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Abstract

MicroRNAsaresmall (~22 nt)noncodingRNAs that repress translationandtherefore regulate theproductionofproteins fromspecific

target mRNAs. microRNAs have been found to function in diverse aspects of gene regulation within animal development and many

other processes. Among invertebrates, both conserved and novel, lineage specific, microRNAs have been extensively studied pre-

dominantly inholometabolous insects suchasDrosophilamelanogaster.However little is knownaboutmicroRNArepertoires inother

arthropod lineages such as the chelicerates. To understand the evolution of microRNAs in this poorly sampled subphylum, we

characterized the microRNA repertoire expressed during embryogenesis of the common house spider Parasteatoda tepidariorum.

We identifieda total of148microRNAs inP. tepidariorum representing66 families.Approximatelyhalfof thesemicroRNAfamiliesare

conserved in other metazoans, while the remainder are specific to this spider. Of the 35 conserved microRNAs families 15 had at least

two copies in the P. tepidariorum genome. A BLAST-based approach revealed a similar pattern of duplication in other spiders and a

scorpion, but not among other chelicerates and arthropods, with the exception of a horseshoe crab. Among the duplicated

microRNAs we found examples of lineage-specific tandem duplications, and the duplication of entire microRNA clusters in three

spiders, a scorpion, and in a horseshoe crab. Furthermore, we found that paralogs of many P. tepidariorum microRNA families exhibit

arm switching, which suggests that duplication was often followed by sub- or neofunctionalization. Our work shows that under-

standing the evolution of microRNAs in the chelicerates has great potential to provide insights into the process of microRNA dupli-

cation and divergence and the evolution of animal development.
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Introduction

MicroRNAs are a class of small noncoding RNAs that fine-tune

gene expression by repressing translation of targeted mRNAs

(Bartel 2004; Eichhorn et al. 2014). Perturbed microRNA func-

tion in metazoans has been shown to disrupt diverse devel-

opmental processes such as embryonic survival and viability

(Chen et al. 2014), stem cell proliferation (Hatfield et al. 2005),

metamorphosis in insects (Sokol et al. 2008; Ambros 2011),

organ development (Chen et al. 2014), and vertebral number

and identity (Wong et al. 2015). Moreover, variation in

microRNA function has become increasingly associated with

the evolution of cellular differentiation, morphological

complexity, and even multicellularity (Heimberg et al. 2008;

Peterson et al. 2009; Wheeler et al. 2009; Campo-Paysaa et al.

2011; Chen et al. 2012; Guerra-Assunção and Enright 2012;

Arif et al. 2013; Fromm et al. 2013; Tarver et al. 2015).

The current understanding of canonical microRNA biogen-

esis in metazoans is that the microRNA primary transcript folds

into a hairpin structure that is cleaved by the endonuclease

Drosha forming the so-called precursor microRNA hairpin

(pre-microRNA). Pre-microRNAs are then exported to the cy-

toplasm, where they are further cleaved by Dicer to produce a

double stranded RNA molecule (Bartel 2004; Chendrimada

et al. 2005). One of the two RNA strands is subsequently
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loaded into the RNA-Induced Silencing Complex (RISC) (Gong

et al. 2014; Guennewig et al. 2014). The mature microRNA

guides the RISC to specific mRNAs through complementary

binding to regions in their 30-UTRs. Once bound, the miRISC

represses translation by destabilizing the mRNA, repressing

binding of translation initiation factors, and can lead to the

degradation of transcripts (Bartel 2004; Chendrimada et al.

2005; Kawamata et al. 2011; Juvvuna et al. 2012; Eichhorn

et al. 2014: Fukaya et al. 2014).

Normally, one of the two arms of a microRNA hairpin is

preferentially incorporated into the RISC. However, some pre-

microRNAs can generate two functional products, one from

each arm, which normally target different mRNA repertoires

(Marco, Macpherson, et al 2012; Gong et al. 2014;

Guennewig et al. 2014). This mode of processing has been

found to play a role in cell differentiation (Zhou et al. 2010)

and disease progression (Pink et al. 2015). Moreover, for sev-

eral microRNAs, it has been observed that differences have

evolved between insects with respect to which arm of a con-

served pre-microRNA is dominantly loaded into the RISC

(Marco et al. 2010; Griffiths-Jones et al. 2011). This evolution-

ary change is likely to have altered the target repertoires of

these microRNAs between species, which is predicted to lead

to different functional consequences because the two mature

products from the precursor microRNA have different se-

quences and are therefore expected bind to distinct recogni-

tion sites and different mRNA targets (Marco, Macpherson,

et al. 2012).

Comparative studies in animals such as vertebrates

(Heimberg et al. 2010; Field et al. 2014; Fromm et al. 2015),

arthropods (Campbell et al. 2011; Rota-Stabelli et al. 2011;

Wiegmann et al. 2011), flatworms (Fromm et al. 2013), and

annelids (Helm et al. 2012) have contributed greatly to our

knowledge of microRNA function and evolution (Hatfield

et al. 2005; Okamura et al. 2008; Marco et al. 2010, 2013;

Griffiths-Jones et al. 2011; Chen et al. 2014; Marco, 2014;

Mohammed, Bortolamiol-Becet, et al. 2014; Mohammed,

Siepel, et al. 2014; Yang et al. 2014). However, our current

understanding of microRNA evolution in arthropods is gener-

ally limited to hexapod lineages.

