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Regulatory T-cells (Tregs) are important for maintaining self-tolerance and tissue
homeostasis. The functional plasticity of Tregs is a key feature of this lineage, as it
allows them to adapt to different microenvironments, adopt transcriptional programs
reflective of their environments and tailor their suppressive capacity in a context-
dependent fashion. Tregs, particularly effector Tregs (eTregs), are abundant in many
types of tumors. However, the functional and transcriptional plasticity of eTregs in tumors
remain largely to be explored. Although depletion or inhibition of systemic Tregs can
enhance anti-tumor responses, autoimmune sequelae have diminished the enthusiasm
for such approaches. A more effective approach should specifically target intratumoral
Tregs or subvert local Treg-mediated suppression. This mini-review will discuss the
reported mechanisms by which the stability and suppressive function of tumoral Tregs are
modulated, with the focus on eTregs and a subset of eTregs, follicular regulatory T (TFR)
cells, and how to harness this knowledge for the future development of new effective
cancer immunotherapies that selectively target the tumor local response while sparing the
systemic side effects.

Keywords: anti-tumor immunity, effector regulatory T cells, follicular regulatory T cells, Foxp3, Treg lineage stability,
humoral antibody response
INTRODUCTION

An effective immune system must be capable of maintaining self-tolerance while generating robust
responses to foreign antigens. Tregs are important components participating in such immune
regulation (1, 2). In both human and mice, Tregs are characterized by their high expression of both
the IL-2 receptor a-chain (CD25) and the transcription factor Foxp3, which are essential for their
development, suppressive activity and stability (3–8). Foxp3+ Tregs comprise both central Treg
(cTreg) and eTreg subsets (9, 10). Accumulation of Tregs, particularly eTregs, within the tumor
represents a major obstacle to the development of effective anti-tumor immunity (11–13). The
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frequency of Tregs among tumor-infiltrating lymphocytes (TIL)
is often associated with poor prognosis of patients with many
types of cancer (14), although Tregs can also be beneficial during
early stages of inflammation-related cancers, such as colorectal
cancer, and correlate with better prognosis (15–18). Substantial
reviews have discussed the homeostatic regulation of Tregs and
their suppressive function, including the most recent one
centering on tumoral Tregs (19). This review will cover Treg
stability with a focus on eTregs and TFR cells, and how their
stability affects cancer progression and how it can be targeted
for therapy.
Treg AND eTreg BIOLOGY

Tregs mediate suppression through various mechanisms including
obstructing CD80/CD86 co-stimulation via the surface receptor
CTLA-4, limiting IL-2 availability for effector T-cells (Teff) and
secreting inhibitory molecules IL-10, IL-35 or TGF-b (20).
However, Tregs are phenotypically and functionally diverse. Based
on the developmental origin, Tregs are defined as either thymic or
peripheral Tregs. Thymic Tregs (tTregs) begin as CD4 single
positive thymocytes with TCRs displaying high affinity for self-
antigens. Peripheral Tregs (pTregs) develop from naïve CD4+ T-
cells in the periphery that experience antigen and receive specific
environmental stimuli, such as TGF-b and IL-2 (21, 22). Although
the definitive markers distinguishing tTregs from pTregs remain
obscure, all Tregs in the periphery reside in multiple lymphoid and
non-lymphoid tissues to maintain tolerance or suppress ongoing
inflammatory responses. In the circulation and lymphoid organs,
the majority of Tregs that express the homing receptors CD62L and
CCR7, but low level of CD44, are cTregs and are largely IL-2-
dependent (9). In contrast, a large population of Tregs in the non-
lymphoid tissues that have a CD44hiCD62LloCCR7lo surface
phenotype resembling activated or effector conventional T-cells
are eTregs (9, 23). In the presence of TCR, CD28 and IL-2
signaling, cTregs differentiate into eTregs accompanying the
upregulation of IRF4 and Blimp1 (23, 24). eTregs can further
undergo stimulus-specific differentiation that is regulated by
signals and transcription factors typically associated with the
differentiation of conventional T-helper (TH) cells. This
polarization allows Tregs to regulate specific immune responses
mediated by their analogous effector CD4+ T-cells in addition to
their generic suppressive capacity (23). In addition to the high
level of CD44, eTregs express effector markers, including ICOS
and GITR (10, 24). Analogous subsets also exist for human
Tregs, including resting FOXP3loCD45RA+ and effector
FOXP3hiCD45RA– suppressive subsets, while FOXP3loCD45RA–

