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The ANK2 gene encodes for ankyrin-B (ANKB), one of 3 members of the

ankyrin family of proteins, whose name is derived from the Greek word for

anchor. ANKB was originally identified in the brain (B denotes “brain”) but has

become most widely known for its role in cardiomyocytes as a sca�olding

protein for ion channels and transporters, as well as an interacting protein for

structural and signaling proteins. Certain loss-of-function ANK2 variants are

associated with a primarily cardiac-presenting autosomal-dominant condition

with incomplete penetrance and variable expressivity characterized by a

predisposition to supraventricular and ventricular arrhythmias, arrhythmogenic

cardiomyopathy, congenital and adult-onset structural heart disease, and

sudden death. Another independent group of ANK2 variants are associated

with increased risk for distinct neurological phenotypes, including epilepsy

and autism spectrum disorders. The mechanisms underlying ANKB’s roles

in cells in health and disease are not fully understood; however, several

clues from a range of molecular and cell biological studies have emerged.

Notably, ANKB exhibits several isoforms that have di�erent cell-type–,

tissue–, and developmental stage– expression profiles. Given the conservation

within ankyrins across evolution, model organism studies have enabled the

discovery of several ankyrin roles that could shed important light on ANKB

protein-protein interactions in heart and brain cells related to the regulation

of cellular polarity, organization, calcium homeostasis, and glucose and fat

metabolism. Alongwith this accumulation of evidence suggesting a diversity of

important ANKB cellular functions, there is an on-going debate on the role of

ANKB in disease. We currently have limited understanding of how these cellular

functions link to disease risk. To this end, this review will examine evidence for

the cellular roles of ANKB and the potential contribution of ANKB functional

variants to disease risk and presentation. This contribution will highlight the

impact of ANKB dysfunction on cardiac and neuronal cells and the significance

of understanding the role of ANKB variants in disease.

KEYWORDS

sca�olding protein, cellular morphology, calcium homeostasis,

excitation-contraction coupling, arrhythmia, sudden cardiac death, seizure, autism

spectrum disorders
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Introduction

Loss-of-function variants in the ANK2 gene are associated

with a wide range of electrical and structural heart disease.
Reported cardiac phenotypes include arrhythmia, corrected

QT interval prolongation (sometimes referred to as long QT

type 4), and sudden cardiac death. A prolonged QT interval
on an electrocardiogram corrected for heart rate (QTc) is

a predictor of ventricular arrythmias and sudden cardiac

death (1, 2). At least 15 congenital long QT syndromes

(LQTS) have been described, associated with genes encoding
for ion channels, ion channel modulatory subunits, signaling

proteins, and cytoskeleton-associated proteins (3). One of

the first identified ANK2 variants, p.E1458G, was associated
with prolonged QTc, and this QTc prolongation has since

been associated with other ANK2 variants (4–7). Notably,

a prolonged QTc is not observed in all patients harboring

cardiac phenotype- associated ANK2 variants. In fact, there is

minimal evidence of a prolonged QTc in individuals under

the age of 25 (7). Additional reported cardiac manifestations
include bradycardia, sinus arrhythmia, idiopathic ventricular

fibrillation, and catecholaminergic polymorphic ventricular

tachycardia (5, 8). Separately, ANK2 is also emerging as a gene

of interest in neurological disorders. ANK2 has been identified

as a key risk gene for autism spectrum disorders (ASD) (9, 10)

and as a candidate gene for epilepsy (11).

The protein produced from the ANK2 gene, ankyrin-B

(ANKB), is a large scaffolding protein that has become known

as a key regulator of cardiac physiology (4, 12). There are three

mammalian ankyrin protein family members, including ANKB,

ankyrin-R (ANKR, ANK1 gene), and ankyrin-G (ANKG, ANK3

gene). ANKR is primarily expressed in erythrocytes (13) while

ANKB and ANKG are co-expressed in a variety of cell types

and tissues (14–16). Ankyrins, including ANKB, are composed

of four domains: a membrane binding domain comprised of

24 ANK repeats that interacts with membrane proteins such

as ion channels and transporters, a spectrin binding domain

responsible for interacting with βII spectrin, a death domain

of which the function has not yet been identified but in other

proteins is key for signal transduction cascades resulting in

apoptosis and inflammation (17), and a C-terminal domain. The

death domain and C-terminal domain comprise the regulatory

domain which is named due to its ability to directly bind the

membrane binding domain and play a role in inhibition (15).

As this review is focused on ANKB, the following information is

specific to ANKB, except where information about other ankyrin

family members provides key insight.

ANK2 has critical roles for cardiac and neuronal physiology

as indicated by loss-of-function variants and studies usingmodel

organisms. ANKB’s structure and different isoforms allow for

a diverse array of protein-protein interactions within a variety

of different cell types. As such, dysfunction in ANKB can lead

to a wide range of cellular impacts. There are different groups

of variants associated with different phenotypes; one group of

ANK2 variants is primarily associated with a broad cardiac

phenotype, another is associated with neurological diseases

including ASD and epilepsy, and others are linked to metabolic

perturbations. The ANK2 variant-associated clinical phenotypes

inform investigation of ANKB cellular roles, including key

potential protein-protein interactions and cellular processes that

could, in turn, help to develop new therapeutic strategies. To

this end, we first highlight certainANK2 variants associated with

disease and then discuss the potential underlying mechanisms

garnered from cell biological studies using a variety of model

organisms. These studies have revealed key cellular roles for

ANKB in the localization and spatial organization of ion

channels and transporters, signaling molecules, and structural

proteins involved in variety of cellular processes, including

development of cellular morphology, calcium homeostasis, and

glucose and fat metabolism. By linking ANKB’s emergent

cellular roles with phenotypes associated with ANK2 variants, a

picture of ANKB’s many contributions to cardiac, neurological,

andmetabolic health and disease begins to emerge.Making these

links is key to translating this knowledge into the clinical setting

and helps understand disease risk and presentation.

Tissue- and cell-type-specific
expression of ANKB isoforms across
development

There are several ANKB isoforms which exhibit cell-type–,

tissue–, and developmental stage–specific expression patterns.

While the 220 kDaANKB isoform is the primary isoform in both

the heart and brain [as well as other cells and tissues, such as

skeletal muscle, thymus, pancreas, and adipose tissue (18, 19)

certain isoforms exhibit tissue-specific expression. The initial

discovery of ANK2 (and its product ANKB) resulted from a

series of studies characterizing ankyrin cDNA enriched in non-

erythroid cells (20, 21). After the identification of a 440 kDa

isoform, consisting of a large insertion (exon 40) between the

regions encoding for the spectrin binding domain and death

domain (20, 22), transcript and protein level characterization

showed that 440 kDa ANKB was detectable at birth, with

expression levels peaking at postnatal day 10 and decreasing

progressively in the adult rat brain (down to 30% of peak levels)

(22). Meanwhile, the 220 kDa ANKB transcript and protein

levels were found to increase progressively through development

into adulthood (20, 23). In addition to the 220 kDa isoform,

additional ANKB isoforms have been detected in the heart: a 188

kDa isoform that, similarly to 220 kDa ANKB isoform, when

knocked down results in altered expression and localization of

the sodium calcium exchanger, a 212 kDa isoform which is

localized to striated muscle and the cardiac M-line (24), and a

160 kDa isoform that is highly expressed in mouse hearts along

with the 220 kDa isoform (25).
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TABLE 1 Spectrum of cardiac features associated with ANK2 variants in humans.