The Chelicerata subphylum, which diverged from the

Mandibulata approximately 500 MYA, and includes morpho-

logically diverse animals such as spiders, scorpions, mites,

ticks, and horseshoe crabs, could provide new insights into

the evolution of microRNAs in arthropods (Dunlop 2010;

Rota-Stabelli et al. 2011, 2013; Sharma, Gupta, et al. 2014;

Sharma, Kaluziak, et al. 2014; Schwager et al. 2015) (supple-

mentary fig. S1, Supplementary Material online). However, to

date, the characterization of microRNAs in chelicerates has

been limited primarily to mites and ticks, representing a

rather narrow sampling of this subphylum (Barrero et al.

2011; Rota-Stabelli et al. 2011; Zhou et al. 2013 Liu et al.

2014; Luo et al. 2015). Therefore, we chose to survey

microRNAs in the common house spider Parasteatoda

tepidariorum (formerly Achaearanea tepidariorum), which

has emerged as the main model spider for evolutionary devel-

opmental biology (Hilbrant et al. 2012) and thus offers the

potential for future functional investigations. Studies in this

spider have already made important contributions to under-

standing the regulation and evolution of axis formation, seg-

mentation, and nervous system development (McGregor et al.

2008, Hilbrant et al. 2012, Schwager et al. 2015). Moreover,

sequencing of the transcriptome (Posnien et al. 2014) and

genome of P. tepidariorum (i5k Consortium, unpublished

data) now facilitates genomic approaches to understanding

gene regulation in this spider in comparison to other chelice-

rates and other arthropods.

Surveying the evolution of microRNAs in spiders is

of a particular interest because, intriguingly, there is evidence

of extensive gene duplications in spider genomes

(Schwager et al. 2007; Janssen et al. 2010, 2015; Clarke

et al. 2015; Turetzek et al. 2015). Furthermore, duplication

of coding genes has also been found in other chelicerate

species such as scorpions and horseshoe crabs (Nossa

et al. 2014; Sharma, Schwager, et al. 2014; Kenny et al.

2016; Sharma et al. 2015). It is therefore important to

estimate copy numbers of microRNA families within

P. tepidariorum and other chelicerates to determine if the pat-

terns of protein-coding and microRNA gene duplication are

similar.

In this study, we have used deep sequencing and informat-

ics approaches to characterize the embryonic microRNA rep-

ertoire of P. tepidariorum, and used this resource to identify

novel microRNAs as well as to determine putative paralogy

and orthology relationships of the microRNAs of this spider

with those of other chelicerates. We found that conserved

microRNA orthologues show a signature of duplication in

P. tepidariorum. We also found this pattern of duplication in

two other spiders and a scorpion but not in the other arach-

nids (mites and ticks) surveyed. Interestingly, the horseshoe

crab Limulus polyphemus also contains many duplicated

microRNAs, but based on previous studies of the chelicerate

phylogeny, these expansions are possibly independent of

those we find in arachnids (discussed in Schwager et al.

2016). Interestingly, the paralogous P. tepidariorum

microRNAs exhibit divergence in arm usage suggesting that

they may have diversified in target gene repertoire and func-

tion, perhaps reflecting specific roles in the regulation of

spider development.

Materials and Methods

Parasteatoda tepidariorum Culture and RNA Sequencing

Parasteatoda tepidariorum (from a strain collected in

Göttingen, Germany) were raised at 25 �C and fed on a diet

of Drosophila and Gryllodes sigillatus. Total RNA was extracted

from the embryos of ten healthy cocoons, corresponding to
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stages 1–10 of embryogenesis in this spider (Mittmann and

Wolff 2012), using QIAzol (Qiagen) following the manufac-

turer’s instructions. Small RNA (~15–30 nt) libraries were

prepared with the Illumina TruSeq� Small RNA Sample

Prep Kit according to the manufacturer’s instructions, and li-

brary quality was assessed on the 2200 TapeStation instru-

ment. Size selection between 18 and 30 bp was performed

by excision of RNA from a 6% DNA PAGE gel, 1 mm

(Invitrogen). Sequencing was performed on the Illumina

HiSeq 2000 platform at the University of Manchester

Genomic Technologies facility, and yielded a total of

177,789,607 reads (100 bp). The raw read data have been

deposited in the Sequence Read Archive, with accession

PRJEB13119.

Analysis of Small RNA Sequencing Data and Identification
of P. tepidariorum microRNAs

The raw read quality was confirmed using FastQC v0.11.2

(Andrews, 2010), after which adapter sequences were

trimmed using the Cutadapt v1.4.1 tool (Martin 2011), and

reads longer than 17 bp were retained. Reads were then

mapped against the P. tepidariorum genome

(GCA_000365465.1) using Bowtie v1.0.0 (Langmead et al.

