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ABSTRACT
In this study, we investigated the impact of initial tumor volume, rate of tumor
growth, cohort size, study duration, and data analysis method on chemotherapy
treatment response classifications in patient-derived xenografts (PDXs). The analyses
were conducted on cisplatin treatment response data for 70 PDX models representing
ten cancer types with up to 28-day study duration and cohort sizes of 3–10 tumor-
bearing mice. The results demonstrated that a 21-day dosing study using a cohort size
of eight was necessary to reliably detect responsive models (i.e., tumor volume ratio
of treated animals to control between 0.1 and 0.42)—independent of analysis method.
A cohort of three tumor-bearing animals led to a reliable classification of models that
were both highly responsive and highly nonresponsive to cisplatin (i.e., tumor volume
ratio of treated animals to control animals less than 0.10). In our set of PDXs, we found
that tumor growth rate in the control group impacted treatment response classification
more than initial tumor volume. We repeated the study design factors using docetaxel
treated PDXs with consistent results. Our results highlight the importance of defining
endpoints for PDX dosing studies when deciding the size of cohorts to use in dosing
studies and illustrate that response classifications for a study do not differ significantly
across the commonly used analysis methods that are based on tumor volume changes
in treatment versus control groups.

Subjects Bioengineering, Drugs and Devices, Oncology, Translational Medicine
Keywords Patient-derived xenograft (PDX), Treatment response, Dosing study design, Cisplatin,
Docetaxel, PDX, Preclinical studies, Mouse models

INTRODUCTION
The number of active compounds in oncology has quadrupled since 1996 and nearly
doubled between 2008 and 2016 (Albrecht et al., 2018) to over 800 cancer drugs and
vaccines in clinical trials or under review by the FDA. While growth in the number of
compounds is key to improving therapy options for patients, retrospective studies have
demonstrated a meager 5% to 20% success rate of cancer treatments entering clinical
trials (DiMasi et al., 2013; Kola & Landis, 2004; Sharpless & Depinho, 2006); the remaining
80% to 95% of those compounds, which involved investment of significant resources to
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advance to a clinical trial, do not achieve approval or provide benefit to patients. Over
30% of the attrition has been attributed to a lack of efficacy uncovered in late-stage clinical
trials (DiMasi et al., 2013). Preclinical models that reproducibly and accurately reflect drug
efficacy and predict patient responses are also needed to eliminate ineffective compounds
earlier in the development process (Johnson et al., 2001).

In addition to improving preclinical models, the methods of reporting of results also can
promote reproducible, accurate, and comprehensive interpretation of results. Following
guidelines such as ARRIVE (Animal Research: Reporting of In Vivo Experiments), which
were developed to improve the design, analysis and reporting of research using animals, is
critical to maximize information published and minimize unnecessary studies (Kilkenny et
al., 2010).