E1458Ga

N = 25

R990Q

N = 2

V3634Db

N = 4

S646F

N = 15

E1813Kc

N = 3

Q1283H

N = 1

T1404I

N = 1

M1988T

N = 5

T3744Nd
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R3906We

N = 2

I3437T

N = 1

W1535R

N = 6

46,XX,t

(4;9)

(q25;q31.1)

N = 5

Variant type Missense Missense Missense Missense Missense Missense Missense Missense Missense Missense Missense Missense LOF

Location SBD SBD DD MBD CTD SBD SBD CTD CTD CTD Disordered DD n/a

Arrhythmia LQTS X X X X X X

Drug-induced

LQTS

X X X X

CPVT X X

Atrial Fibrillation X X X

Cardiac arrest X X X

SCD X X X X

Bradycardia X X X X X X

VT X X X X

Other arrhythmia Recurrent VF Type 1

brugada

pattern

SVT Late potential

on SAECG

Torsades de

pointes

Torsades de

pointes, VF,

BrS

Conduction

abnormalities

WPW X

SND X X

Other Heart block

Symptoms Syncope X X X X X X X X X X X

Palpitations X

Structural HCM X X X

DCM X

ARVC X X

Other structural LV

dysfunction,

cardiomegaly

Congenital Heart

Defect

X X

Other Seizures X X
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Newer transcriptomics studies and databases of the

developing human heart show that ANK2 is differentially

expressed in human embryonic ventricular and atrial

cardiomyocytes, with high transcript levels also detected

in fibroblast-like cells associated with vascular development

and cardiac neural crest cells (https://spatialtranscriptomics3d.

shinyapps.io/Developmental_heart_explorer/) (26). ANK2

transcript levels peak during early mid-fetal human

development (and mouse Ank2 transcript levels peak

during late embryonic development) to eventually plateau

during later developmental stages (https://hbatlas.org/

mouseNCXtranscriptome/, https://hbatlas.org/pages/hbtd)

(26–29). In the 1-week-old mouse brain, Ank2 transcript

levels are enriched in astrocytes, neurons, and oligodendrocyte

progenitors (https://www.brainrnaseq.org/) (30). At the single

RNA-seq level, ANK2 transcript levels are slightly enriched in

inhibitory and excitatory neuron populations [Allen Cell Type

Database – “M1 - 10X GENOMICS (2020)”; https://portal.

brain-map.org/atlases-and-data/rnaseq] (31). Consideration

of this ANKB enrichment in select cell types, tissues, and

developmental stages could help provide important clues to the

clinical impacts of ANK2 variants. In the next section, we will

highlight several ANK2 variants and associated phenotypes that

provide important areas of focus for investigation of ANKB’s

cellular roles.

ANK2 variants and risk for disease

Consistent with enriched ANKB expression in heart and

brain, a number of ANK2 variants have been associated with

a range of cardiac phenotypes while others are associated with

neurological or metabolic phenotypes.

ANK2 variants associated with (primarily)
cardiac phenotypes

Certain ANK2 loss-of-function variants are associated with

a broad spectrum of cardiac phenotypes including arrhythmia,

conduction abnormalities, and cardiomyopathy (Table 1) (4,

8, 32). Amino acid changes produced by these variants are

present in all four domains of ANKB and are associated

with autosomal dominant inheritance, reduced penetrance,

and variable expressivity (Figure 1) (32). Initially described

as LQTS type 4, QTc prolongation is commonly linked with

cardiac-phenotype associated ANK2 variants, although the role

in QT prolongation has been since debated (33) (Table 1).

ANKB p.E1458G (previously p.E1425G), the result of an amino

acid substitution in the spectrin binding domain, was among

the first ANK2 variants identified. It was found in a French

kindred with LQTS associated with atrial fibrillation and sinus

node dysfunction (4). There was a family history of sudden
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FIGURE 1

ANK2 variants are associated to cardiac arrhythmias and autism spectrum disorders (ASD). Diagram of canonical human ANKB (UniProtKB

Q01484-4, 3,957 aa) showing ANKB regions and domains. Canonically, ANKB can be divided into 4 main domains: an initial membrane binding

domain, a spectrin binding domain, a death domain, and a C-terminus domain. The ANKB membrane binding domain contains 24 consecutive

ankyrin (ANK) repeats and associates with ion channels and transporters; the spectrin binding domain contains highly conserved ZU5-ZU5-UPA

domains and associates with βII-spectrin and the B56α subunit of PP2A; and the regulatory domain comprised of the death domain and

C-terminus domain comprised is unstructured and highly variable between species. Orange and cyan dots represent the main cardiac and ASD

variants discussed in the main text. Functional variants have been identified in each of ANKB’s domains.

death, including an 18 and 12 y.o. The variant demonstrated

incomplete penetrance in one out of 23 carriers. Age related

effects were also observed, affected children had sinus node

abnormalities (diagnosed in utero) whereas atrial fibrillation

was present only in adults (4). Of note, the p.E1458G variant

has also been identified in a healthy Danish exome cohort

without evidence of QTc prolongation and has a frequency of

0.11% (41/35360) in the Latino population according to the

Genome Aggregation Database (gnomAD) (34, 35). Similarly,

while two ANK2 variants p.E1458G and p.V3634D (initially

reported as p.V1516D) were over-represented in a private

cohort from an inherited heart rhythm clinic, most patients

carrying ANK2 variants that were referred to this clinic

showed no symptoms or had electrocardiographic findings

of unknown significance; however, their genetic ancestry

composition and clinical and epidemiological information is

not publicly available (36). Another variant associated with

prolonged QTc and ventricular tachyarrhythmias is the ANK2

p.L1622I variant, found with higher frequency in individuals

of African ancestry (minor allele frequency: 0.03, 850/24964,

gnomAD) (5, 37).