2009) with the parameters -n 0 -m 5 -a –best –strata, to

best discern among reads from paralogous microRNAs. All

mapped reads were analyzed using miRDeep2 v0.0.5

(Friedländer et al. 2008) to predict microRNAs. To preliminarily

identify orthologs, the predicted P. tepidariorum microRNAs

hairpins were then compared against metazoan microRNA

precursor sequences from miRBase v21 (Kozomara and

Griffiths-Jones 2014) using BLAST v2.2.28+ (BLASTn; -word_-

size 4; -reward 2; -penalty -3; -evalue 0.01; -perc_identity 70)

(Altschul et al. 1990). Predicted microRNAs that did not have

significant sequence similarity to any other microRNA in

miRBase were then manually inspected. Those that met the

following criteria were discarded from the study: fewer than

ten reads mapping to the locus; poorly defined Dicer process-

ing sites, defined as less than 50% of reads for a given mature

microRNA having the same five end; the predicted mature

microRNA sequence had a BLAST hit to more than ten loci

in the P. tepidariorum genome with two or fewer mismatches.

Predicted paralogous microRNAs were aligned using Clustal-

Omega (Sievers et al. 2011) and then manually inspected in

RALEE v0.8 (Griffiths-Jones 2005).

Identification of P. tepidariorum microRNA Orthologs
in Other Species

We searched for orthologs of all P. tepidariorum pre-microRNAs

in the genomes of two other spiders (Acanthoscurria

geniculata—GCA_000661875.1 [Sanggaard et al. 2014],

Stegodyphus mimosarum—GCA_000611955.2 [Sanggaard

et al. 2014]), a scorpion (Centruroides sculpturatus—

GCA_000671375.1), four parasitiforms (Ixodes scapularis—

GCA_000208615.1 [Lawson et al. 2009], Metaseiulus

occidentalis—GCA_000255335.1 [Hoy 2009], Rhipicephalus

microplus—GCA_000181235.2, Varroa destructor—

GCA_000181155.1 [Cornman et al. 2010]), an acariform

(Tetranychus urticae—GCA_000239435.1 [Grbić et al 2011]),

the horseshoe crab (L. polyphemus—GCA_000517525.1

[Nossa et al. 2014]), five mandibulates (Strigamia maritima—

GCA_000239455.1 [Chipman et al. 2014], Daphnia

pulex—GCA_000187875.1, Tribolium castaneum—

GCA_000002335.2 [Tribolium Genome Sequencing

Consortium et al. 2008], Apis mellifera—GCA_000002195.1,

Drosophila melanogaster—GCA_000001215.4), and a nema-

tode (Caenorhabditis elegans—GCA_000002985.3s) using

a combination of BLAST (BLASTn; -word_size 4; -reward 2;

-penalty -3; -evalue 0.1) (Altschul et al. 1990) and INFERNAL

v1.1.1 (E-value cut-off of 1) (Nawrocki et al. 2009). For

each species, the predicted microRNA repertoire was sup-

plemented with known microRNAs from miRBase v21

(Kozomara and Griffiths-Jones 2014) and for R. microplus

from Barrero et al. (2011). For each microRNA, all BLAST

and INFERNAL hits were aligned using Clustalw2 (Larkin et al.

2007) in RALEE (Griffiths-Jones 2005). Putative orthologs

were confirmed by manual inspection of the multiple se-

quence alignment using RALEE v0.8 (Griffiths-Jones 2005),

looking for high similarity of one or both mature arms of

the hairpin precursor. To determine the structure and mini-

mum free energy of all chelicerate microRNAs detected

by BLAST and INFERNAL searches, precursor microRNA se-

quences were analyzed with RNAfold v1.8.4 using default

settings (Gruber et al. 2008). All predictions retained had

greater than �0.2kcal/mol/nt (Kozomara and Griffiths-Jones

2014).

Comparisons of Relative Arm Usage

To compare the relative arm usage of P. tepidariorum

microRNAs to those of other species we used a similar ap-

proach to Marco et al. (2010). The average number of reads

per experiment catalogued in miRBase for each microRNA

arm for D. melanogaster and T. castaneum were obtained

from miRBase v21 (Kozomara and Griffiths-Jones 2014). For

the multicopy microRNA families in D. melanogaster and

T. castaneum the average arm usage across the family was

used. Arm usage of P. tepidariorum microRNAs with unique 5’

and 3’ mature sequences was also quantified. P. tepidariorum

microRNAs with one unique mature sequence were also an-

alyzed, with the caveat that the expression of the other arm

was possibly over or under estimated. Note that arm usage of

P. tepidariorum microRNAs that have nonunique sequences

for both mature products could not be reliably assessed be-

cause reads could not be unambiguously mapped to one

location.
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Results

Sequencing of Small RNAs and Prediction of microRNAs
in P. tepidariorum

Small RNAs were sequenced to determine the repertoire of

microRNAs expressed during P. tepidariorum embryogenesis.