cells are non-suppressive cytokine-secreting subsets (25).
Importantly, CD15s has been identified as a biomarker for most
suppressive human FOXP3hi eTregs (26). Although eTregs are
predominantly found in non-lymphoid tissues, B-cell follicles in
the lymphoid or lymphoid-like organs contain a subset of eTreg,
known as TFR cells, which are responsible for regulating the
follicular helper T (TFH)–B-cell interaction in the germinal center
(GC), and thus the production of high-affinity antibody (27–30).
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TFR CELL BIOLOGY

TFR cells share many features with TFH cells, but they express
Foxp3 and belong to eTregs. Like TFH cells, TFR cells express high
levels of PD-1 and CXCR5, which allows them to traffic to B-cell
follicles following the chemokine CXCL13 gradients (27–30).
Both TFR and TFH cells require ICOS and CD28 signaling for
their development and maintenance and are dependent of
antigen presenting cells and B-cells in the GC (27–31). TFH

and TFR cells express high levels of Bcl6, however, unlike TFH

cells, TFR cells also co-express Blimp1, which antagonizes Bcl6.
While Bcl6 is critical for the development of TFR cells as
depletion of Bcl6 results in an almost complete loss of TFR

cells, Blimp1 is important for the regulation of TFR suppressive
function (31–36). Additionally, PD-1 and IL-2 signals are critical
for TFR cells. Mice deficient in PD-1 or its ligand PD-L1 have
increased TFR cell abundance with enhanced suppressive activity
(37), while high IL-2 concentrations at the peak of influenza
infection prevent TFR cell development (38). However, the
maintenance of developed TFR cell stability appears to require
the IL-2 signaling that is regulated by Blimp1 (34).

While TFR cells are capable of regulating a variety of immune
responses similar to conventional Tregs, they are uniquely
known for their ability to regulate GC response and antibody
production (27–30). Despite the low frequency, the importance
of TFR cells has been re-emphasized in a recent study in which a
mouse model with a selective depletion of TFR cells displays a
profound alteration of immune responses, including increased
self-reactive antibody (39). Several mechanisms for TFR-
mediated suppression have been reported, including the one
mediated by CTLA-4. Genetic deletion or blockade of CTLA-4
impairs TFR cell development and function, leading to
spontaneous TFH differentiation and GC expansion (40, 41).
TFR cells are also shown to inhibit specific effector molecules,
central metabolic and anabolic pathways in both TFH and GC B-
cells, but retain their transcriptional signature (42). This type of
suppression appears durable and persists in their absence, and
can be overcome by IL-21 signals (42). However, it remains
unclear if TFR cells directly target TFH and/or B-cells during GC
responses, and whether TFR cells can regulate memory B-cells or
plasma cells directly.
Treg/TFR STABILITY

Tregs must maintain their anergic phenotype and suppressive
activity during ongoing inflammatory responses (43–45). This
functional stability reflects a lack of effector activity by Tregs (i.e.,
expression of pro-inflammatory cytokines) and may or may not
require maintenance of Foxp3 expression (44–46). Loss of Foxp3
(even a slight reduction) often results in the generation of ex-
Tregs (47), while conversion into effector T-cells with unaltered
Foxp3 expression is referred as Treg “fragility” (48). Several
factors appear to be important for Treg stability/fragility,
including CD25/STAT5 signals (43), PTEN/Akt/Foxo1/3a
pathway (49–51), CARMA1–BCL10–MALT1 (CBM)
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signalosome complex (52), autophagy (53), Ezh2 (54, 55), Helios
(56), Eos (57) and Nrp1 (48, 58). While the former 6 pathways
regulate Foxp3, ablation of the latter 2 factors does not affect
Foxp3 expression. Many of these pathways implicated in the
context of tumor will be discussed in Treg/TFR Stability in the
TME. Here we focus on the CD25/STAT5/Foxp3-dependent
regulation of Treg stability and function.