ANKB p.S646F, the first identified variant located in the

membrane binding domain, also came to attention due to

LQTS. This variant was found in two large multigenerational

Gitxsan families identified because of LQTS in the context

of a known high community prevalence of KCNQ1-mediated

LQTS. The probands in each family did not carry the known

KCNQ1 variant (38), but instead, carried the p.S646F variant

(7). As with the p.E1458G variant, QTc prolongation was not

the only associated feature. The variant was identified in one

individual who died suddenly due to dilated cardiomyopathy,

another carrier had a history of Wolf-Parkinson-White (WPW)

syndrome, and this individual’s daughter was born with a

congenital heart defect (total anomalous pulmonary venous

return). Age related effects were observed, with limited

evidence of QTc prolongation in those under 25 years

(7). Congenital heart defects were also reported in a fetus

carrying a duplication of 4q25-ter and 9pter-q31.1 with

breakpoints in chromosome four transecting ANK2; the fetus

was born with multiple cardiac malformations including a large

atrioventricular septal defect (39). However, it is unclear whether

the congenital heart defects may be related to the duplications

or whether ANK2 haploinsufficiency played a role. Carriers

of the balanced translocation, which includes breakpoints

transecting ANK2, did not have congenital heart defects but

other cardiac features including bradycardia, ventricular ectopy,

sinus node dysfunction, and mild left ventricular dysfunction

(Table 1).
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LQTS is not the only phenotype associated with loss

of ANKB function. Over time, several other arrhythmias

and conduction anomalies have been associated with

ANK2 variants including catecholaminergic polymorphic

ventricular tachycardia (CPVT), bradycardia, and

WPW. An occurrence of CPVT in carriers of an

ANK2 variant has been reported in a small number of

cases, with a recent report by Song et al. (40) of a 20

y.o. man with diagnosis of CPVT and non-ischemic

cardiomyopathy who was found to carry the p.I3437T

variant located in the disordered domain of ANKB

(8, 41). WPW has been suggested to be another feature

of Ankyrin-B syndrome. In addition to the one individual

with WPW carrying the p.S646F variant previously

mentioned, two rare de novo and one inherited variant

in ANK2 were identified in a cohort of patients with

WPW (7, 42).

Beyond inherited arrhythmias, loss-of-function variants in

ANK2 have also been associated with cardiomyopathy, such

as hypertrophic cardiomyopathy, dilated cardiomyopathy, and

LV dysfunction (7, 39, 43). In a cohort of patients with

HCM, rare variants in ANK2 showed a statistically significant

association with greater maximal mean left ventricular wall

thickness, contributing to more severe LV hypertrophy (43).

Recently, the role of ANK2 in arrhythmogenic right ventricular

cardiomyopathy (ARVC), a condition characterized by fibrofatty

replacement of the myocardium, ventricular arrhythmias, and

sudden cardiac death has come to attention. The previously

reported p.E1458G variant was identified in an individual who

died suddenly while running and was found to have ARVC on

autopsy. A secondANK2 variant was identified in a family where

the proband died suddenly during exercise and was also found

to have ARVC on autopsy. Post-mortem genetic testing was

carried out and identified a novel p. M1988T variant, which is

located in the C-terminal domain. Additional family members

were identified through cascade screening to have definite or

borderline diagnoses of ARVC (44).

With the emergence of a broad spectrum of features

linked to ANK2 variants came the term “Ankyrin-B syndrome,”

which at the time more fully captured the complexity of

the range of associated phenotypes (8, 32). Although the

origin of Ankyrin-B syndrome is associated solely with

cardiac phenotypes (8, 45), through the investigation and

identification of new variants, it has become apparent that

ANKB dysfunction is not exclusive to cardiac phenotypes

but underlies neurological ones as well. Thus the term,

Ankyrin-B syndrome, does not fully capture the broad

spectrum of ANKB dysfunction across all cell types and

variants. The pleiotropic nature of ANK2 is highlighted by

individuals that experience seizures in combination to the

cardiac manifestations (7, 46), as well as unique ANK2 variants

associated with ASD (47–49) of which we will discuss in the

next section.

ANK2 variants associated with
neurological phenotypes

Beyond the heart, ANK2 is emerging as an important
gene in neurological conditions, including ASD and epilepsy.

It is important to note that the variants associated with

Ankyrin-B syndrome (cardiac-phenotype associated ANKB

variants) are distinct from those reported in association with
ASD, and a combination of cardiac and ASD phenotypes

has not been reported. Rare variants in ANK2 including

missense, frameshift, non-sense, and copy number variants

have been identified in individuals with ASD (Table 2) (10,

47–50). ANK2 is classified as a high-confidence gene clearly
implicated in ASD by the Simons Foundation Autism Research

initiative due to the reports of at least three de-novo loss-of-

function variants in the literature and meeting the threshold

false discovery rate of <0.1 (https://gene.sfari.org/database/

human-gene/ANK2). ASD-associated ANK2 variants are largely

non-syndromic and typically not associated with intellectual

disability (Table 2) (51). While some variants are present within

both the 220-kDa and 440 kDa ANKB proteins, certain variants

are unique to the 440-kDa giant ANKB isoform. For instance,

a knock-in mouse model carrying ANKB p.P2580fs (analogous

to the human p.R2608fs), which expresses a truncated giant

ANKB polypeptide, demonstrated ASD-like behaviors including

repetitive behavior, decreased ultrasonic vocalization, reduced

territory marking, and superior executive functioning. Of note,

mice homozygous and heterozygous for the p.P2580fs variant

exhibited the same behaviors, supporting that haploinsufficiency

ofANK2 could contribute to risk for ASD (51). Using amultiplex

network that characterized modules of epilepsy and ASD genes

sharing similar phenotypes and protein-protein interactions,

ANK2 has also been identified as a novel candidate gene for

epilepsy (11). Similarly, in a workflow using the random walk

with restart algorithm in addition to permutation and functional

association tests ANK2 was also predicted as a novel gene for

epilepsy (52).

Notably, independent of the connection between ANK2

variants and risk for epilepsy, seizures were reported in

association with cardiac-phenotype associated ANK2 variants.

A history of seizures was reported in eight of eighteen carriers

of the ANKB p.S646F variant, and in two out of six patients

carrying the ANKB p.W1535R variant (7, 46). In a study which

sequenced cases of epilepsy-related sudden unexpected death for

inherited heart disease related genes, one individual was found

to carry two variants in ANK2 (p.Ser105Thr, p.Glu1934Val).

Of note, this death occurred by drowning, and the individual

was reported to have mildly prolonged QTc (53). Given that

seizures can be linked to cardiac arrhythmias (54) and the fact

that some cardiac-associated ANK2 variants are linked with

seizures (7, 46) it would be worth investigation to determine

if the seizures are a result of the arrhythmia or independent

and owed to dysfunction in the brain. Furthermore, with the
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TABLE 2 ANK2 variants associated with autism spectrum disorder.