This yielded a total of 177,789,607 raw reads of which

159,258,789 (95.5%) processed reads were mapped to the

genome of P. tepidariorum. The distribution of these mapped

read sizes contain two peaks at 22 and 29 bp, indicating the

presence of mature microRNAs and a presumptive pool of

piRNAs, respectively (fig. 1A) (Saito et al. 2006). From these

mapped reads miRDeep2 analysis initially predicted 278

microRNAs, which constituted 14,942,552 (9.4%) of the

total mapped reads. Of these predicted microRNAs, 130 had

either less than 50% of reads that had the same 5’ end, low

read numbers, or were found repeatedly in the P. tepidar-

iorum genome (see Materials and Methods). While these dis-

carded candidates could potentially be functional microRNAs,

they were removed to give a conservative final prediction

of 148 microRNAs (supplementary files S1 and S2,

Supplementary Material online) that are expressed during em-

bryogenesis in P. tepidariorum.

We then used BLAST and metazoan pre-microRNAs from

miRBase v21 (Kozomara and Griffiths-Jones 2014) to anno-

tate orthologs of the 148 predicated microRNAs. This ap-

proach identified 101 conserved microRNAs, with similarity

to at least one previously annotated metazoan microRNA in

miRBase. The remaining 47 were therefore classified as

“novel” P. tepidariorum microRNAs (fig. 1B) despite some

having putative orthologs in other chelicerate species

(fig. 2). Note that we cannot rule out the possibility that our

novel microRNA set includes some genes conserved in other

species but diverged in sequence beyond our ability to recog-

nize them as homologs, even using state-of-the-art structure-

aware RNA homology search tools.

We also grouped microRNAs based on whether they were

found as a single copy or if the microRNA family had been

duplicated and therefore contained multiple microRNAs (mul-

ticopy microRNAs). Of the conserved microRNAs, there were

22 single-copy microRNAs, and 79 multicopy microRNAs be-

longing to 15 families (fig. 1B). For the novel microRNAs, there

were 22 single-copy microRNAs, and 25 multicopy microRNAs

belonging to nine families (fig. 1B). Our prediction and anno-

tation process therefore suggests that at least 36% of P. tepi-

dariorum microRNA families have been duplicated at least

once.

Identification of Conserved P. tepidariorum microRNA
Families in Other Chelicerates

We next searched for all of the 148 predicted P. tepidariorum

microRNAs in the genomes of other chelicerates (supplemen-

tary file S3, Supplementary Material online) and also

compared the results to the repertoire of microRNAs present

in other selected ecdysozoans (fig. 2). We identified 32 con-

served microRNA families from P. tepidariorum in two other

spiders and a scorpion. The conserved families of mir-14, mir-

3477, and mir-3791 were present in S. mimosarum, but

absent in A. genticulata and C. sculpturatus (fig. 2). The mir-

3791 family appears to be absent from the genomes of all the

other chelicerates, except S. mimosarum and L. polyphemus,

but is present in some insects (T. castaneum and A. mellifera)

that we surveyed, and also shares sequence similarity with the

mir-35-41 cluster in Ca. elegans (Massirer et al. 2012; Fromm

et al. 2013; McJunkin and Ambros 2014).

The other arachnids showed variable patterns of retention

and loss of the 35 conserved microRNA families found in

P. tepidariorum. There were nine microRNA families that

were present in all of these animals. The lowest number of

families in any chelicerate surveyed was 17 in V. destructor

(fig. 2). Apart from the spiders and scorpion, mir-193 is likely

to have been lost from the genomes of other chelicerates

including L. polyphemus (fig. 2). Note that this microRNA is

commonly lost in metazoan lineages (Tarver et al. 2013).

Other potential losses in chelicerates include mir-14 and mir-

3477, which was only present in P. tepidariorum and S. mimo-

sarum. Limulus polyphemus has also lost mir-981 and mir-

279, but has retained the other 31 conserved P. tepidariorum

microRNA families (fig. 2).

Comparing the conserved microRNA families found in

P. tepidariorum to other nonchelicerate arthropods reveals

that 23 out of 35 are found in the genomes of all the insects,

the myriapod and the crustacean in our survey (fig. 2).

Interestingly, mir-96 may have been lost in insects but retained

in the crustacean, Da. pulex, as well as most chelicerates,

while mir-3931 appears to have evolved in chelicerates as

previously reported (Tarver et al. 2013; Wheeler et al. 2009),

FIG. 1.—Parasteatoda tepidariorum contains many highly expressed

multicopy microRNA families. (A) Distribution of the read lengths of

mapped reads with peaks at 22 and 29 nt. (B) Numbers of microRNAs

(black numbers) and microRNA families (white numbers).
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although it may also have been lost in the common ancestor

of the other arthropod subphyla (fig. 2).