Commonly used models in preclinical cancer therapy trials include in vitro cell lines,
cell-line derived xenografts (CDXs), genetically engineered mouse models (GEMMs)
and patient-derived xenografts (PDX). Cultured in vitro cell lines, and CDXs that are
derived from them, have historically been the most broadly used in vitro cancer model. The
limitations of these homogeneous cell line based models, and their alternatives, have been
detailed in several reviews (Gillet, Varma & Gottesman, 2013; Wilding & Bodmer, 2014).
Genetically-engineered mouse models (GEMMs) are generated through the introduction
of targeted genetic alterations associated with specific humanmalignancies. The advantages
offered by GEMMs include the presence of a functional immune system and intact tumor
microenvironment, the ability to induce genetic aberrations at specific developmetal times
in a tissue-specific manner, and the ability to study tumor intiation and progression (Heyer
et al., 2010; Lee, 2014; Sharpless & Depinho, 2006). However, the precision required for
the creation of GEMMs can be complex and technically challenging and may involve
advanced genetic-engineering techniques that can result in ‘‘off-target’’ effects of gene
editing with unintended consequences (Lee, 2014). Patient-derived xenograft models
(PDXs) are generated by serial transplantation of human tumor cells or tissues in a mouse
host (Abate-Shen et al., 2014). PDXs have been shown to more accurately reflect aspects of
tumor biology observed in situ compared to cell culture and CDXs and are, therefore, a
powerful tool for investigating complexities of cancer diseases with published correlations
in histological phenotypes, genomic signatures, and treatment responses (Hidalgo et al.,
2014; Kopetz, Lemos & Powis, 2012; Liu et al., 2010; Rosfjord et al., 2014; Tentler et al., 2012;
Whittle et al., 2015). PDXs have been used previously to identify molecular targets of a
compound, predict patient response and survival (Rosfjord et al., 2014; Tentler et al., 2012),
and assess the response of a tumor to a compound at both the individual patient level
(Garralda et al., 2014; Hidalgo et al., 2011; Izumchenko et al., 2017) and the population
level (Gao et al., 2015). Limitations of PDX include the relative cost and long lead time of
utilizing the model, relative to cell-line models. The time required to passage PDX model
system to develop study animals with tumors at a treatable volume can take up to a year for
some slower growing models. PDX are also heterogenous tumor fragments which provides
a key advantage to the model, but how the tumors are divided and engrafted can also
incorporate sampling bias across animal cohorts on study.
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For PDXs to deliver on their promise as an effective platform for preclinical studies
for cancer therapeutics, it is important to understand how different study design factors
influence the reproducibility of treatment response classifications in this model system.
Different methods of classifying treatment responses in xenografts have been proposed,
but many have been evaluated only in cell lines and CDXs which lack the heterogeneity
and subsequent growth variability supported by PDXs (Hather et al., 2014; Laajala et al.,
2012; Liang, 2007; Wu & Houghton, 2010). For example, Hather et al. (2014) compared a
tumor growth rate basedmethod (RTC) to a traditional tumor volume treatment to control
method (TC) using 219 CDXs and reported that RTC required fewer animals to achieve the
same effectiveness as TC. They also determined that a cohort size of four animals achieved
over 95% statistical power. To date, there have been no published studies demonstrating
the relevance of the Hather study to PDXs.

In the study reported here we evaluated the impact of initial tumor volume, rate of
tumor growth, cohort size, study duration, and analysis method on treatment response
classifications in PDX models from The Jackson Laboratory (JAX) PDX Resource. The
dataset used for this study consisted of cisplatin treatment response data for 70 PDX
models representing ten cancer types with up to 28-day study duration using cohorts of
3–10 tumor-bearing mice. The analysis was repeated using docetaxel treatment response
data for 40 PDX models.

METHODS
PDX models
The data for this study were obtained from the JAX PDX Resource, under protocol
12027 approved by The Jackson Laboratory Institutional Animal Care and Use
Committee (IACUC) before study initiation. All animal studies followed the IACUC
guidelines. The models were generated using subcutaneous tumor implantation
in female NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG; JAX strain 005557) host mice.
Detailed methods for model generation are described elsewhere (Shultz et al., 2014).
Information and data for PDX models from the JAX PDX Resource are publicly
available from the PDX Portal hosted by Mouse Tumor Biology Database (MTB;
http://tumor.informatics.jax.org/mtbwi/pdxSearch.do) (Krupke et al., 2017).

PDX dosing study design
To assess the impact of study design factors on treatment response classification to
chemotherapy agents, we analyzed drug response data from 70 cisplatin-treated PDX
models representing ten cancer types and 40 docetaxel-treated PDX models representing
ten cancer types from the JAX PDX Resource (Table S1).