Variant Type Location ASD Intellectual

disability

Other gnomAD Clinvar ID Reference

Affect only giant ANKB (440 kDa) isoform

P1843S Missense Disordered X 0.000003979 (134)

E3429V Missense Disordered X Absent (48)

R2608fs Frameshift Disordered Pervasive

developmental

disorder

Absent (135)

Affect giant ANKB (440 kDa) and 220 kDa isoform

R990* Nonsense ZU5-1 Asperger’s disorder Absent VCV000450028.2 (10)

Q1589Kfs Frameshift X X Sensorimotor

neuropathy, facial

dysmorphism

Absent VCV000235896.1 (50)

4:113593803_113967887dup Duplication X n/a VCV000236353.1 (47)

4:114077690_118094709dup Duplication X n/a VCV000236354.1 (47)

4: 114225715-114429181del Deletion X n/a VCV000236355.1 (47)

Table adapted from Yang et al. (51); ASD, Autism Spectrum Disorder.

link to epilepsy in neurological-associated ANK2 variants (11)

it raises the question of how ANKB dysfunction is impacting

neuronal mechanisms.

ANK2 variants associated with metabolic
phenotypes

ANK2 variants have also been implicated in the regulation

of fat and glucose metabolism. In particular, the ANK2

p.R1788W variant, which is associated to cardiac phenotypes

(Table 1), was enriched in individuals of white and Hispanic

descent diagnosed with type 2 diabetes in the American

Diabetes Association GENNID cohort. Moreover, the

ANK2 p.L1622I variant, associated with a less severe

cardiac phenotype, is the most frequent ANK2 variant

(7.5%) in African Americans who carry up to a 2-fold

increased risk for type 2 diabetes (19, 55, 56). Whether

other primarily cardiac or neuronal ANK2 variants also

result in global or local metabolic disturbances remains to

be investigated.

Fundamental research studies revealing the many roles

of ANKB within cells have provided insights into possible

mechanisms behind the various phenotypes associated with

ANK2 variants. ANKB is implicated in different pathways, as

it is a scaffolding protein for ion channels and transporters

as well as a link for structural and signaling proteins,

some of which are outlined below and summarized in

Table 3.

Insights on the cellular role(s) of
ANKB from model organism studies

Given their sequence similarity, it is possible to understand

the biological role ofANK2 (and its homologs) through studying

model organisms. Mouse Ank2 is comprised of exons exhibiting

considerable homology to those found in human ANK2 and

exhibits similar tissue-specific isoform expression patterns (24,

25). In mice, global Ank2 knockout causes neonatal death

(57), while conditional Ank2 knockout in the heart and brain

results in significant electrical and structural impairments and

death (44, 51, 58, 59). Heterozygous Ank2 knockout (Ank2+/−)

mice model haploinsufficiency (i.e., expression of a single

wildtype Ank2 allele fails to produce a wildtype phenotype),

are relatively viable, and therefore used in many preclinical

studies. Ank2+/− mice display increased susceptibility to atrial

and catecholamine-induced ventricular arrhythmias and sudden

death, as well as, premature senescence and reduced lifespan

(4, 8, 45). These cardiac manifestations have been associated

with decreased presence of the sodium calcium exchanger,

the sodium potassium ATPase subunits 1 and 2, and the

inositol 1,4,5-trisphosphate receptor at the T-tubules of cultured

primary cardiomyocytes (4, 60) (Figure 2). Mice with complete

global loss of Ank2 (Ank2−/−) display severe structural brain

defects, such as hypoplasia of white matter tracts, dilated

ventricles, and degeneration of the optic nerve (57). As several

developmental signaling pathways are strongly intertwined

with the homeostasis of ions, such as calcium (61–63), the

severe structural phenotypes observed in the context of ANKB
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TABLE 3 ANKB interacting partners.

Domain Classification Interacting partner Cell type interaction confirmed in References

MBD Ion channels/ Transporters Inositol 1,4,5-trisphosphate receptor Cardiac and Neuronal (4, 5, 14, 60, 103, 136)

CaV1.3 Cardiac (136, 137)

CaV2.1 Neuronal (101, 102)

CaV2.2 Neuronal (101)

CaV3.1 Neuronal (138)

CaV3.2 Neuronal (138)

Kir6.2 Cardiac (139, 140)

Sodium Calcium Exchanger Cardiac and Neuronal (4, 5, 24, 60, 103, 137)

Sodium Potassium ATPase (a1 and a2) Cardiac and Neuronal (4, 5, 60, 103, 137, 140,

141)

Erythrocyte anion channel Neuronal (12)

Structural EHD1-4 Cardiac (142)

Structural/ Signaling Beta-catenin Cardiac (44)

Cell adhesion L1CAM Neuronal (51, 120, 143)

Dystrophin Cardiac (144, 145)

SBD Motor movement Dynactin-4 Cardiac and Neuronal (144–146)

Structural βII-spectrin Cardiac and Neuronal (6, 59, 103, 147)

Signaling Phosphatidylinositol 3-phosphate Neuronal and Fibroblast (146, 148)

PP2A B56α Cardiac (95, 149, 150)

Giant insertion Enzyme Ndel1 Neuronal (151)

DD Signaling RABGAP1L Fibroblast (148)

CTD Chaperone HSP40 Cardiac (69)

Signaling Obscurin Cardiac (24, 152)

Regulatory Ankyrin-B MBD Cardiac (15)

Unknown Signaling SadA/SadB Neuronal (153)

Chaperone UNC-119 Neuronal (80)

FIGURE 2

ANKB interactions in cardiomyocytes implicates ANKB in a variety of cellular processes. Diagram of ANKB interacting partners and their

localization allowing for proper cardiac function. ANKB interactions at the (A) t-tubule (B) intercalated disc and (C) sarcomere allow for proper

cell functions. Kir6.2, inward rectifier potassium channel; NCX, sodium calcium exchanger; NKA, sodium potassium ATPase; CaV1.3,

voltage-gated calcium channel; IP3R, Inositol 1,4,5-trisphosphate receptor; PP2A, protein phosphatase 2A; RYR2, ryanodine receptor 2; L1CAM,

L1 cell adhesion molecule; PI3P, phosphatidylinositol 3-phosphate; CaV1.3, voltage-gated calcium channel; TCF/LEF, T cell factor/lymphoid

enhancer factor transcription factors.
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dysfunction (or haploinsufficiency) may be related to ANKB

regulatory roles in ion homeostasis and cytoskeletal proteins.

Analysis of the molecular evolution of ankyrins has revealed

a single ankyrin gene in Caenorhabditis elegans (unc-44), two

ankyrin genes in Drosophila melanogaster (Dank1, Dank2),

and three mammalian ankyrin genes (ANK1, ANK2, ANK3)

that likely originated from a single ankyrin ancestor gene

in Ciona intestinalis (64, 65). Moreover, these analyses have

also demonstrated a closer evolutionary relationship between

ANK2 and ANK3, which despite their high sequence and

structural similarity localize to different cellular compartments

and associate with different proteins (66, 67). In most cases,

ankyrins do not have the ability to compensate for each other

(68, 69). However, previous studies from the Rasband lab

have shown that in the central nervous system ANKB can

partially compensate for loss of paranodal ANKG and ANKR

can compensate ANKG’s role in sodium channel clustering at

nodes of Ranvier (70, 71). While each ankyrin protein appears to

have different roles they share some protein-protein interactions

and can provide insight into each other’s roles in cells.