Novel P. tepidariorum microRNAs Are Largely Species-
Specific

Of the 22 novel single-copy microRNA families we identified in

P. tepidariorum, two were identified in the genome of A.

geniculata and three in S. mimosarum, whereas only one

(mir-11960) was found in C. sculpturatus, and none

was found in any other chelicerate (fig. 2). As described

above, we also identified nine novel multicopy microRNA fam-

ilies in P. tepidariorum. However of these nine families, we

were only able to identify mir-11951 in S. mimosarum and

mir-11942 in A. geniculata. Though interestingly, both of

these microRNA families contained duplicates (fig. 2). Taken

together our analysis suggests that most of the novel

microRNAs identified in P. tepidariorum are likely to be

young and to have recently evolved in the lineage leading to

this spider.

Incidence of Multicopy P. tepidariorum microRNA
Families in Other Chelicerates and Ecdysozoans

As mentioned above, we found that 15 out of the 35 con-

served microRNA families in P. tepidariorum were represented

by two or more paralogs. There were also many multicopy

families in the other spiders (S. mimosarum and A. geniculata)

and the scorpion (C. sculpturatus) with 16, 17, and 16 out of

35 conserved families represented by two or more paralogs,

respectively (fig. 2). There was considerable overlap of multi-

copy families between these species (S. mimosarum, A. genic-

ulate, and C. sculpturatus) and P. tepidariorum with 12, 11,

and 10 families represented by at least two paralogs in the

respective species and P. tepidariorum (fig. 2). Moreover, eight

families are multicopy among all four of these species (fig. 2).

In contrast, only up to five (in the parasitiforms M. occidentalis

and I. scapularis) multicopy microRNA families were ob-

served in any other chelicerate, or ecdysozoan, we surveyed

with the notable exception of L. polyphemus (fig. 2). In the

horseshoe crab, 26 out of the 30 microRNAs found (with

respect to the conserved P. tepidariorum microRNAs) were

present as multiple copies, with 21 present as three or

more copies. These included mir-8 and mir-10, which were

not duplicated in any of the other ecdysozoans that we sur-

veyed (fig. 2).

In the manidibulates, parasitiformes and acariformes an-

alyzed, approximately 75–90% of microRNA are represented

by a single microRNA (supplementary fig. S2, Supplementary

Material online). In contrast, only approximately 40–55%

of microRNAs were present as single copy in the spiders and

scorpion, whereas approximately 35–40% contain two copies

in these species (supplementary fig. S2, Supplementary

Material online). In the horseshoe crab microRNAs were rep-

resented by one up to 17 copies; however most contained five

copies (supplementary fig. S2, Supplementary Material

online).

FIG. 2.—MicroRNA family copy number in P. tepidariorum and other ecdysozoans. Presence of P. tepidariorum single-copy and multicopy

microRNA families in other spiders (purple), scorpions (magenta), horseshoe crab (blue) parasitiformes (green), acariformes (dark green), mandibulates

(gray), and a nematode (black). The spiders, the scorpion, and the horseshoe crab all display large numbers of multi-copy microRNA families relative to other

species.
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Small- and Large-Scale Duplications of microRNAs in
Chelicerates

These observations strongly suggest that both small-scale

tandem duplications as well as larger scale duplications con-

tributed to the pattern of duplicated microRNAs in spiders. In

P. tepidariorum, we found that the mir-3791 family is repre-

sented by 34 copies, but in contrast only single copies of this

family were identified in S. mimosarum and L. polyphemus

(fig. 2). Interestingly, 13 of the P. tepidariorum mir-3791 para-

logs are located within a 50 kb locus on a single 671 kb scaf-

fold (supplementary fig. S3, Supplementary Material online).

Therefore it is clear that tandem duplications have at least in

part contributed to the expansion of this microRNA family in

the lineage leading to this spider.

We also found evidence that larger scale duplications have

contributed to the expansion of microRNA repertoires in

P. tepidariorum and other chelicerates. The mir-71/mir-2 clus-

ter is an invertebrate-specific microRNA cluster that has ex-

panded in arthropods probably due to tandem duplications

of mir-2 (Marco et al. 2010; Marco, Hooks, et al. 2012). In

the acariform and parasitiform lineages, the copy numbers of

mir-71 and mir-2 are variable, though usually there is one copy

of mir-71 and two copies of mir-2 (fig. 2). In the spiders, the

scorpion and the horseshoe crab, we consistently found at

least two copies of mir-71 and more than two copies of mir-

2 (fig. 2). In the spiders and the scorpion, these microRNAs

were generally found as two separate clusters on different

scaffolds (fig. 3). Parasteatoda tepidariorum contains one clus-

ter containing a single copy of mir-71 and three copies of mir-

2, and a second cluster, on a different scaffold, also with one

copy of mir-71, but with six copies of mir-2 (fig. 3).

In the S. mimosarum and C. sculpturatus genomes we

found one scaffold containing one copy of mir-71 and four

copies of mir-2 (fig. 3), and a second scaffold with one copy of

mir-71 and three copies of mir-2 (fig. 3). In A. geniculata there

is one complete cluster with one mir-71 and four mir-2 copies,

all on one scaffold (fig. 3). There is another scaffold with one

copy of mir-71 and one copy of mir-2 located approximately

6 kb from the end of the scaffold. There are also two other

copies of mir-2, each on approximately 1 kb scaffolds. The

arrangement of L. polyphemus mir-71/mir-2 genes is much

more fragmented (fig. 3). In this horseshoe crab we found

eight copies of mir-71 located on seven scaffolds, of which

six also contain at least one copy of mir-2 (fig. 3). The seven

copies of mir-2 that are located on six different scaffolds are

all found close to the ends of the scaffolds, and may there-

fore possibly be fragments of larger mir-71/mir-2 clusters

(fig. 3).