Foxp3-Dependent Treg Stability
Foxp3 is crucial for maintaining Treg identity. Loss of Foxp3
results in Treg instability, dysfunction, and potential life-
threatening autoimmune diseases (59–62). At steady state,
Foxp3 expression and tTregs are incredibly stable (63).
However, Tregs often become unstable under inflammatory
conditions. Treatment of Tregs in vitro with proinflammatory
cytokines like IL-4 and IL-6 results in the downregulation of
Foxp3 and the upregulation of effector cytokines such as IFNg
(43, 64). Adoptive transfer of Foxp3+ Tregs into lymphodepleted
mice also results in the loss of Foxp3 expression by a substantial
population of Tregs, which appears to be limited to the
CD25loFoxp3+ subset as the majority of CD25hiFoxp3+ cells
retain Foxp3 expression (65–67). While a portion of the
Foxp3– population, ex-Tregs, acquires Teff function, others are
capable of reacquiring Foxp3 expression upon activation (66),
suggesting the heterogeneity of Tregs and their ability to
accommodate their function by adapting to environmental
stimuli. These ex-Tregs are consistently reported to be
autoreactive and pathogenic, causing autoimmune diseases
upon adoptive transfer (35, 67–69).

Mechanisms for Foxp3-Dependent
Treg Stability
Mechanisms to reinforce Foxp3 expression and Treg stability
have been extensively studied. TCR stimulation, along with the
recruitment of transcription factors, such as NFAT, Foxo1 and
Foxo3, to the Foxp3 promoter, is the primary step in triggering
Foxp3 gene transcription (70–73). Additionally, the conserved
non-coding sequence (CNS) elements at the Foxp3 locus are
important for Treg fate determination and lineage stability (74–
76). The pioneer element CNS3 facilitates Foxp3 induction and
increases the generation of both tTregs and pTregs. While tTregs
do not rely on CNS1 for Foxp3 induction, CNS1 is indispensable
for pTreg generation as it contains a TGF-b-NFAT response
element and is dependent of TGF-b signaling to induce histone
acetylation in the Foxp3 enhancer region (76–78). CNS2, which
contains the Treg specific demethylation region (TSDR), is
crucial for the maintenance of Foxp3 expression in dividing
Tregs (43, 76). CNS2, the CpG-rich region, is fully methylated in
conventional T-cells, but largely demethylated in tTregs and
partially methylated in pTregs. Upon TSDR demethylation,
Foxp3, along with STAT5, NFAT and Cbfb-Runx1, binds to
CNS2, stabilizing Foxp3 expression through positive feedback
mechanisms (62, 79–83). The availability of IL-2 and activation
status of CD25/STAT5 signals that are modulated by several
factors, including Helios and Blimp1 (34, 56), are essential
for CNS2 to sustain Foxp3 expression, preventing Treg
Frontiers in Immunology | www.frontiersin.org 3
differentiation into Teff by counteracting proinflammatory
cytokine signaling (43), which explains why CD25hiFoxp3+

cells are more stable than CD25loFoxp3+ cells.

Blimp1-Mediated Regulation of
Treg/TFR Stability
eTregs are marked by the expression of Blimp1 (10), however, its
role in eTregs have been largely restricted to its regulation of IL-
10 expression until recent findings from our group and others
showing that it is important for Treg lineage stability and
suppressive activity (34, 35). Consistent with the finding that
expression of Blimp1 in the thymus is very low and Blimp1
unlikely regulates early T-cell development (84), mice with a
Treg-specific deletion of Blimp1 do not show overt autoimmune
phenotype (34, 35). However, Tregs from these mice are unstable
with reduced Foxp3 expression and produce inflammatory
cytokines after immunization, and these mice develop severe
experimental autoimmune encephalitis (EAE) (34, 35, 68). At the
peak of EAE, the presence of IL-6 activates the DNA methylating
enzyme Dnmt3a, resulting in CNS2 methylation. Blimp1 is able
to inhibit Dnmt3a upregulation and CNS2 methylation, thereby
preventing the acquisition of a Teff phenotype (35). Additionally,
Blimp1 can repress IL-23R-STAT3 signaling while retaining the
CD25-STAT5 pathway in eTregs to sustain Foxp3 expression
(34). Blimp1 is also critical for both TFR lineage stability and their
proper entry into the GC (34). Blimp1-deficient TFR cells display
an impaired suppressive phenotype in vivo with reduced Foxp3
and CTLA-4 expression, while increasing proinflammatory
cytokines like IL-17A and IFNg. These unstable TFR cells
prematurely migrate into the GC and differentiate into TFH-
like cells, resulting in TFH and GC B-cell expansion along with
increased antibody and autoantibody production. Furthermore,
adoptive transfer of Blimp1-deficient TFR cells can promote
pathogenesis associated with dysregulated GC responses (34,
68). Taken together, these studies have revealed Blimp1 as a new
and central regulator of eTreg and TFR lineage stability and
suppressive capacity.
Treg/TFR STABILITY IN THE TME

Tregs are often recruited to the tumor microenvironment (TME)
via various chemokines, such as CCL20, where they become
highly activated and suppressive (11–13, 19, 85–87). Many
pathways have been implicated in the regulation of TIL
Treg stability.