The use of model organisms can help unravel the

mechanisms behind the clinical phenotypes associated

with ANK2 variants. Insights from model organisms have

elucidated ANKB’s essential roles in regulating cellular

morphology, polarization, calcium homeostasis, and glucose

and fat metabolism, as outlined below and summarized in

Tables 3–5 and Figures 2, 3.

ANKB regulates cellular morphology and
polarization

As cells develop, migrate, and mature, cytoskeletal

rearrangements lead to the specification of a directionality

axis resulting in well-organized regions that support motility,

cell-to-cell contacts, and surfaces for secretion or absorption

(72). This spatiotemporal phenomenon is known as cell polarity

and it is what influences the shape, motility, and trafficking and

signaling domains in cells, as well as their ability to respond

and adapt to extracellular and intracellular signals (72, 73). In

the mouse heart, for example, cell polarization allows round

embryonic ventricular cardiomyocytes to postnatally adopt

the shape of a rod and direct their junctional proteins to the

ends of the now elongated cells to form the intercalated disc, a

specialization for cell-to-cell communication (74, 75). In other

cell types, such as neurons, cell polarization defines specialized

compartments for receiving (dendrites) and sending (axons)

electrochemical signals (76). Insights from studies using model

organisms have shown ANKB’s essential role in neuronal

development which raises the question of how ANKB may play

a role in cardiomyocyte development as well.

Although it is yet unclear whether ANKB plays a role in

the morphological development of cardiomyocytes and other

cardiac cell-types in which it is expressed, there is evidence of

ANKB’s roles in neuronal development. Studies using the model

organism C. elegans have demonstrated that ANK2’s ortholog

unc-44/ankyrin is a known master regulator cell polarization

and axonal neurite outgrowth in this roundworm’s sensory

neurons (77–80). Mutations affecting unc-44/ankyrin function

result in abnormal neural development, locomotor defects,

and microtubule networks with mixed polarity in axons and

dendrites leading to abnormal protein sorting and trafficking

into these compartments (77–79, 81–83). Unc-44/ankyrin,

along with unc-33/crmp (an actin and microtubule associating

protein) and unc-116/kinesin-1 (a motor protein) help establish

neuronal polarity by regulating the organization of dendritic

and axonal microtubule networks (79, 81). Furthermore, unc-

44/ankyrin acts upstream of unc-33/crmp and vab-8/kinesin-like

protein to regulate the removal of gap junction channels (84)

which allow for the direct electrical communication between

cells and play a key role in development (85, 86). In Drosophila

melanogaster, Dmel\ank2, which has a short and long/ giant

isoform localized to different sub-cellular compartments (cell

body and axon, respectively) supports the stabilization and

remodeling of the synaptic microtubule network (87, 88). Loss

of Dmel\ank2 results in retraction of synaptic boutons, collapse

of the pre-synaptic active zones, reduction of the terminal

size, and altered neuromuscular junction morphology (88, 89).

While the role of ANK2 in cardiomyocyte polarization during

heart development remains to be investigated, some of the

ANK2 variants listed above have been associated with cardiac

malformations suggesting that ANKB dysfunction results in an

impact to the structural development of these cells (7, 39).

Recent organ-specific ANK2 conditional knockouts further

underscore the important role of ANK2 in the structural

development of cardiomyocytes and neurons. Specifically, the

beta-catenin/Wnt signaling pathway is important in both

cardiac and neuronal cell fate determination, axis patterning

and polarity, and proliferation (90–92). This pathway is initiated

by the accumulation of beta-catenin in the nucleus leading

to the transcription of Wnt responsive genes (92). Evidence

underlying ANKB’s role in cell proliferation and survival

has been highlighted by the p.S646F variant. In H9c2 cells,

a cell model with similar traits of primary cardiomyocytes

(93), expression of the p.S646F variant resulted in decreased

cellular viability and proliferation (94). Using a cardiac-specific

conditional knockout model, Roberts et al. found that loss

of Ank2 in the heart leads to severe cardiac remodeling

resulting in ventricular dilation, fibrosis, bradycardia, QTc

prolongation, and increased susceptibility to catecholamine-

induced ventricular arrythmias (44). Associated with decreased

protein expression and altered localization of beta-catenin

away from the intercalated disk, this cardiac-specific ANK2

knockout phenotype recapitulates what has been observed
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TABLE 4 Summary of ANKB’s cellular roles identified using model organisms.

Model organism Biological process Elucidated roles and implications Reference

Mus Ank2−/− (Ank2 null) N/a Global knockout is deadly (57)

musculus Ank2+/− (Models

haploinsufficiency)

Cardiomyocyte structural

development

Cardiac malformations imply role in structural

development

(4, 8, 45)

Calcium homeostasis and signaling Localization and expression of the

sodium/calcium exchanger, inositol trisphosphate

receptor, and voltage-gated calcium channels

L-type channels; Cav1.3 expression (SAN

isolated cells and atrial cardiomyocytes)

P/Q-type channels; Cav2.1 and Cav2.2

expression (cortex, cerebellum,

and brainstem)

(4, 60, 101,

136, 137)

Regulation of RYR2-mediated sarcoplasmic

reticulum calcium leak via PP2A (cardiomyocytes)

(104)

Regulation of calcium homeostasis affects calcium

cycling dynamics (calcium transients, sparks) and

delayed afterdepolarizations

(4, 5, 95, 104)

Glucose and fat metabolism Downstream effects on oral glucose tolerance (114)

shAnkB knockdown Calcium homeostasis and signaling Localization and expression of T-type channels

Cav3.2 expression (hippocampal neurons)

(138)

Cardiac-specific conditional

knockout

Cardiomyocyte structural

development

Cardiac remodeling implies structural role (44)

Involved in Beta-catenin localization and

expression; possible implications on

beta-catenin/Wnt signaling

Brain-specific knockout

(brain-specific ANKB 440-kDa

isoform not expressed)

Neuronal structural development Synaptic signaling and synapse excitability (51)

Axon branching and connectivity (linked to Ank2

involvement in microtubule bundle formation)

Abnormal social behavior. Impaired

communicative behavior. Enhanced executive

function.