Cisplatin and docetaxel are commonly used chemotherapeutic drugs used for treatment
of numerous human cancers including bladder, head and neck, lung, ovarian, and testicular.
Cisplatin and docetaxel interfere with DNA replication and repair mechanisms leading
to apoptosis in dividing cells, but they do so via different mechanisms. Cisplatin is an
alkylating agent and docetaxel is a taxane that interferes with microtubules.
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For dosing studies, human tumor fragments (3–5 mm3) were implanted subcutaneously
using a trocar into the right hind flank of NSG mice. Animals were monitored until the
engrafted tumor reached approximately 200 mm3. Mice were then randomly categorized
into study groups and treated with either 2.0 mg/kg IV cisplatin once per week for
up to three weeks, 10.0 mg/kg IV docetaxel once per week for up to three weeks, or a
vehicle control. The compound and dosing schedule for vehicle controls varied across
studies because of other treatment groups that were run simultaneously with cisplatin
or docetaxel. Most models (66) used 5.0 ml/kg IV 5% dextrose in water; the remaining
used one of the following alternatives: (1) 10.0 ml/kg PO 0.5% CMC daily (3 models), (2)
5.0 ml/kg PO 2.5% DMSO in PBS daily (1 model), (3) 5.0 ml/kg IV combination of 5%
dextrose in water and 0.5% CMC (1 model).

Clinical observations, body weights, and digital caliper tumor volume measurements
were performed at least twice weekly for up to 28 days after study enrollment. Volume
was calculated by using the following formula: volume = (length) × (width)2/2, in which
the length is the larger of the two perpendicular axes and width is the smaller of two
perpendicular tumor axes. Following the IACUC protocol, animals were removed from
the study if tumors became visibly necrotic or if the animals demonstrated greater than 20
percent weight loss.

PDX dosing study data
All models involved one treatment group and one control group evaluated for a minimum
of 14 days, with 67 models enrolled for a minimum of three weeks and 53 for four weeks.
Initial individual tumor volume ranged from 50 to 367 mm3 across all studies. The number
of mice per cohort ranged from N = 3 to N = 11; 55 of the models had a treatment group
with a minimum ofN = 8 (Table S1). While the response was analyzed at four time points,
the animal and tumor volume monitoring occurred two to three times per week for the
duration of the study. Not all measurements used to calculate treatment responses at the
end of a dosing study were available precisely on days 0, 14, 21, and 28. If a target timepoint
did not have corresponding data, then the value that fell within the following range was
used: day -1 to 1 grouped as day 0 or baseline volumes, 11 to 17 as day 14, 18 to 24 as
day 21, and 25 to 31 as day 28. If multiple points fell within that range, then the closest
day to 14, 21, or 28 was used. The study day of the control group follow-up was matched
to the study day of the corresponding treatment group follow-up. Outliers were assessed
using JMP v13.2.1; minor outliers were defined as 1.5 times the mean volume interquartile
range, and major outliers were defined as three times the interquartile range, for both the
treated and control groups on a specific measurement day. Outliers were included in all
subsequent analyses, as there was no indication that they were the result of a technical error.

Calculating treatment response
Table 1 lists the data analysis methods for treatment response that were evaluated in this
study. For the study reported here, treatment response was assessed at three time points
(14, 21, and 28 days, as available). Each of these methods incorporates a calculation of
the ratio of treatment to control measures. The most frequently used method is based
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Table 1 Methods of assessing tumor response.

Method Abbreviation Equation

Traditional T/C (TC) VT
VC

Relative tumor volume T/C (RTV)
(
Vx
V0

)
T(

Vx
V0

)
c

Rate-based T/C (RTC) 10(µT−µc )xt

on the ratio between the average volume of the treatment group (VT) and the average
volume of the control group (VC) on a specific day during the study, referred to as the
tumor-to-control method (TC). The relative tumor volume (RTV) (Marangoni et al., 2007;
Nemati et al., 2010; Xu et al., 2013), measure accounts for variation in initial volume of a
tumor. Either the mean or median of the RTV of the treatment group (RTVT) is divided
by the mean/median of the control group (RTVc). Neither the TC nor the RTV accounts
for the rate of growth or measurements of volume beyond the final day of the study and
the first day of the study. Hather et al. addressed this potential shortcoming by developing
a rate-based method (RTC) that accounts for all the individual volume measurements
throughout a study (Hather et al., 2014).