Pathways to Regulate Foxp3-Dependent
TIL Treg Stability
A significant portion of TIL Tregs express PTEN and Foxo3a.
The PTEN/Akt/Foxo3a pathway is important for the suppression
of responses to apoptotic cells, including apoptotic tumor cells
(49). Disruption of the PTEN/Akt/Foxo3a pathway through
inhibition of PTEN results in Treg instability and the
transitioning of suppressive Foxp3+ Tregs to proinflammatory
ex-Tregs, leading to a more immunogenic microenvironment
July 2021 | Volume 12 | Article 717421
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and substantial tumor regression (49–51). Disruption of the
CBM signalosome complex also results in the acquisition of an
anti-tumor effector phenotype by TIL Tregs, i.e., production of
IFNg, and reduced tumor growth. Increased IFNg activates
macrophages and upregulates PD-L1 by tumor cells.
Accordingly, PD-1 blockade therapy along with CARMA-1 or
MALT1 disruption eradicates tumors that do not respond to
anti-PD-1 monotherapy, suggesting that induction of Treg
instability confers the sensitivity to checkpoint inhibitor (52).
Similarly, disruption of Ezh2 activity or depletion of Helios in
Tregs leads to Foxp3 instability with an increased expression of
effector cytokines like IFNg and TNFa, enhanced anti-tumor
immunity, and decreased tumor growth and progression (54, 55,
88). Importantly, colorectal cancers with abundant infiltration of
FOXP3lo non-suppressive T-cells display better prognosis than
those infiltrated mainly with FOXP3hi Tregs (18).

Pathways to Regulate Foxp3-Independent
TIL Treg Stability
Tregs can become unstable with an intact Foxp3 expression. The
transcription factor Eos functions as a Foxp3 co-repressor to inhibit
downstream target genes and to maintain Treg suppressive
phenotype (89). In response to proinflammatory cytokines like
IL-6, Eos but not Foxp3 is downregulated, leading to Treg
reprogramming and the acquisition of a TH phenotype with the
upregulation of CD40L, IL-2, and IL-17A (57, 90). Co-transfer of
“Eos-labile” Tregs results in more robust anti-tumor responses and
better tumor control compared to transfer of Eos-stable Tregs.
Moreover, reprogrammed Tregs upregulate CD40L and are able to
facilitate DC cross-presentation to activate CD8+ T-cell anti-tumor
response after vaccination with an tumor antigen (91).The Nrp1-
Sema4a pathway is another mechanism for reinforcing TIL Treg
function and limiting anti-tumor immune responses, while it is
dispensable for the suppression of autoimmunity and the
maintenance of immune homeostasis by Tregs. Ligation of Nrp1
on Tregs by Sema4a increases Treg survival and potentiates stable
suppression with the increased production of IL-10 and IL-35, due
to diminished Akt activation via the recruitment of PTEN (58, 92).
Interestingly, loss of Nrp1 in Tregs results in high expression of
IFNg that drives the instability of surrounding wild-type Tregs.
Consequently, mice with Nrp1-deficient Tregs display enhanced
anti-tumor immunity and tumor clearance, prolonged survival and
increased responsiveness to anti-PD-1 therapy without
autoimmune abnormalities (48).