Excitatory neuron-specific

knockout (ANKB 220-kDa and

440-kDa are not expressed in

excitatory neurons)

Calcium homeostasis and signaling Regulation of Cav2.1 expression (decreased Cav2.1

expression in whole cortex homogenates)

(102)

Adipose tissue-specific conditional

knockout

Glucose and fat metabolism Adiposity (117)

Pancreatic islet size

Insulin resistance

ANK2 p.R1788W knock-in Glucose and fat metabolism Abnormal insulin secretion. Insulin resistance (19)

Increased peripheral glucose uptake (increased cell

surface GLUT4)

Adiposity

Caenorhabditis elegans: unc-44 Neuronal development and

polarization

Regulating organization/ polarization neurite

microtubule networks

(79, 81)

Drosophila melanogaster: Dank2 (Dmel\ank2) Neuronal development and

polarization

Supporting stabilization and remodeling of

synaptic microtubule network

(87, 88)
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TABLE 5 Summary of primary biological functions a�ected by ANKB dysfunction/loss-of-function.

Biological function Level Heart Brain

Structural development and

cell polarization

Cellular Trafficking and distribution of ion channels and

exchangers along T-tubules and beta-catenin at the

intercalated disc

Definition of axonal and dendritic compartments in

neurons

Trafficking of proteins to axonal and

dendritic compartments

Tissue/Organ Dilated cardiomyopathy

Ventricular wall fibrosis

White matter tract defects

Increased axonal connectivity

Calcium homeostasis and

signaling

Cellular Increased calcium transient amplitude (putatively,

increased intracellular calcium concentration)

Increased calcium sparks (calcium release events

from the sarcoplasmic reticulum)

Decreased calcium transient frequency

Decreased spontaneous contraction rate

Increased miniature excitatory postsynaptic potentials

Decreased excitability

Decreased action potential firing rate

Tissue/Organ Increased contractility

Increased rate of delayed afterdepolarizations

Decreased expression of calcium voltage gated channels

(CaV2.1 and CaV2.2)

in arrhythmogenic cardiomyopathy phenotypes as well as in

patients carrying predicted loss-of-function ANK2 variants and

their respective knock-in mouse models (Figure 2) (4, 37, 95).

It is worth noting that cardiomyocytes with Ank2 loss do not

show altered expression nor mislocalization of intercalated disc

proteins such as plakoglobin, plakophilin 2, connexin 43, N-

cadherin, desmoplakin, and desmoglein 2 (44). Further insights

regarding the involvement of ankyrin proteins in this context

may be drawn from ANKG, which also interacts with beta-

catenin. Loss of ANKG results in a comparable decrease in

beta-catenin localization at themembrane and increased nuclear

levels leading to an increase in neural progenitor proliferation in

mice via Wnt signaling (96). Given ANKB also plays a role in

organizing beta-catenin localization and expression, it is worth

future investigations to determine if ANKB leads to any effects

onWnt signaling. In parallel, another ANKB interacting partner,

protein phosphatase 2A (PP2A), is also a regulator of Wnt

signaling (97). With ANKB’s potential involvement at two stages

of the Wnt signaling pathway, future studies should explore

the implications of ANKB dysfunction on the latter as well as

concomitant developmental processes.

In the case of loss of brain-specific giant ANKB 440-kDa,

which primarily localizes to axons, mice display ectopic axon

branching and connectivity, transient increase in excitatory

synapses, and neurodevelopmental disorder-like behaviors such

as stereotype movements and impaired social behavior (51). The

impairment on axonal connectivity has been linked to ANK2’s

role in regulating the formation of microtubule bundles in the

axon and reducing branching points enriched with F-actin by

promoting growth cone collapse in response to semaphorin

3A signaling (58, 98) (Figure 3). While brain specific Ank2

knockout mice do not exhibit impairments in memory and

learning (51), the identified structural and connectivity changes

recapitulate some of the morphological features observed in

neurodevelopmental disorders, such as ASD (51, 99, 100). The

identification of giant ANKB-specific roles in critical aspects of

neuronal structural development warrants further exploration

in the heart and its intrinsic nervous system. Furthermore,

given that ANKB is associated with several critical steps in the

development of cells and the establishment of their polarity,

studies aiming to elucidate the role that ANK2 plays during

early heart and cardiac conduction system development will be

crucial to understand the various phenotypes associated with

ANK2 variants.

ANKB regulates calcium homeostasis

With its role in proper localization of the calcium the

sodium/calcium exchanger, the inositol trisphosphate receptor,

and calcium voltage-gated channels, ANKB is a key hub for

regulation of calcium homeostasis in excitable cells (14, 101–

103). In mouse cardiomyocytes, complete and partial loss of

Ank2 leads to abnormal calcium dynamics as summarized

in Tables 4, 5 (4, 5, 104). Using global and partial loss of

Ank2 knockout mouse models, it has been demonstrated

that ANK2 variants identified in cardiogenetic studies have

differential effects on cardiomyocyte calcium dynamics in vitro,

with some variants (namely: p.G1406C, p.R1450W, p.L1503V)

rescuing calcium transient amplitude defects, while others

(namely: p.E1425G, p.L1622I, p.T1626N, p.R1788W, p.T1404I,

p.V1516D, p.T1552N, p.V1777M, and p.E1813K) fail to rescue

calcium and spontaneous activity abnormalities (8). These in

vitro experimental findings are in line the variable expressivity

and penetrance observed in individuals carrying ANK2 variants

(4, 7).

ANK2 regulates calcium homeostasis in excitable cells

through various potential mechanisms, some of which still
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FIGURE 3

ANKB interactions in neurons implicates ANKB in a variety of cellular processes. Diagram of ANKB interacting partners and their localization

allowing for proper neuronal function. (A) cell body (B) synapse and (C) axon allow for proper cell functions. NCX, sodium calcium exchanger;

NKA, sodium potassium ATPase; IP3R, Inositol 1,4,5-trisphosphate receptor; CaV, voltage-gated calcium channels; PP2A, protein phosphatase

2A; RYR2, ryanodine receptor 2; L1CAM, L1 cell adhesion molecule; PI3P, phosphatidylinositol 3-phospate; Sema 3A, semaphorin 3A; Nrp1,

semaphorin 3A receptor neuropilin 1.

require additional in-depth characterization. Loss of ANK2 or

ANK2 dysfunction (as in the case of pathogenic ANK2 variants)

leads to the mis-localization of channels and transporters

involved in calcium handling (sodium/calcium exchanger,

inositol trisphosphate receptor, and calcium voltage-gated

channels) (4, 7, 95, 105). Furthermore, lack of ANK2 (and

in some cases, ANK2 dysfunction) leads to decreased protein

expression of the sodium/calcium exchanger and L-type, T-type,

and P/Q-type voltage gated calcium channels in cardiomyocytes

and neurons (7, 101, 102, 104). Specifically, two clinically

relevant ANKB variants, p.E1458G and p.S646F, differentially

modulate levels of CaV2.1, the pore forming subunit of P/Q-type

voltage gated calcium channels, in HEK293T cells (102). The

p.E1458G variant was found to decrease surface CaV2.1 levels

while the p.S646F variant increased intracellular CaV2.1 levels.

