. Similarly, Rhodamine-dextran

(Sigma, St. Louis, MO) and FM4-64 were diluted with egg salt

(118 mM NaCl, 48 mM KCl, 2 mM MgCl2, 2 mM CaCl2,

10 mM HEPES, pH 7.4). Animals were washed off from the

growth plate and rinsed twice with M9 buffer then suspended in

the dye solution. After shaking for 2 h, the stained animals were

washed twice with M9 buffer and subjected to imaging.

Experiments were repeated three times.

RNAi screen
The RNAi screen was performed by feeding bacterial clones on 6-

well NGM plates containing 1 mM isopropylthiogalactoside (IPTG) to

rrf-3, rrf-3;exoc-7, rrf-3;exoc-8 and rrf-3;exoc-7;exoc-8 mutant animals that

had been synchronized to L1 stage [59]. The animals were allowed to

grow for 3 days before observing the phenotype. All 41 small GTPase

RNAi clones were tested in duplicates and the candidate genes were

confirmed in three more independent experiments and subsequently

retested in N2 background with at least two repetitions.

DNA constructs
Transcriptional fusion was created for exoc-7 by using PCR to

amplify 2954 bp intergenic promoter sequences together with the

first 72 amino acids of the coding region, followed by introduction of

this sequence into the GFP vector pPD118.25 (Andrew Fire Lab

Vector Kit, L3786, Addgene) in place of the let-858 promoter. For

the sec-6 transcriptional fusion reporter, 2065 bp intergenic

promoter sequences together with the first 9 amino acids were used.

Germline transformation
Germline transformation was performed by a standard

microinjection method [60,61] at a concentration of 10 ng/ml

for the DNA to be tested and 100 ng/ml rol-6 marker (pRF4).
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RNA isolation and quantitative RT-PCR
Animals subjected to RNAi were collected and washed 3 times

with M9. After removing the supernatant, worm pellets were

stored at 280uC until RNA isolation. The total RNA was

extracted from approximately 1,000 animals for each treatment

using the Total RNA Isolation kit (Macherey-Nagel, Germany)

and the first-strand cDNA was synthesized using the Maxima

First-Strand Synthesis Kit for RT-qPCR (Fermentas). SYBR

Green Real Time Quantitative PCR was carried out using the

LightCyclerH 480 Real-Time PCR System (Roche). In each qRT-

PCR assay we used 3 biological replicates and experiments are

repeated two times. The a-tubulin was used for normalization.

Primer sequences are available in Table S3.

Confocal microscopy
All static microscope images were acquired using Leica TCS SP5

Laser scanning confocal microscopy with 206glycerol objective.

Confocal settings used for image capture were held constant for same

maker strains in experiments. Images were quantified and analyzed

using ImageJ software (NIH). The worm fluorescence imaging and

quantification were done as previously described [62]. The average

pixel intensity in wild type worms was set to an arbitrary fluorescence

unit (A.U.) of 1.0 to enable comparison with other strains.

Western blot assay
For analysis of GFP levels, worms from 9 cm EPM plates were

harvested by centrifugation at 4000 rpm for 3 min. After washing

with M9 buffer three times, worms were directly boiled for 10 min

in 300 ml 2% SDS buffer containing protease inhibitors. Each

sample was centrifuged for 5 min at 13,000 rpm and the protein

concentration was determined with protein assay kit (Thermo

Scientific). Identical amounts of total protein was subjected to SDS-

PAGE and transferred to nitrocellulose membrane (D106089, BIO-

RAD) following standard procedures. The GFP-tagged proteins

were detected with anti-GFP antibody (98028, BD). The a-tubulin

was used for normalization.

Data analysis
Data analysis was conducted using IGOR Pro (Wavemetrics) or

EXCEL (Microsoft) software. Averaged results were presented as

the mean value 6 S.E.M.. Statistical significance was evaluated

using Student’s t test. Asterisks denote statistical significance as

compared to controls, with a P value less than 0.05 (*), 0.01 (**)

and 0.001 (***).