Based on the tumor volume ratio of treated and controls calculated using the three
methods described above, a response classification of ‘‘highly responsive’’ (ratio less than
0.1), ‘‘responsive’’ (ratio between 0.1 and 0.42), or ‘‘nonresponsive’’ (ratio greater than
0.42) was assigned. These criteria were adapted from the Drug Evaluation Branch of Cancer
Treatment, NCI, which defines a T/C ≤ 0.42 as an active drug and T/C ≤ 0.10 as a highly
active drug (Azmi et al., 2008; Geran et al., 1972; Huynh et al., 2008). The change in tumor
volume was used as an indicator of effectiveness of the drug and as an indicator of drug
activity. Figure 1 illustrates the distribution of T/C response at day 28 across 53 models
treated with single-agent cisplatin. Of 53 models with a study length of 28 days, four PDX
models were highly responsive to cisplatin, 11 were responsive, and 38 were nonresponsive.

To evaluate the impact of the number of replicates used to assign a response classification,
we applied a bootstrapping (Mooney & Duval, 1993) technique, which randomly resamples
the data with replacement to estimate parameters of a population empirically. By selecting
subsets of both the treatment and control groups and using these to compute the response
values of each of the three methods compared, we aimed to demonstrate how changes in
study length and number of animals influenced the precision of the response values and
classifications.

Utilizing only those models with the number of replicates per group (N) of greater
than or equal to 8 for the duration of the study, 1,000 bootstrap replicates were performed
for each subset from N = 3 to N = 7 relative to N = all, in which ‘‘all’’ refers to the
maximum number of subjects available (8–10). The output determined the probability
that the response of the subset N differed by: (1) > |0.05| of the N= all response value; (2)
> |0.10| of the N= all response value; (3) change from N= all response classification. This
method allows for replication of realistic sub-samples that may have been encountered if a
smaller subset had been used in the study.
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Figure 1 Distribution of response across models. A total of 53 PDX models treated with single-agent
cisplatin had various response (TC) values at 28 days. Of 53 models with study length of 28 days, four
PDX models were highly responsive (TC< 0.1) to cisplatin, 11 were somewhat responsive (0.1–0.42), and
38 were nonresponsive (>0.42).

Full-size DOI: 10.7717/peerj.6586/fig-1

Statistical power analyses were run using the pwr package (version 1.2-2) in R (version
3.3.1) (R Core Team, 2016). Effect sizeswere determined based on theTC/RTC/RTV (mean)
/RTV (median) value using all available samples that that were nonresponsive (value of
0.42 or greater), responsive (value of 0.10 to 0.42) or highly responsive (value of less than
0.10). One thousand re-samplings were used to calculate new TC/RTC/RTV (mean) /RTV
(median) values based on a subset of the original samples with replacement. The effect
size was divided by the standard deviation of the resampled values. The sample size was
determined as the number of subset samples used during the re-sampling process. An
alpha value of 0.05 was established. Treatment response was calculated for TC/RTC/RTV
(mean)/RTV (median) values, 0.42 and 0.10 for both directions (greater and less than)
individually.

RESULTS
Growth rate may impact treatment response classification more than
initial tumor volume
Table S2 lists the variables assessed in this study and their Spearman correlation coefficients
with treatment response values. We observed that tumor volume of control samples at the
end of the study had a moderate correlation value (R= 0.48) with response values across
all methods which was most pronounced with the RTC data analysis. Figure 2 shows the
control tumor volumes from study Day 21 of the cisplatin dosing studies. The average
volume of the control tumors of the models that were classified as responsive were larger
than those that were classified as nonresponsive indicating that the tumors that grew larger
when unchallenged also were to be the ones that had a greater degree of response to the
compound (R= 0.36, p= 0.01). The growth rate of the control tumors over the study
duration was also moderately correlated (R= 0.35) to the response values. No other strong
correlations (R > |0.30|) between the variables were identified.
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Figure 2 Day 21 control tumor volumes by response classified by RTC. Tumors that grew larger during
the course of the study were more likely to result in a response classification. The average volume of the
control tumors of the models (R= 0.36, p value= 0.01).