Metabolic Pathways to Regulate
TIL Treg Stability
Unlike Teff, Tregs favor oxidative phosphorylation but keep
glycolysis under strict control, which plays an important role
in shaping Treg identity and function (93, 94). The TME creates
a low-glucose and high lactate environment that often promotes
Treg suppressive function (95–99). Tregs may couple the survival
mechanism, like autophagy to metabolic homeostasis by limiting
glycolysis and reducing PI3K/Akt/Myc activation to ensure their
integrity in the hostile TME (53). A most recent study has further
elucidated that high-glucose conditions impair the function and
Frontiers in Immunology | www.frontiersin.org 4
stability of Tregs (100). However interestingly, Tregs have
evolved to benefit from the symbiosis with tumors by utilizing
the glycolytic by-product lactic acid to proliferate and prevent
the destabilization effects of high glucose. This alternative
pathway appears to be exclusively important for the stability
and suppressive identity of tumoral but not peripheral Tregs.
Similarly, limiting lipid uptake or metabolism by genetic or
pharmacologic inhibition of FABP5 disrupts mitochondrial
respiration, but also enhances Treg suppression by increasing
IL-10 expression, suggesting another layer of complexity for the
regulation of TIL Tregs (101).

New Pathways to Regulate TIL Treg
and TFR Stability
Our recent study has revealed the importance of Blimp1 in the
regulation of eTreg/TFR stability and suppressive function under
immune and autoimmune conditions (34, 68). However, the
specific impact of Blimp1+ eTregs on, and mechanisms of action
within, tumors are not yet explored. Since a majority of TIL
Tregs express Blimp1 in some tumor models (102), and Blimp1
is suggested to be used for outcome prediction of cancer patients
(103), loss of Blimp1 in eTregs may reprogram these cells into
Teff, and potentially lead to increased anti-tumor immunity and
decreased tumor progression, although this awaits further
investigation. Importantly, these effects are likely restricted to
TIL Tregs, since Blimp1 is expressed at low levels by Tregs at
steady state (24). Despite a few reports showing that TFR cells are
significantly increased in cancer patients compared to healthy
controls (104, 105), their mechanisms of action in the tumor are
unclear. The increased TIL TFH and B-cells, as likely observed in
mice with the Treg-specific deletion of Blimp1, and tertiary
lymphoid structure formation are associated with favorable
outcomes in certain types of cancer and better responses to
immunotherapy (106–112). Thus, it is important to define the
contribution of TFR cells to tumor progression and the impact of
Blimp1 on TFR function in the tumor.
THERAPEUTIC APPROACHES
TARGETING Treg STABILITY

Current cancer immunotherapy, particularly checkpoint
inhibitor and CAR T-cell transfer, have shown great promise
in some types of cancer. However, the success rates remain
suboptimal (113–115), and some of these approaches are
complicated with systemic immune-related adverse effects
(116–118). Since Tregs, particularly eTregs, are one of major
suppressive immune components in many cancers, most of these
approaches are complicated with negative outcomes from Tregs
in addition to positive effects on anti-tumor effector cells. For
example, IL-2 can potently activate both T-cells and nature killer
cells, and is potentially applicable for tumor control. However,
IL-2 has the propensity to amplify Tregs, representing a major
barrier for IL-2-based cancer therapy. The next generation of IL-
2 that specifically targets tumor and preferentially boosts CD8+

T-cell response without inducing Treg responses appears to be
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promising (119). Similarly, high PD-1 expression is deleterious
to Treg and TFR suppression; anti-PD-1 may promote CD8+ T-
cell anti-tumor response while inducing potent Treg/TFR-
mediated suppression (37, 120). Therefore, the PD-1
expression balance between Teff and Tregs can predict the
clinical efficacy of PD-1 blockade therapy, and needs to be
considered when anti-PD-1 or anti-PD-L1-based therapy is
applied (121). Interestingly, another checkpoint inhibitor,
CTLA-4 blockade, has been recently shown to drive
Treg instability in glycolysis-low tumors (122), a new
mechanism beyond the conventional role of anti-CTLA-4
therapy in inducing Treg depletion.

Depletion of Tregs has been demonstrated to enhance anti-
tumor responses, however, this ablation also results in lethal
autoimmunity (60–62, 123). Studies from us and others suggest
that a more effective approach would entail the specific
reprogramming of TIL Tregs and reshaping the TME by
employing the features of Treg instability, while not altering
the stability of Tregs in the periphery (44, 45) (Figure 1).
Disruption of the CBM signalosome complex or targeting
Helios or Nrp1 or ligation of GITR in Tregs is shown to be
effective for tumor control without peripheral autoimmune
effects reported (48, 52, 88, 124). Based on the profound effect
of Blimp1 depletion on the stability and suppressive ability of
Frontiers in Immunology | www.frontiersin.org 5
eTreg and TFR cells, our findings suggest that targeting Blimp1+

eTreg may generate similar anti-tumor effects while limiting
systemic toxicity. In addition to inducing eTreg destabilization
(34), targeting Blimp1+ eTregs may also induce potent anti-
tumor humoral responses, thus achieving multifaceted anti-
tumor effects.
CONCLUSION/PERSPECTIVE