A second microRNA cluster that we observed to be dupli-

cated in some species is the mir-100/let-7/mir-125 cluster

(supplementary fig. S4, Supplementary Material online).

However, in all lineages there appeared to be possible loss

or rearrangement of at least one cluster, although we cannot

FIG. 3.—The duplicate mir-71/mir-2 clusters in chelicerate lineages.

The mir-71/mir-2 cluster is duplicated in spiders (purple), the scorpion (ma-

genta), and the horseshoe crab (blue). Each species displays lineage-

specific retention, loss and further small segmental duplications. The po-

sition of the left most microRNA and the total scaffold length are indicated

on the left and right hand side, respectively.
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exclude the possibility that this is an artifact of the genome

assembly.

In P. tepidariorum we found one complete cluster (supple-

mentary fig. S4, Supplementary Material online), and

additional copies of mir-100 and mir-125 on separate scaf-

folds but no paralog of let-7 (supplementary fig. S4,

Supplementary Material online). The arrangement of these

microRNAs in S. mimosarum is similar to P. tepidariorum (sup-

plementary fig. S4, Supplementary Material online) although

the two mir-100 paralogs are on separate scaffolds

(supplementary fig. S4, Supplementary Material online).

Acanthoscurria geniculata has a complete mir-100/let-7/mir-

125 cluster and two additional copies of mir-125 are found on

separate scaffolds (supplementary fig. S4, Supplementary

Material online). In C. sculpturatus, we found a single cluster,

which appears to have been rearranged, similar to one of the

three L. polyphemus clusters (supplementary fig. S4,

Supplementary Material online).

Therefore the mir-71/mir-2 and mir-100/let-7/mir-125 clus-

ters appear to have been duplicated in spiders and scorpions

(Arachnopulmonata) and L. polyphemus but not other cheli-

cerates or mandibulates that we surveyed. Taken together,

our results show that both tandem duplications and larger

scale duplications of entire clusters, followed by subsequent

lineage-specific expansion or loss of microRNAs, have contrib-

uted to the evolution of chelicerate microRNA repertoires.

Divergence in microRNA Arm Usage in
Multicopy microRNAs

Duplicate microRNAs have the potential to diversify their func-

tions by a number of evolutionary mechanisms, including arm

usage (Okamura et al. 2008; de Wit et al. 2009; Marco et al.

2010; Griffiths-Jones et al. 2011). Inspection of microRNA arm

usage in P. tepidariorum suggests that there is a bias toward

the mature sequence deriving from the 3’ arm of the hairpin

(supplementary fig. S5, Supplementary Material online). The

distribution was statistically different from that in both

T. castaneum (D = 0.2124; P = 0.002) and D. melanogaster

(D = 0.2955; P = 5.4 � 10� 7), but was not different between

T. castaneum and D. melanogaster (D = 0.1343; P = 0.08)

(Kolmogorov–Smirnov tests).

We then compared relative arm usage for individual

microRNAs between P. tepidariorum, T. castaneum, and D.

melanogaster and observed multiple cases of arm switching

among these species (fig. 4). Considering first the microRNAs

that have unique mature sequences in P. tepidariorum, only

mir-275 and mir-3477 exhibit differences in relative arm usage

between P. tepidariorum and T. castaneum, (fig. 4A).

Comparisons between P. tepidariorum and D. melanogaster

shows that mir-10, mir-993a, mir-278b, mir-281, also display

changes in arm use (fig. 4B).

There were also occurrences of arm switching for

microRNAs that contained only one unique mature sequence

in P. tepidariorum. Between P. tepidariorum and T. casta-

neum, mir-993b-1, mir-2b-1 all exhibit differences in relative

arm usage (fig. 4A). Comparing P. tepidariorum with D. mel-

anogaster, showed that mir-993b-2, both copies of mir-276,

and again mir-2b-1 exhibited arm switching (fig. 4B).

We also identified that one P. tepidariorum mir-3791 para-

log had been subject to relative arm switching, and another

paralog that had similar 5’ and 3’ expression, which is in con-

trast with the rest of this mostly 3’ dominant family in P.

tepidariorum (supplementary fig. S6, Supplementary

Material online). Both of these microRNAs have unique

mature sequences in P. tepidariorum (supplementary file S1,

Supplementary Material online), though some of the other

paralogs of this family do not have unique sequences for

both mature products (supplementary file S1,

Supplementary Material online).

It was also possible to compare the arm usage among the

paralogs of the nine novel multicopy microRNA families iden-

tified in P. tepidariorum (fig. 2). The mir-11942 family ex-

hibited differential arm usage between paralogs

(supplementary fig. S7, Supplementary Material online).