Full-size DOI: 10.7717/peerj.6586/fig-2

Calculating treatment response from mean tumor volume was more
reproducible than from the median tumor volume
Figure 3 shows the comparison between response values that were calculated from themean
and median tumor volumes across the study groups. The power to detect the response
(<0.42) was higher for mean compared to median for all three methods. Table 2 shows
the power in detecting response versus the number of animals per group for RTV. Ten
percent of the models assessed (five of 50) had a change in the response classification
when calculating response with mean as opposed to median. Of the five models that
differ in classifications, the mean was more sensitive for one model (TM00185), while the
median was more sensitive for the other four. Two of these five models had major outliers
(TM00185 in control group, TM00302 in cisplatin group); one model (TM00185) had four
of eight control tumors not exceeding 500 mm3 over the duration of the study.

Treatment response classification at 21-days is concordant with
classification at 28-days
Figure 4 shows the response classifications on study days 14, 21, and 28 for the three
treatment response methods. All models classified as highly responsive or responsive on
day 21 were consistent with those classified on day 28 with the exception of one model.
While models that were classified as highly responsive on day 28 were observed to be
responsive to cisplatin on day 14, a 14 day study duration would not have distinguished
highly responsive and responsive models. None of the PDX models demonstrated a
response to cisplatin by day seven.

Treatment response classification does not vary by method of
calculation
Table 2 displays a comparison of the treatment response values that were calculated for the
three methods outlined in Table 1. Mean and median response values across all 53 models
assessed were within 0.01 (1.7%) of each other for all methods. The standard deviation

Malcolm et al. (2019), PeerJ, DOI 10.7717/peerj.6586 7/21

https://peerj.com
https://doi.org/10.7717/peerj.6586/fig-2
http://dx.doi.org/10.7717/peerj.6586


Figure 3 Comparison of treatment response values frommedian andmean tumor volumes. A total
of 10% (five models of 50) of PDX models have a change in classification when calculating response with
mean as opposed to median. The five models (TM00302, TM00214, TM00222, TM00185, TM01563)
were all lung models, with four of the five models from primary tumors (not from tumors of metastatic
or relapsed disease). Of the five models that differ in classification, mean is more sensitive for one model,
TM00185, while median is more sensitive for four.

Full-size DOI: 10.7717/peerj.6586/fig-3
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Table 2 Mean Power of RTV classification when calculated with mean group volume andmedian
group volume.

Number of animals Mean volume Median volume

3 0.770 0.716
4 0.826 0.796
5 0.869 0.811
6 0.881 0.852
7 0.963 0.903
8 1.000 0.986

across models was minimal, but slightly higher in RTC. Figure 5 illustrates the classified
response values determined by each of the methods using N= all at day 21. Only 1 (1.8%)
of the models had a different response call among the methods.

A cohort size of seven is required to achieve high statistical power
A probability analysis was performed to determine the frequency of changes in response
classifications when a smaller N is used. Fifty-three models with PDX response data on day
21 with an N of 8 or greater were included in this analysis. Overall, the highly responsive
and least responsive models have the lowest probability of a change in classification at
lower N, suggesting that the ability to use a smaller cohort size depends on the degree
of response that is of interest. The RTV method consistently classified models as highly
responsive to cisplatin, with a 0% to 5% probability that the classification would differ
from N of all when using an N of 3. The TCmethod consistently classified models as highly
responsive to cisplatin (0% to 10% probability of the classification differing from N = all)
for subset cohort sizes as low as N = 3. The highly responsive and least responsive models
demonstrated the lowest probability of changing classifications at lower N.