It is important to recognize that Treg stability can be
manipulated to induce changes of immune responses,
achieving the therapeutic benefit. Notably, loss of TIL eTreg
stability in various tumors leads to remodeling of the TME from
a suppressive state to an effective anti-tumor state and decreased
tumor progression. Current and future challenges include the
ability to selectively induce these changes in specific subsets of
Tregs and in the TME but not systemically. As the field of cancer
immunology progresses, understanding factors that regulate
Tregs specifically in the tumor, yet have limited impact on
Tregs in the periphery, is highly desirable and important for
treating nearly every cancer patient, particularly any patient
treated with immunotherapy, as it will direct the development
of effective, targeted immunotherapies with reduced adverse
FIGURE 1 | Reprogramming of TIL Tregs to control tumor by targeting their stability. Left, Stable Treg. Treg and TFR cells mainly suppress the cellular and humoral
anti-tumor immune responses, respectively. Conversely, tumor cells impose suppression on both cellular and humoral immune responses, but foster the immune
suppression by Treg and TFR cells. Right, Unstable Treg. Factors or approaches destabilize or reprogram Treg and TFR cells into effector-like cells, which display
impaired suppressive activity, but instead cooperate with both cellular and humoral anti-tumor components to control tumor growth and progression. The peripheral
events are not depicted, but strategies used to selectively reprogram TIL Tregs, but not Tregs in the periphery, are expected to be most effective without systemic
adverse effects. The unclear events are indicated by dashed lines. Not depicted: Peripheral TFH and B-cells and their migration into the tumor; expansion of Treg/TFR
cells and anti-tumor effector cells; other cells regulating anti-tumor responses (e.g., myeloid-derived suppressor cells and macrophages, etc.).
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events. This represents a new direction for how to manipulate
Treg activity for cancer treatment.
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GLOSSARY

Bcl6 B-cell lymphoma 6 protein
BCL10 B-cell lymphoma/leukemia 10
Blimp1 B lymphocyte-induced maturation protein 1
CAR chimeric antigen receptor
CARMA1 caspase recruitment domain-containing membrane-associated

guanylate kinase protein-1
Cbfb core-binding factor subunit beta
CBM CARMA1–BCL10–MALT1
CD40L CD40 ligand
CNS conserved non-coding sequence
CCR7 CC receptor 7
CTLA-4 cytotoxic T lymphocyte antigen 4
cTreg central Treg
CXCR5 C-X-C chemokine rector 5
CXCL13 C-X-C chemokine ligand 13
Dnmt3a DNA (cytosine-5)-methyltransferase 3a
EAE experimental autoimmune encephalitis
eTreg effector Treg
Ezh2 enhancer of zeste homolog 2
FABP5 fatty acid binding protein 5
Foxo3 forkhead box O3
Foxp3 forkhead box protein P3
GC germinal center
GITR glucocorticoid-Induced tumor necrosis factor receptor
ICOS inducible T cell costimulatory
IFN interferon
IL interleukin
IL23R IL-23 receptor
IRF4 interferon regulatory factor 4
MALT1 mucosa-associated lymphoid tissue lymphoma translocation protein 1
mTOR mechanistic target of rapamycin
NFAT nuclear factor of activated T-cells
Nrp1 neuropilin-1
PD-1 programmed death 1
PD-L1 programmed death ligand 1
PI3K phosphoinositide 3-kinase
PTEN phosphatase and tensin homolog
pTreg peripheral Treg
Runx1 runt-related transcription factor 1
Sema4a semaphorin 4a
STAT signal transducer and activator of transcription
TCR T-cell antigen receptor
Teff effector T-cells
TFH follicular helper T
TFR follicular regulatory T
TGF-b transforming growth factor b
TH T helper
TIL tumor-infiltrating lymphocytes
TME tumor microenvironment
TNF tumor necrosis factor
Treg regulatory T-cells
TSDR Treg specific demethylation region
tTreg thymic Treg
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