Another family, mir-11961, also showed variation in arm

usage between paralogs, however there was less striking dif-

ferences between paralogs compared to those observed in the

mir-11942 family (supplementary fig. S7, Supplementary

Material online). Importantly, the paralogs of these two

microRNA families all had unique mature sequences in P. tepi-

dariorum (supplementary file S1, Supplementary Material

online). The other novel multicopy families showed relatively

similar arm usage between paralogs. However, these be-

longed to microRNA families with one nonunique mature se-

quence in P. tepidariorum in relation to their paralogs

(supplementary file S1, Supplementary Material online).

Discussion

In this study, we surveyed the repertoire of microRNAs ex-

pressed during embryogenesis in P. tepidariorum and com-

pared them with other chelicerates to examine patterns of

duplication during the evolution of these genes in arthropods

and other animals. From the initial 278 miRDeep2 predictions,

we focused on a conservative total of 148 microRNAs repre-

senting 66 families expressed during P. tepidariorum embryo-

genesis (fig. 1). This number is similar to the complement of

172 microRNAs expressed during D. melanogaster embryo-

genesis (Ninova et al. 2014). However, D. melanogaster has

a total of 256 microRNAs identified across all life stages

(Kozomara and Griffiths-Jones 2014). Therefore, it is likely

that further microRNAs expressed later in development and

in adults remain to be identified in P. tepidariorum. Despite

this, we have characterized more microRNAs in this spider

than previously identified in other arachnids (R. microplus

[87], I. scapularis [49], and T. urticae [52]) (Wheeler et al.

2009; Barrero et al. 2011; Grbić et al. 2011) except the tick
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Hyalomma anatolicum anatolicum (Luo et al. 2015). Thus

P. tepidariorum possesses one of the largest chelicerate

microRNA repertoires sequenced to date, and is the only

one where small RNAs have been mapped against the specific

corresponding genome sequence.

Approximately half of the microRNA families identified in

P. tepidariorum by small RNA seq were conserved in other

metazoans (fig. 2). These included 21 out of 31 families that

are common to most bilateral animals, and 7 out of the 12

families present in protostomes (Tarver et al. 2013). The losses

include mir-33, mir-219, mir-2001, and mir-1993, which have

been commonly lost in metazoans (Tarver et al. 2013). P.

tepidariorum also contains panarthropod (mir-276 and

mir-305), arthropod (iab-4/8 and mir-275), and chelicerate-

specific (mir-3931) microRNAs (Rota-Stabelli et al. 2011;

Tarver et al. 2013). We did not find mir-242 and mir-216,

which are also lost in other arthropods, nor mir-31, which is

not found in the chelicerate family of Ixodidae, or the man-

dibulate-specific mir-282 or mir-965 (Rota-Stabelli et al. 2011;

Tarver et al. 2013). It is possible that due to our sampling of

embryonic small RNA we may have missed microRNA families

(Tarver et al. 2013) that are only expressed during other life

stages. Indeed, we were able to identify one copy of mir-133,

two copies of mir-137, and three copies of mir-124 (supple-

mentary file S4, Supplementary Material online) in the

genome of P. tepidariorum, further increasing the number

of microRNAs that we identified.

Evidence of Duplication of Both Coding and Noncoding
Genes in P. tepidariorum

Over one-third of the conserved microRNA families and

many of the novel microRNA families are present in multiple

copies in P. tepidariorum (fig. 1B). This expansion appears to

have resulted from both local tandem duplications and

larger scale segmental duplications (fig. 3, supplementary

figs. S3 and S4, Supplementary Material online). Previous

reports have found that some protein-coding genes in

P. tepidariorum have also been duplicated (Posnien et al.

2014). Of the 8,917 P. tepidariorum transcripts identified

as being orthologous to a Drosophila gene, approximately

28% are likely to be expressed from duplicated genes

(Posnien et al. 2014). This therefore suggests that there

has possibly been greater retention of duplicated

microRNAs compared to protein-coding genes in P. tepidar-

iorum. This difference is similar to previous estimates of

microRNAs and coding gene retention following large-

scale duplication (Berthelot et al. 2014).

Duplication and Divergence of microRNAs in Multiple
Chelicerate Lineages

Evidence of gene duplication in chelicerates is not limited to P.

tepidariorum. Analysis of the transcriptomes of representatives

of the Mygalomorphae and Araneomorphae suggests that

these spiders are likely to have shared a large-scale duplication

FIG. 4.—Relative arm usage changes in microRNAs. Comparisons of the relative strand usage of P. tepidariorum microRNAs to (A) T. castaneum and (B)

D. melanogaster show microRNAs that have undergone strand switching in the 30/50 and 50/30 quadrants. The dashed line indicates the theoretical

expectation for conserved arm usage between the two species. Dotted lines limit the boundaries of the dashed line to less than 10-fold differences in

arm usage.
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event and that retained paralogs may have contributed to the

origin and evolution of silk glands (Clarke et al. 2015). Hox

genes in the spider Cupiennius salei and scorpions, including

C. sculpturatus and Mesobuthus martensii, have also been

found to be duplicated, though it is unclear whether these

are shared or independent duplication events (Schwager et al.