Figure 6 displays the mean effectiveness (as conveyed by the statistical power of the test)
in classifying the model response. In general the effectiveness decreases as the number of
animals per group decreases. Figure 6A demonstrates that the RTC method is the least
effective for determining this classification, with effectiveness declining at an N of 3 (power
of 0.534) relative to TC (0.791) and RTV (0.835). Both TC and RTV have an effectiveness
of over 0.99 when an N of 8 is used; RTC’s effectiveness is also high, at 0.97. Figure 6B
displays the effectiveness of identifying a response for the highly responsive models, which
is 1.0 across all methods; this indicates that a highly responsive model would consistently
be recognized as at least responsive with an N of 3. The statistical power in classifying
nonresponsive models for TC, RTC, and RTV are 0.585, 0.692 and 0.661 respectively. The
power in classifying highly nonresponsive (greater than 0.80) models as nonresponsive are
0.830, 0.901, and 0.878 respectively. Aside from RTC for nonresponsive classifications, the
RTVmethod is consistently higher in effectiveness across categories and number of animals
used. Correlations between power and growth rate, initial tumor volumes, and control
tumor volumes were run. Only weak correlations (R< 0.30) were found; the largest
correlations detected indicated that the standard deviation of the initial control tumor
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Figure 4 TC Response classification at study day 14, 21, and 28. All models classified as highly respon-
sive or responsive on day 21 were consistent with those classified on day 28 with the exception of one
model (TM00194).

Full-size DOI: 10.7717/peerj.6586/fig-4
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Figure 5 Response classification at Day 21 across three methods.
Full-size DOI: 10.7717/peerj.6586/fig-5
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volume is negatively correlated with the mean effectiveness of nonresponse classifications
(Spearman coefficient of −0.41).

While the highly responsive and nonresponsive models were assessed using an N of 3,
a greater cohort size may be necessary to interpret response in models other than those
with extreme response or nonresponse. The RTV was the most effective for classifying any
responsive models withN = 3 at 77.0%, as illustrated in Fig. 6C, but an N of 7 was required
to achieve above 90% statistical power (the chance of calling a treatment response when
there is a treatment response to be detected), and an N of 8 was required to achieve an
effectiveness rate of over 99.0%.

Findings in studies of docetaxel produced similar results to those of
cisplatin
Like the findings for cisplatin, the three methods demonstrated consistent docetaxel
response classifications in 96% of models (22 of 23) and consistently classified the same
models as highly responsive to docetaxel. Unlike cisplatin where no models demonstrated
responses by day seven, three models had a docetaxel response classification computed for
at least one of the three methods. Like cisplatin, the models highly responsive to docetaxel
have minimal (less than 5%) probability of changing classifications with a cohort size of
three animals. The RTV median method was the least effective in classifying docetaxel
responses for 60% of models (12 of 20); in contrast, it was the most effective method for
detecting cisplatin responses. The RTC method classified the lowest response values (was
most sensitive) for docetaxel in 65% of models (13 of 20), suggesting that the sensitivity of
the methods can be therapy-dependent.

DISCUSSION
In this study, we examined three commonly used methods for classifying treatment
responses in PDX models and the impact of several study design factors on the consistency
of those classifications. We showed that a cohort size of three is sufficient for identifying the
four highly responsive and nine highly non responsive cisplatin treated tumors, suggesting
that the use of a low cohort size to screen for chemotherapies that have a high degree of
activity or models that have a high degrees of response is possible. However, it is important
to note that cohort size depends on the study endpoints; distinguishing between the
anticancer activity agents with similar tumor responses is not always possible with a low
N. Achieving a balance between ensuring reproducible results and reducing cohort sizes
and study duration will minimize the number of animals required and enable savings in
laboratory resources.

We found that the average volume of the control groups of themodels that were classified
as responsive were larger than those that were classified as nonresponsive, indicating that
the models that grew larger when unchallenged also had a greater degree of response to the
compound. While this makes intuitive sense as a larger denominator in the treatment to
control ratio would indicate a more robust treatment response, it may also suggest that a
minimum tumor volume threshold is needed to assess response. This also highlights the
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Figure 6 Mean power to detect cisplatin response classifications by number of animals used per group
for each response method. (A) Mean power for highly responsive classifications. (B) Mean power for call-
ing a response in models that are highly responsive (<0.10), showing that highly responsive models would
be classified as responsive with 100% power. (C) Mean power for responsive models. (D) Nonresponsive
models. (E) Mean power for non-responsive classifications of only those models that were highly nonre-
sponsive (>0.80).