Supporting Information

Figure S1 Confocal image of adult hermaphrodites
expressing Psec-6::GFP under the 2065 bp promoter
(Ex[Psec-6::GFP; pRF4]). Left is anterior. Scale bar, 100 mm.

(TIF)

Figure S2 Characterization of the exoc-7 and exoc-8
mutations. (A) A cartoon displaying the deletion regions in exoc-

7(ok2006) and exoc-8(ok2523) alleles. The red and green arrows

indicate the oligonucleotide pairs upstream and downstream,

respectively, used for RT-PCR to detect mRNA expressed from

these loci. (B) Agarose gel analysis for RT-PCR of exoc-7(ok2006)

and exoc-8(ok2523) worms. M, molecular weight marker. For exoc-

7, the expected sizes for the amplified fragments are 437 bp and

475 bp for before and after deletion region. For exoc-8, the

expected sizes for the amplified fragments are 498 bp and 712 bp

for before and after deletion region.

(TIF)

Figure S3 (A) exoc-7, exoc-8 and exoc-7;exoc-8 double mutant

worms show hypersensitivity to 100 mM Cd2+. The assay setup

was the same as described in Figure 2B. (B) exoc-7, exoc-8 and exoc-

7;exoc-8 double mutant worms show hypersensitivity to Cu2+ at

different concentrations (10 mM, 50 mM and 100 mM). (C) The

unc-10(e102) mutany animals (n = 22) have a more severe

uncoordinated movement defect than the exoc-8 (n = 27) worms.

(D) Quantification of the Cu2+-sensitivity for unc-10 and exoc-8

worms.

(TIF)

Figure S4 exoc-7, exoc-8 and exoc-7;exoc-8 double
mutant worms show no obvious morphological defects
in cilia structure by DiI staining. For a cilia defect, the dynein

heavy chain mutant che-3(e1124) was used as a control. In addition, no

apparent morphological defects are observed in Cu2+ sensory neurons

ASEL/ASER, ADL, ASH and the thermosensory neuron AFD.

(TIF)

Figure S5 qRT-PCR quantification of the RNA silencing
efficiency for a set of the candidate genes in rrf-3 worms.
The mRNA levels of controls were set as arbitrary unit 1.

(TIF)

Figure S6 Cu2+ sensitivity assay indentified that arl-1,
rheb-1 and rab-37 RNAi worms show hypersensitivity to
copper ions, whereas let-60 RNAi worms are insensitive.
(TIF)

Figure S7 rab-10 RNAi does not affect the signal for
hTfR::GFP and GFP::RAB-11 in exoc-7, exoc-8 and exoc-
7;exoc-8 double mutant worms. For hTfR: WT n = 27, exoc-7

n = 23, exoc-8 n = 25, exoc-7;exoc-8 n = 31, WT treated rab-10 RNAi

n = 27, exoc-7 treated rab-10 RNAi n = 22, exoc-8 treated rab-10 RNAi

n = 28, exoc-7;exoc-8 treated rab-10 RNAi n = 26. For RAB-11: WT

n = 23, exoc-7 n = 22, exoc-8 n = 30, exoc-7;exoc-8 n = 27, WT treated

rab-10 RNAi n = 25, exoc-7 treated rab-10 RNAi n = 24, exoc-8 treated

rab-10 RNAi n = 26, exoc-7;exoc-8 treated rab-10 RNAi n = 22.

(TIF)

Figure S8 exoc-7, exoc-8 and exoc-7;exoc-8 double
mutant worms show no obvious defects in the uptake
of rhodamine-dextran or FM 4-64 from the apical
surface of intestinal cells.
(TIF)

Table S1 Quantification of pharynx pumping rate,
brood size and life span.
(DOCX)

Table S2 Description of the candidate genes identified
in the screen.
(DOCX)

Table S3 Sequences of the oligonucleotides used for
qRT-PCR.
(DOCX)
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