2007; Sharma, Schwager, et al. 2014; Di et al. 2015, Sharma

et al. 2015). In the horseshoe crab, there is also evidence of

two rounds of whole-genome duplication, which are may be

independent of the duplication events that have occurred in

spiders or scorpions (Nossa et al. 2014; Sharma, Gupta, et al.

2014; Sharma, Kaluziak, et al. 2014; Kenny et al. 2016;

Schwager et al. 2015). The presence of mir-193 in

Arachnopulmonata and its absence in all the other chelice-

rates we surveyed further supports the hypothesis of indepen-

dent duplication events.

We also identified many duplicate microRNA families in

spiders, scorpions, and a horseshoe crab (fig. 2 and supple-

mentary fig. S2, Supplementary Material online). We found

that L. polyphemus has the largest estimated microRNA rep-

ertoire among chelicerates. Interestingly, many microRNA

families were found to be represented by multiple genes in

all three spiders and the scorpion that we surveyed (fig. 2).

These findings are consistent with a possible large-scale dupli-

cation event in the common ancestor of spiders and scorpions

(Arachnopulmonata), and the two possibly independent

rounds of whole-genome duplication in horseshoe crabs

(Nossa et al. 2014; Sharma, Gupta, et al. 2014; Sharma,

Kaluziak, et al. 2014; Kenny et al. 2016; Schwager et al.

2015).

In contrast to the shared duplication of microRNAs among

Arachnopulmonata species, there were differences in the re-

tention of paralogs in some families (fig. 2). These patterns of

gain and loss may be due to genome assembly quality or a lack

of small RNA sequencing from adult stages of P. tepidariorum.

Alternatively, differential patterns of retention of microRNA

paralogs potentially relates to differential retention of dupli-

cate coding genes between these spider species (Clarke et al.

2015). It is also possible that the paralogous microRNAs

found in some species could have been produced by line-

ages-specific duplication events. However, further analysis of

the genomes and small RNA sequencing of all of these cheli-

cerates is required to investigate these different evolutionary

scenarios.

Evolution of microRNA Function

Despite the shared retention of many duplicated genes gen-

erated by putative tandem and large-scale duplication events,

it is clear from our results that there are also common lineage-

specific losses (figs. 2 and 3, supplementary figs. S3 and S4,

Supplementary Material online). Changes in microRNA bio-

genesis may have also contributed to the evolution of

their function among chelicerates. We identified that

P. tepidariorum, like some other ecdysozoans (de Wit et al.

2009), has a general 3’ arm bias with respect to preferential

strand loading into the RISC. This bias is greater than that

reported for 3’ arm usage compared to T. castaneum and

D. melanogaster (Marco et al. 2010) (supplementary fig. S5,

Supplementary Material online). This could perhaps be caused

by the many paralogs of the mir-3791 and mir-2 families,

which were generally 3’ dominant, though both of these fam-

ilies do show instances of arm switching (fig. 4 and supple-

mentary fig. S6, Supplementary Material online). However,

the microRNA that switched in the mir-2 family did not con-

tain completely unique mature sequences and relative arm

switching may have been over or underestimated. Many of

the microRNAs that show arm switching, relative to T. casta-

neum and D. melanogaster, also belong to multicopy

microRNA families. These results suggest that duplication

may facilitate functional change between paralogs and

provides further evidence that microRNA duplication facili-

tates changes that can alter strand selection (de Wit et al.

2009).

There were also cases of single-copy microRNAs that have

been subject to arm switching between species. miR-10-5p is

more abundant than miR-10-3p in both P. tepidariorum and

T. castaneum, while miR-10-3p dominates in D. melanogaster

(Griffiths-Jones et al. 2011). In both P. tepidariorum and

Drosophila, mature products from both arms are ex-

pressed at detectable levels (Stark et al. 2007). The expres-

sion of both mature arms may be a feature that contributes

to a microRNAs ability to switch strand usage between

species.

The pervasive duplication and subsequent divergence in

retention and copy number, as well as arm switching, that

we have identified among chelicerate microRNAs may have

led to their subfunctionalization and neofunctionalization

(Ohno 1970; Taylor and Raes 2004; Li et al. 2008;

Amoutzias and Van de Peer 2010; Innan and Kondrashov

2010; Abrouk et al. 2012; Huminiecki and Conant 2012;

Wang and Adams 2015). These evolutionary differences,

therefore, may have contributed to the divergence in the de-

velopmental programs of chelicerates.

Conclusions

Our characterization of microRNAs expressed during P. tepi-

dariorum embryogenesis and the identification of their ortho-

logs in other arthropods show that there has been pervasive

duplication and subsequent divergence in the sequences of

these paralogous genes in spiders, scorpions, and the horse-

shoe crab. It is now essential to apply the tools for analysis of

gene expression and function available in P. tepidariorum to

test the developmental implications of these changes to pro-

vide a perspective on the evolution of microRNAs in chelice-

rates, arthropods, and metazoans.
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