Full-size DOI: 10.7717/peerj.6586/fig-6
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importance of utilizing a control as results may be dependent upon the behavior of the
tumor under normal/vehicle conditions as well as on the treatment.

Our results showed that a 21-day study duration is sufficient for reliable treatment
response classification in studies focused on estimating drug efficacy. We observed that
the same classifications that were discovered with a 28-day study duration could also
be discovered for only a 21-day study duration for the drugs tested; this could enable
faster distribution of data and greater savings of valuable lab resources. This finding is not
consistent with the 14 day optimal duration shown by Hather, and we hypothesize that
the lack of concordance is due to the differences in model system (CDXs vs PDXs). We
note that as with cohort size, study duration is very dependent on endpoint criteria. For
example, monitoring for acquired resistance or duration of response, will require longer
study duration while dosing studies aimed at understanding infiltration of a compound
into a tumor may require the tumors to be harvested and evaluated within hours or days
after drug exposure.

Finally, we found that each of the methods consistently classifies responsiveness which
suggests it is feasible to combine response data across studies that apply different methods
assuming consistent response value thresholds have been used. The frequency of outliers
in treatment response in PDX tumors has caused many researchers to consider the median
to reduce the impact of outlying tumor measurements on the response classification
(Carter et al., 2007; Hollingshead, 2008; Teicher, 2006), but our work shows that using
the mean provides a more reproducible classification if no major outliers exist. Various
enrollment criteria have also been described in the literature (Fiebig et al., 2007; Xu et
al., 2013), but most frequently, an initial tumor volume group average of 200 mm3 is
used(Garrido-Laguna et al., 2011; Jimeno et al., 2008; Krepler et al., 2017; Rubio-Viqueira et
al., 2006; Yu et al., 2017; Zhang & Lewis, 2013), in addition to maintaining a small tumor
volume distribution within a study group. We discovered that there is a non-statistically
significant correlation between the standard deviation of the control tumor volumes at the
beginning of the study and the effectiveness for nonresponsive classifications. Additional
mice per cohort should be considered if tumor volumes vary within a study group.

CONCLUSIONS
An important caveat to the work described in this manuscript is that our analyses were
performed on less than a hundred PDX models and were limited to two chemotherapy
agents; the findings may not extend to other drug classes. Other study design factors and
analysis methods that could influence treatment responses in PDXs that were beyond the
scope of this analysis and should be evaluated in future work. Orthotopically implanted
PDXs, for example, were not considered but may be a factor in both engraftment success
(Wang, Fu & Hoffman, 1992) and clinically relevant treatment responses to chemotherapy
(Garrido-Laguna et al., 2011). Co-engraftment of fibroblasts and matrigel is also a method
that varies across PDX studies, as does the use of hormone supplements such as estradiol
for hormone-dependent cancers; the influence of these factors on study outcomes has not
been investigated. The dosage and route of treatment agents were not considered here but
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could also be important factors in the consistency of treatment responses. With respect to
methodology for calculating treatment response, we focused here onmethods that compare
treatment to control arms. We were specifically interested in determining if the findings
described in Hather et al. (2014) performed on CDXs would apply to PDXs. We did not
investigate response classification methods that are based on tumor regression or starting
and ending values of the treated tumors only.

Ultimately, the value of PDXs as a preclinical platform will depend on how robustly
treatment responses in these models translate to responses in patients. The results of our
analyses do not speak directly to this important issue but they do support the robustness
of treatment responses calculated using a typical PDX treatment study design and suggest
that treatment responses can reasonably be compared across different studies that use an
experimental design similar to the one described in this manuscript.
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