Another variant, p.Q879R, which to our knowledge has not

yet been associated with disease, is located at the linker region

required for proper ANKB localization. Expression of p.Q879R

increased the surface level expression of CaV2.1 in the presence

of the CaV accessory subunits (102). Additionally, ANKB may

also regulate the key intracellular calcium release channel,

ryanodine receptor 2 (RYR2). RYR2 hyperphosphorylation in

the mouse Ank2 knock-in model harboring the p.Q1283H

variant suggests ANKB’s interaction with the regulatory subunit,

B56α, of the protein phosphatase PP2A, of the protein

phosphatase PP2A (PPP2R5A) is necessary for PP2A activity

on RYR2 (Figure 2) (95). Abnormal calcium handling associated

with ANKB variant expression is a plausible pathophysiological

mechanism underlying the increase in frequency of delayed

afterdepolarizations and susceptibility for cardiac arrhythmias

observed with ANK2 cardiac variants (104, 106), as well as a

possible mechanism for the increased susceptibility to epileptic

seizures associated with some ANK2 variants.

PP2A is a key regulator inmost signal transduction pathways

and cellular processes (107, 108). Other targets of PP2A and

the resulting impact of ANKB dysfunction has not yet been

investigated and should be an area of research in the future. Of

the many PP2A targets some include other ANKB interactors

such as the inositol trisphosphate receptor (109) and the

sodium potassium ATPase (110) of whose phosphorylation and

therefore function may also be altered as a result of ANKB

dysfunction. In neuronal cells PP2A is one of the major enzymes

associated with regulating microtubules, neurofilaments, and

the actin cytoskeleton (111–113). While ANKB’s interaction

with PP2A in neurons has not yet been confirmed, this likely

regulation of signaling events has key implications to the

functioning and development of neuronal cells as well.

ANKB functions in glucose and fat
metabolism regulation

ANKB has also been linked to regulating glucose and fat

metabolism. An earlier study by Healy et al. (114) described

that mice with partial global loss of Ank2 (Ank2+/−)

exhibit impaired oral glucose tolerance likely secondary to
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decreased expression of the inositol trisphosphate receptor in

pancreatic islets, which mediates the signaling for augmented

glucose-induced insulin secretion after parasympathetic

stimulation (115, 116). Knock-in mice harboring the type-2

diabetes-associated ANK2 p.R1788W variant exhibit decreased

insulin secretion following parasympathetic stimulation and

increased peripheral glucose uptake (coupled with increased

plasma membrane density of the glucose co-transporter 4 in

skeletal muscle and adipose tissue) (19). Notably, older ANK2

R1788W mice had increased adiposity and showed insulin

resistance (19). The increase in adiposity is also observed in

adipose tissue-specific Ank2 knockout mice, which develop

progressive pancreatic islet dysfunction, accumulation of fat

with age or high fat diet, and insulin resistance associated with

impaired glucose co-transporter clathrin-mediated endocytosis

(117). Importantly, a subset of ANK2 variants associated with

cardiac arrhythmias failed to rescue the metabolic defects in

Ank2−/− adipocytes (117), calling to attention additional

cardiovascular risk considerations for individuals with known

ANK2 cardiac arrhythmia variants. A knock in ANK2 p.L1622I

model exhibited a measurable and distinct cardiac phenotype,

reduced ANKB expression, and even developed insulin

resistance and age-dependent increases in adiposity (19).

Discussion

Variants in ANK2 are associated primarily to complex

cardiac phenotypes; however, some functional ANK2 variants

also have neurological or metabolic manifestations. Cardiac

phenotypes associated with ANK2 functional variants are

characterized by a predisposition to arrhythmias, conduction

anomalies, and congenital and adult-onset structural heart

disease, and in some cases, seizure (Table 1). Other ANK2

variants may contribute to risk for ASD and epilepsy

(Table 2). With type 2 diabetes also linked to specific ANK2

antecedents, the putative compounding effects of metabolic

perturbation on cardiac and neurological phenotypes may

pose additional risk to individuals carrying ANK2 variants.

The diversity of manifestations associated with ANK2 variants

could result, in part, from complex ANKB protein interaction

networks involving critical proteins that regulate cellular

structure and function (Table 3). Overall, improved knowledge

of ANKB cellular roles and regulation is now needed to

advance understanding of clinical phenotypes associated with

ANK2 variants and, ultimately to develop improved, targeted

therapeutic approaches.

As there is such diversity in features reported across

ANK2 variants with cardiac phenotypes, further studies are

required to better understand which features are truly linked

to Ankyrin-B syndrome. For example, congenital heart defects

have been described in association with only one variant to

date, p.S464F (7), and a structural chromosomal re-arrangement

involving breakpoints in ANK2 (39). Whether congenital heart

defects are part of the ANKB spectrum of manifestations or

just isolated events remains to be determined. In favor of

the notion that ANK2 functional variants can also contribute

to structural heart disease, a British study on hypertrophic

cardiomyopathy reported that the proportion of patients with a
maximum left ventricular wall thickness >30mm (i.e., extreme

wall thickness) was higher in carriers of ANK2 variants (43).

This effect was still present when restraining the analysis to

patients carrying sarcomeric protein variants (43), suggesting

that ANK2 might play a role of a disease modifier in

cases of hypertrophic cardiomyopathy (43, 118, 119). Further

population and laboratory studies are required to fully elucidate
the connection between ANK2 variants and hypertrophic

cardiomyopathy, which could involve ANKB interactions with
structural/cytoskeletal elements within cardiac cells.

Given the cases of structural malformations it is also

important to investigate the potential role of ANKB in cardiac

cell development. Of note, the p.S6464F variant is less stable
and experiences reduced expression only in undifferentiated

H9c2 cells suggesting this variant’s impact to cells occurs during

their development (94) and provides some additional rationale

behind investigating ANKB’s roles during cardiac development.

As seen in patients with both the p.S646F (7) and p.E1458G (4)

variants there appears to be an age-related effect. This implies

that not only is ANKB function important in early development

but also over a lifespan. Some possible mechanisms behind

ANKB’s role in cardiac development include its interactions

with beta-catenin, PP2A, and ion channels. Understanding the

developmental expression of ANKB and the impact of variants

may provide insight into the cardiac dysfunction observed in

patients over their lifetime.

While ANKB’s link to neuronal development has been

better pieced together through studies with model organisms,

we have highlighted key knowledge gaps and areas of future

investigations. Early observations revealed neuroanatomical

defects in the global Ank2 knockout mouse (57) and model

organisms have highlighted homologous ankyrin roles in

neuronal polarization (79). Other mainly in vitro studies point

to a role for ANKB in GABAergic synaptic development

(120), axonal branching (51, 58, 98), and voltage-gated calcium

channel trafficking (101, 102) (Figure 3). These studies suggest

ANKB regulates neurodevelopmental processes and could help

explain its putative role in risk for ASD, as well as its association

with epilepsy and seizure. Given the important roles of giant

ANKB in the development of the nervous system, future

studies aiming to elucidate the roles of giant ANKB in the

development of the heart and conduction system are warranted.

Moreover, recent single cell transcriptomics surveys identifying

several non-myocyte cells that contribute to heart development,

such as cardiac neural crest cells, neuronal cells, and glial-like

cells (all with detectable ANK2 transcripts levels) (26, 121–

123) open the door to novel lines of research investigating
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ANK2’s functions within these cells and their impact in shaping

heart development. Notably, many studies in the brain have

focused primarily on the giant isoform of ANKB, the putative

central nervous system-specific, neonatal isoform (51, 58, 98);

however, the roles of the smaller, more prominent 220 kDa

isoform are vastly understudied. ANKB’s roles at themammalian

synapse are yet to be studied even though ANKB is not only

enriched at synapses, but also seems to associate with multiple

postsynaptic scaffolding proteins (124, 125). Given ANKB’s

interactions with ion channels, βII-spectrin, and components of

the cytoskeleton (126), it is possible that ANKB plays important

roles in regulating the shape of postsynaptic structures and

protein sorting therein contributing to maturation of synapses

and establishment of neuronal circuits.

Recently, disease associations of ANK2 variants and LQTS

and CPVT have been debated in part due to the population

frequency of certain previously reported variants (34–36, 127).

Although the minor allele frequency is certainly a useful

predictive tool (128), an elevated minor allele frequency may

not completely eliminate a role for the variants in disease.

For example, while the ANK2 p.L1622I variant is associated

with prolonged QTc and ventricular tachyarrhythmias, which

is modeled in a knock-in homozygous mouse, the study was

limited by the use of juvenile homozygous mice. This cardiac

phenotype likely exceeds that of the carriers in the general

population, who are most likely heterozygous for the ANK2

p.L1622I variant (37). It is possible that ANK2 variants are

part of an oligogenic/polygenic disease (129). Such a possibility

is seen with the p.E1813K variant which has been shown

to aggravate the cardiac phenotype of an individual carrying

KCNH2 p.H562R variant (130). In isolation, the p.E1813K

variant was associated with age-related conduction disease, and

the individual carrying only the KCNH2 p.H562R variant was

asymptomatic.ANK2 is a gene that appears to tolerate mutations

well as seen by the allele frequencies of many variants. This

variant toleration may be a result of a compensatory mechanism

to protect the overall function of the protein given its apparent

importance in cellular biology. Overall, this evidence highlights

the importance of integrating allele frequency, genetic ancestry,

and environmental and genetic factors in the analysis and

determination of cardiovascular gene-disease associations of

ANK2 variants.

Insights from model organism studies have highlighted

the significance of ANKB’s many roles within cells. ANK2

variants are linked with cardiac, neurological, or metabolomic

phenotypes consisting of electrical, structural, and signaling

impacts. The mechanisms behind ANK2 variant dysfunction

can be explained in part due to ANKB’s protein interactions

and cellular partners outlined within the review. With many

interactions in both signaling and cytoskeletal components,

ANKB can easily be implicated in a variety of cellular events

and basic functions. Furthermore, interactions identified and

studied within one cell type could hold relevance across multiple

cell types in which ANKB is expressed. With the large number

of ANKB protein-protein interactions the phenotype associated

with one particular variant could be anticipated to be vastly

different from another depending on the amino acid location

and the degree of conservation (chemical similarity). A variant

located within the membrane binding domain is likely to have a

different phenotype than a variant located within the spectrin

binding domain as an ion channel disruption will result in

altered signaling compared to losing a structural interaction.

Improved understanding of ANKB cellular roles and

the effects of variant expression at a mechanistic level is

needed to advance the identification possible therapeutic

targets and biomarkers for individuals with ANK2 variants.

Comprehensive characterization of ANKB’s interacting and

signaling partners would facilitate the design of small molecule

modulators or repurposing of compounds to mitigate cellular

pathology associated with ANKB variants. For example,

inhibition of CamKII with KN-93 was able to mitigate RYR2

hyperphosphorylation and subsequent excessive calcium release

in Ank2+/− pro-arrhythmogenic mouse hearts, resulting in

a net reduction of RYR2 phosphorylation, calcium spark

frequency, and delayed afterdepolarizations (95, 131, 132). More

recently, inhibition of the GSK-3β pathway with SB-216763

(resulting in a net activation of the Wnt/beta-catenin signaling

cascade) was effective in ameliorating cardiac remodeling

in mice presenting with arrhythmogenic cardiomyopathy

associated with cardiac specific loss of ANKB (44). However,

given ANKB expression in other excitable tissues and the

important roles linked to signaling pathways in which ANKB

directly or indirectly participates, it is paramount to continue

advancing the understanding of ANKB’s role in cells and

molecular pathways before defining and launching ANKB-

targeting therapeutic programs. This is particularly important

given the limited mechanistic appreciation of neurological

phenotypes associated with ANK2 variants, such as seizure

and white matter abnormalities. By exploiting the relatively

conserved amino acid sequence and biological functions of

ANKB and the availability of experimental model organisms,

high-throughput cellular and molecular characterization of

variants can bridge the gap to improved clinical understanding

and development of targeted, specific therapeutic interventions.

The variability of clinical phenotypes associated with

ANK2 variants poses challenges for treatment. At present, the

understanding of the source of this variability is incomplete

but could be partly due to the pleiotropic effects of ANKB, as

well as surreptitious layering of variants in related pathways

and/or environmental factors. The complexity and incomplete

mechanistic understanding of ANKB cellular roles and

regulation pose significant challenges for development of

precise therapeutic interventions. As technological advances

in personalized and precision medicine continue to expand,

successful therapeutic strategies will arise from testing and

modeling ANK2 variants directly on induced pluripotent
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stem cells derived from affected individuals themselves

(133). A combination of experimental approaches, including

personalized and precision medicine methods such as in vitro

studies using patient-derived induced pluripotent stem cells, and

model organism approaches will help to bridge the gaps to the

identification of key pathways and therapeutics that target them

safely and effectively. Current clinical efforts should therefore

focus on monitoring carriers of ANK2 functional variants for

arrhythmia and cardiomyopathy, along with symptomatic and

treatment and control of co-morbidities (106).

Highlighted within this review are a variety of ANK2

variants and the different disease-linked phenotypes that arise

as a result of their expression. Bringing together studies

from model organisms and laboratory findings this review

identifies potential mechanisms underlying ANKB dysfunction

and possible contributions to disease. Investigating mechanisms

underlying this link to disease will not only aid in our

understanding of cellular pathways and ANKB’s roles within

them but will provide insight into disease risk and presentation.

Understanding ANKB’s roles in health and disease will advance

the ability to translate this information into clinic and provide

insights into developing treatments and therapies.
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